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a b s t r a c t

We present a mechanics based model for predicting the power consumption of drilling operations.
Different from existing power models in machining that ignore the tool wear, our model takes into full
consideration the tool wear which is particularly pronounced in drilling and causes extra power con-
sumption. For any given spindle speed n and feed rate f, our model establishes the relationship between
the length of drill and the total power consumption as well as the amount of tool wear. With this
prediction model established, we can then optimize the drilling parameters (n, f) towards different
objectives, such as the two applications reported in this paper e to minimize the average power con-
sumption per unit length of drill and to maximize the tool usage before its replacement. Physical drilling
experiments of the proposed power prediction model and its two optimization applications are also
reported in this paper which have validated the accuracy of the model and convincingly demonstrated its
efficacy in deciding optimal drilling parameters (n, f) for energy minimization and other objectives.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Drilling is a simple yet fundamental machining operation
needed in many manufacturing applications. For example, it is
estimated that there are more than 6500 holes in a medium-sized
aeroplane (Portillo et al., 2012) and most of them are drilled. When
drilling on hard materials (such as Nickel-based super-alloy) which
are commonly used for aeronautical parts, the biggest concern is
the wear of the tool as it typically deteriorates very fast due to the
exceedingly large cutting force (Sun et al., 2015). As drilling is
simple, when the tool is fixed, the only affecting machining pa-
rameters are the spindle rpm n and tool feed rate f. The funda-
mental process planning task is then to determine a best pair of (n,
f) towards various objectives. In particular, amid today's high so-
cietal attention on sustainability, the following objective on energy
minimization naturally rises: how to plan (n, f) to minimize the
average power consumption per unit length of drill? Another
objective that is related to the cost of tool could be: given a tool
g), mektang@ust.hk (K. Tang).
replacement threshold on the tool wear (i.e., the maximum tool
wear at which the tool must be replaced), how to find the best (n, f)
so that the maximum length of drill can be achieved by a single
tool? A similar minimization problem could also be defined on time
efficiency. These objectives are different and may conflict each
other. Regardless, the fundamental prerequisite is a correct
modelling of the relationship among the tool wear, the length of
drill, the power consumption, and the machining parameters (n, f).

Particularly pertinent to the subject of energy minimization in
machining, numerous energy consumption models have been re-
ported in the past decade. For example, Gutowski et al. (2009) is the
first who put forward the theory that energy consumption is line-
arly related to the material removal rate (MRR) in a typical
machining process. Kara and Li (2011) proposed a model of specific
energy consumption (SEC), which is associated with the MRR and
can be applied to both lathes and milling machines. These models
however only consider MRR and thus are inaccurate when other
factors (such as spindle speed) become critical. Subsequently, Li
et al. (2013) proposed an energy model which is based on ther-
mal equilibrium and considers the spindle speed in air-cutting. The
prediction accuracy of the model is found to be significantly
improved compared to the first two models. Recently Zhong et al.
(2017) proposed the so called decision rules on deciding the
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Nomenclature

abbreviations
MRR material removal rate
SEC specific energy consumption

symbols
dFt,dFf,dFr components of differential cutting force in tangential,

feed and radial direction
Ktc,Kfc,Krc specific cutting force coefficients
Kte,Kfe,Kre specific edge force coefficients
dA area of the differential chip lip being removed
h chip thickness
c feed rate [mm/r]
f feed rate [mm/min]
n spindle speed
V(z) cutting velocity
kt taper angle
Db chip width
dz chip height

q angle between the x-axis and the cutting velocity
gd angle between the tapered cutting edge and the

component of the cutting speed in the y direction
i angle between the cutting velocity and the normal to

the cutting edge
Kzc, Kze specific cutting force and edge force coefficient
Fzw, Ftw additional forces in both the axial direction and the

cutting direction
s stress of the rebound frictional contact surface
E modulus of elasticity
d material rebound rate
m sliding friction coefficient
DKtw, DKzw tool wear coefficients
Protation total power consumed due to the rotational motion
Pfeed total power consumed due to the feed motion
Pwcutting cutting power considering tool wear
Pidle idle power
Pcutting cutting power
Pauxiliary auxiliary power
Ptotal total power
L length of drill
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minimum energy consumption in turning, which take into account
the effects of different cutting parameters on MRR. However,
different cutting parameters may result in a same MRR. This is
especially the case in drilling, as the MRR in drilling depends on
only the feed rate but independent of the spindle speed, while
numerous drilling experiments have shown that the power con-
sumption in drilling is significantly influenced by the spindle speed.
Different from the MRR based models, Li and Kara (2011) presented
an energy consumptionmodel for machining that is based solely on
the cutting force. Later, Liu et al. (2015) proposed a hybrid approach
for modelling the energy consumption in milling processes, which
according to their experiments is able to achieve a relatively high
accuracy. In their model, the cutting power is calculated based on
the cutting force, while empirical calibrations are used to calculate
the total power. Also based on the cutting force, Xu et al. (2016)
proposed a tool path generation algorithm for minimizing the to-
tal energy consumption of five-axis milling of freeform surfaces.
More recently, Watson and Taminger (2018) proposed a model that
considers the entire manufacturing lifecycle e from the production
and transport of feedstock material through processing to return of
post-production of scrap for recycling. Jia et al. (2018) established a
novel energy model of machine-operator systems to assess the
energy efficiency of machining processes, which achieved a near
16% saving in energy consumption in their test case of verification.
Wang et al. (2018) presented a cutting energy consumption model
for prismatic machining features (PMFs), which according to their
tests achieved good prediction results. Zhao et al. (2019) studied
the impact of surface machining complexity (SMC) on energy
consumption and efficiency in CNC machining and proposed a
processing method to save the energy and improve the machining
efficiency. Camposeco-Negrete et al (2019) proposed a method to
optimize themachining parameters of AISI 1045 steel for turning to
reduce the energy consumption and surface roughness. Zeng et al.
(2019) experimentally fitted a specific energy consumption (SEC)
model and claimed an over 90% prediction accuracy.

Nonetheless, all the above models ignore the impact of tool
wear on energy consumption, while tool wear is inevitable in actual
machining, and particularly serious in drilling operations. Previous
studies have shown that tool wear during machining often signif-
icantly changes the cutting force. In terms of the related studies,
Iliescu et al. (2010) established a drilling thrust force model
considering the tool wear and investigated the relationship be-
tween the machining parameters and tool wear. Sun et al. (2013)
pointed out that as the tool wear aggravates, the cutting force
will increase significantly. Hou et al. (2015) showed that tool wear
can induce additional frictional and squeezing forces in the cutting
area. Fern�andez-P�erez et al. (2017) investigated how to detect tool
wear in drilling and select better machining parameters to extend
the tool life. Luo et al. (2018) also studied the effect of tool wear on
tool life in five-axis milling and proposed a strategy of averaging
out the tool wear on the cutter so to extend the tool life. Obviously,
as the cutting force is increased by the tool wear, so will be the
energy consumption. Earlier studies have already found that the
cutting energy is closely related to the tool's state, and the cutting
power is linear with the tool wear (Cuppini et al., 1990). Shao et al.
(2004) considered the effect of average tool wear on the cutting
power and proposed a corresponding milling energy consumption
model. Yoon et al. (2013, 2014) also considered the tool wear in
their energy consumption model of milling machines, and they
found that the material removal rate often increases as the tool
wear worsens. Liu et al. (2016) studied the effects of tool wear on
energy consumption and established an energy model. Recently,
Shi et al. (2018) established a milling power consumption model
based on the cutting force, which considers the effect of tool wear.
Proteau et al. (2019) used the power signal calculated from theMRR
to predict the tool wear through a neural network algorithmwith a
prediction accuracy of over 90% in their tests. Wang et al. (2019)
employed a data dependent system (DDS) to study the energy
consumption and tool wear of spindle motors during hard milling.
Tian et al. (2019) proposed a process parameter optimization
method that takes into account the tool wear to reduce the carbon
emissions during machining.

Unfortunately, the aforementioned models, though having
considered the tool wear in different degrees, are applicable only to
milling operations which cannot be used for drilling operations.
More explicitly, there has not been any published study on how to
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establish a prediction model for drilling that is able to correctly
define the relationship among the tool wear, the length of drill, the
power consumption, and the machining parameters (n, f), and this
is exactly the objective of this paper.

Specifically, in this paper, we will present a drilling energy
consumption model based on the mechanics (i.e., the cutting
force) that takes the tool wear into full consideration. Results of
our numerous calibration physical drilling experiments will also
be reported which convincingly validate the soundness and
correctness of the proposed model. With this prediction model
established, we will then report two optimization applications of
the model in drilling process planning, one for drilling energy
minimization and the other for drilling length maximization (or,
equivalently, the maximization of tool usage). Results of the
physical drilling experiments of the optimized solutions will
then be reported, which clearly show the substantial improve-
ment by the optimized machining parameters over the non-
optimized ones in both energy reduction and maximization of
tool usage.
2. Model of energy consumption considering tool wear in a
drilling process

2.1. Drilling force model considering tool wear

The differential cutting forces in three-axis drilling by a twist
drill (see Fig. 1) can be modelled as (Lee and Altintas (1996); Budak
et al. (1996)):

dFt ¼ KtcdAþ KteDb (1a)

dFf ¼ KfcdAþ KfeDb (1b)

dFr ¼ KrcdAþ KreDb (1c)

where Ktc, Kfc, Krc (N/mm2) and Kte, Kfe, Kre (N/mm) are the specific
cutting and edge force coefficients; dA (mm2) is the area of the
differential chip lip being removed which can be calculated as
dA(z)¼Db,h, with h (mm)¼ c/2sinkt, while kt is the taper angle and
c is the spindle axial feed rate (mm/r); Db is the chip width which
can be calculated by Db¼ dz/coskt; and dz is the chip height.

The differential cutting force components (dFt,dFf,dFr) can be
evaluated in the x, y, z directions as shown in Fig. 1 as follows:
Fig. 1. A twist drill.
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where q is the angle between the x-axis and the cutting velocity
(V(z)); gd is the angle between the tapered cutting edge and the
component of the cutting speed in the y direction; and i is the
oblique angle between the cutting velocity direction and the
normal to the cutting edge.

While the tangential cutting force and z-axis force during the
drilling process can be directly obtained by rotating the dyna-
mometer, the axial and radial forces are difficult to measure
physically, which though can be converted into the z-direction
cutting force by the following formula:

dFz ¼
h
cosgd,sinkt,Kfc þ ðcosi,coskt þ sini,singd,sinktÞKrc

i
dA

þ
h
cosgd,sinkt, Kfe þ ðcosi,coskt þ sini,singd,sinktÞKre

i
,Db

(3)

Since some of the parameters in the formulas are dynamic and
difficult to obtain, the above formula can be simplified to:

dFz ¼KzcdAþ KzeDb (4)

where Kzc and Kze are some coefficients, similar to the specific
cutting and edge force coefficients.

Therefore, the cutting forces in three-axis drilling by a twist drill
can be modelled as:

dFt ¼ KtcdAþ KteDb (5a)

dFz ¼ KzcdAþ KzeDb (5b)

In twist drilling, the tool wear appears in the form of flank wear
inwhich thewear contact between the tool and theworkpiece is no
longer a single point but an area, as shown in the right in Fig. 2.
Exactly because of this wear area, the cutting force is increased.
Specifically, as shown in Fig. 2, when flank wear occurs, the wear
area will produce additional forces in both the axial direction (Fzw)
and the cutting direction (Ftw). The additional force in the axial
direction (Fzw) is mainly caused by the rebound of the metal ma-
terial, which can be determined by the rebound contact area and
the stress of the rebound frictional contact surface, which can be
Fig. 2. A twist drill in a drilling process considering the tool wear.
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expressed as:

dFzw ¼ s$VB$Db (6)

where s is the stress of the rebound frictional contact surface that
can be expressed as:

s ¼ Edh (7)

where E is the modulus of elasticity, d is the material rebound rate,
and h is the thickness of the cutting layer.

The additional force (Ftw) in the cutting direction is mainly
caused by the friction between the tool and the workpiece, which is
determined by the force between the two and their material
properties. It can be expressed as:

dFtw ¼mðdFz þ dFzwÞ ¼ mð KzcdAþ KzeDbþ s$VB$DbÞ
¼ mð Kzchþ Kze þ Edh$VBÞDb (8)

where m is the sliding friction coefficient.
Therefore, the drilling force model considering the tool wear can

be expressed as:

dFwt ¼ KtcdAþ KteDbþ mð Kzchþ Kze þ Edh$VBÞDb (9a)

dFwz ¼ KzcdAþ KzeDbþ Edh$VBDb (9b)

The model can be simplified as:

dFwt ¼ KtcdAþ ðKte þDKtwÞDb (10a)

dFwz ¼ KzcdAþ ðKze þDKzwÞDb (10b)

where DKtw and DKzw are variables related to the amount of flank
wear (VB) (see Fig. 2), which can be expressed as:

DKtw ¼ mð Kzchþ Kze þ Edh$VBÞ (11a)

DKzw ¼ Edh$VB (11b)
2.2. The drilling cutting power model considering the tool wear

During a drilling process, the cutting energy consumption is
generated along with the relative movement between the cutting
edge and the workpiece. There are mainly two types of relative
movement, one is due to the self-rotation of the drill, and the other
due to the linear feed (in the axial direction). In order to accurately
calculate the cutting energy consumption of drill, it is necessary to
consider the energy consumption of these two types of motion,
separately.

With respect to the self-rotationmotion of drill, since dFf and dFr
are perpendicular to the cutting velocity vector, no power is
generated by them, and the differential powers (W) consumed at
each infinitesimal cutting edge in the tangential, feed, and radial
directions are respectively:

dProtation;t ¼ dFwt ,VðzÞ (12a)

dProtation;f ¼ 0 (12b)

dProtation;r ¼ 0 (12c)

where V(z) (m/s) is the cutting speed. The total power consumed at
the infinitesimal cutting edge due to the spindle rotational motion
can then be expressed as

dProtation ¼ dFwt ,VðzÞ (13)

Next, with respect to the linear feed motion, as dFt is perpen-
dicular to the feed direction, no power is generated by it, and the
differential powers are

dPfeed;t ¼ 0 (14a)

dPfeed;f ¼ dFwf ,cosgd,sinkt,f =60000 (14b)

dPfeed;r ¼dFwr ð cosi , coskt þ sini , singd , sinktÞ , f =60000
(14c)

where f (m/s) is the feed rate. The total power consumed at the
infinitesimal cutting edge due to the feed motion can then be
expressed as

dPfeed ¼
h
dFwf ,cosgd,sinkt

þ dFwr ð cosi , coskt þ sini , singd , sinktÞ
i
,f =60000 (15)

According to Eq. (2), Eq. (15) can then be expressed as

dPfeed¼ dFwz ðzÞ,f =60000 (16)

Finally, combining both Eq. (13) and Eq. (16), the instantaneous
power consumption due to cutting can then be modelled as:

Pwcutting ¼ Pfeed þ Protation ¼
ð
dPfeed þ

ð
dProtation

¼ f =60000,
ð
dFwz ðzÞ þ

ð
VðzÞ,dFwt ðzÞ

(17)
2.3. The total drilling power model considering the tool wear

Although in a drilling process the power consumption model is
extremely complex, according to (Hu et al., 2012), the total power
flow of machining on any machine tool can be separated into three
parts: the idle power Pidle, the cutting power Pcutting, and the
auxiliary power Pauxiliary (load loss). That is, we have:

Ptotal ¼ Pidle þ Pcutting þ Pauxiliary (18)

where the idle power Pidle can be expressed as a function related to
the spindle speed n, i.e., Pidle¼ g(n) (Li et al. (2013) and (Ma et al.,
2017)), and the auxiliary power Pauxiliary can be expressed as a
linear (Pauxiliary¼ C0Pcutting) or, more accurately, quadratic
ðPauxiliary ¼ C0Pcutting þ C1P

2
cuttingÞ function of the cutting power

(Hu et al. (2010, 2012)).
Thus, at the steady drilling state, the total drilling power con-

sumption can be expressed as:

Ptotal ¼ Pidle þ Pcutting þ Pauxiliary ¼ Pidle þ Pwcutting þ f
�
Pwcutting

�

(19)
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3. Energy consumption model calibration experiments

3.1. Setup and drilling parameters of the experiments

The physical drilling experiments were carried out on YH850Z,
which is a three-axis machine tool with a spindle power of 7.5 kW.
The material of the workpiece is GH4169 and the raw stock to drill
is a brick with dimensions of 190mm� 120mm� 16mm. The tool
used in the machining experiments is a twist drill with a diameter
of 10mm. The cutting condition is wet cutting. Table 1 gives the
drilling parameters.

A total of 12 combinations were selected. Under each set of
cutting parameters, the tool wear was inspected after each drilling
of 5 holes, until it reached its failure threshold. During the exper-
iments, all the force profiles were measured with a Kistler 9123C
rotary dynamometer (Fig. 3(a)). For power measurement, a HIOKI
clamp on power logger PW3360 was used (Fig. 3(b)). The power
profile of the machine tool was measured at a sampling frequency
of 1 Hz. The tool wear data were measured using a microscope
(Fig. 3(c)).

3.2. Cutting force coefficients and wear coefficient calibration

Since the cutting force coefficients change with the amount of
tool wear, the force data obtained at the very beginning of drilling
(i.e., after drilling the first hole of 16mm length) using a brand new
tool are used to perform the basic calibration of the cutting force
coefficients. As shown in Fig. 4, it can be seen that the change of the
spindle speed has little effect on the change of the cutting force
coefficients. Therefore, the influence of the spindle rotation speed
on the cutting force coefficients can be ignored. Based on the data
from the experiments, the cutting force coefficients were calculated
as:

K¼ [Ktc Kte Kzc Kze]T¼ [5120.3 134.0 5200.6 334.9]T

Using the obtained cutting force coefficients, the force profiles
under different pairs of (n, f) can be predicted (Han et al., 2018).
Fig. 5 shows some of the prediction results in comparison with the
experimental data. From the figure, it can be concluded that our
cutting force prediction results are generally acceptable, indicating
that the coefficients K can be reliably used.

After obtaining a reliable set of basic cutting force coefficients,
the wear coefficients DK generated by the flank wear were cali-
brated. First, the relationship between the amount of tool wear VB
and the number N of drilled holes (with each hole having a fixed
and same length) is established by the experimental data (as shown
in Fig. 6), which can be expressed as:

VBðNÞ ¼
XN
i¼0

aiN
i (20)

The above equation thus gives the relationship between the
amount of flankwear VB and the numberN of drilled holes. Since all
the holes have the same length (16mm), ignoring the minor effect
of tool entry, the equation actually gives out VB as a function of the
Table 1
Cutting (drilling) parameters for the calibration
experiments.

n [rpm] c [mm/r]

550 0.08 0.11 0.14 0.17
700 0.08 0.11 0.14 0.17
850 0.08 0.11 0.14 0.17
length of drill.
At the same time, although the curve shapes of tool wear e

length of drill under different machining parameters are different
(Fig. 6), we still can find some rules (as further exemplified in
Fig. 7). As shown in Fig. 7(a), when the feed rate is fixed (e.g.,
c¼ 0.11 mm/r), the tool wear VB increases with the increase of the
spindle speed n, indicating that a larger spindle speed nwould lead
to a shorter tool life (at least for the tested range of n in
550 rpme850 rpm). On the other hand, as revealed from Fig. 7(b),
when the spindle speed is fixed (e.g., n¼ 550 rpm), the influence of
the feed rate on the curve shape of tool wear e length of drill is
relatively small.

Using the established tool wear (VB) function of Eq. (20), the
wear coefficients DK can be calculated based on the experimentally
measured cutting force and the calculated basic cutting force.
Specific to our setting of experiments, the relationship between the
wear coefficients DK and the tool wear VB can be expressed as (see
Fig. 8):

DKtw ¼ 0:5571VB� 7:6583 (21a)

DKzw ¼ 0:2309VB� 52:994 (21b)

After obtaining the above functions, under fixed machining
parameters (n, f) and using a brand new tool (i.e., with a zero flank
wear) to start with the first hole to drill, the cutting force on the tool
when drilling the i-th hole can be calculated according to Eq. (10).
The comparison between the cutting forces obtained by our tool
wear prediction model and the experimentally measured is given
in Fig. 9, which shows a very close agreement, thus validating the
prediction model. Next, with the cutting force accurately predicted,
the due cutting power can be accordingly accurately calculated, as
detailed next.
3.3. Energy consumption model calibration

In the non-cutting state, by changing the spindle speed n and
physically measuring the corresponding Ptotal, the idle power Pidle at
different spindle speeds can be obtained. Fig. 10 draws the obtained
relationship between Pidle and the spindle speed n. By using the
standard linear least squares (LLS) fitting method, the following
Pidle e n curve is established:

Pidle ¼0:0003n2 þ 0:0524nþ 1221 (23)

Table 2 lists the data from the drilling experiments (in each of
which a brand new tool was used), where Ptotal is the actual total
power recorded by the power logger, while Pidle and Pcutting are
respectively calculated (i.e., predicted) by Eq. (23) and Eq. (17).
Based on them, with Eq. (18), i.e., Pauxiliary¼ Ptotal�Pidle�Pcutting, the
relationship between the auxiliary power Pauxiliary and the cutting
power Pcutting can be derived, as shown in Fig. 11, which shows a
near-linearity relationship given as:

Pauxiliary ¼ 0:1336Pcutting (24)

Finally, substituting Eq. (24) into Eq. (19), the total power model
can be expressed by the equations for Pidle and Pcutting, i.e., Eq. (23)
and Eq. (17), when the machining parameters are determined. That
is,

Ptotal ¼ Pidle þ 1:1336Pwcutting (25)



Fig. 3. The experiment setup: (a) the fixture of the workpiece and the force signal processing and collection; (b) the installation of the power meter; (c) the setup for tool wear
measurement.

Fig. 4. Relationship between the feed per revolution c and the cutting force.
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4. Model validations and discussion

In this section, the proposed energy model considering the tool
wear is validated by more physical drilling experimental data,
analysed, and also compared with the one that ignores the tool
wear.

4.1. Validation of energy prediction model

In Fig.12, under three different drilling parameters (n, f), i.e., that
of No. 2, No. 7, and No. 12 from Table 2, we show the experimental
data of the total power, the predicted power ignoring the tool wear
(predict), and the predicted power considering the tool wear
(predict-wear). First of all, the experimental data in the figure
validate that our established total power model considering the
tool wear closely agrees with the actually recorded power con-
sumption during the drilling experiments. Then, the actual recor-
ded data unequivocally confirm that the tool wear indeed increases
the power consumption, and it becomes more and more severe
with the increase of the drilling length. For example, as shown in
Fig. 12(b), for the setting of f¼ 98mm/min and n¼ 700 rpm, after
having drilled 50 holes, the actual recorded power consumption is
more than 2240W, while a lower and incorrect 2130W would be
predicted by our first energy model that ignores the tool wear.

Next, under the 12 drilling parameter pairs (n, f) given in Table 2,
we performed physical drilling experiments, recorded the cutting
force and total power consumption for each hole processed, and
then compared the recorded cutting forces and the total power
consumption respectively with the ones predicted by our estab-
lished cutting force prediction models (with and without consid-
ering the tool wear) and the total power prediction models (with
and without considering the tool wear), and Table 3 lists their
respective average normalized errors. As can be seen in the table,
when considering the tool wear, our prediction model for the
tangential drilling force, i.e., Ftw, agrees much more closely with the
actual data than the one ignoring the tool wear (Ft), or specifically, it
is 2.19% vs. 7.37%. On the other hand, as already explained earlier, as
the tool wearmainly affects the tangential drilling force, our cutting
force models for the axial drilling force with and without consid-
ering the tool wear, i.e., Fzw and Fz respectively, more or less are the
same, i.e., 2.70% vs. 2.73% in terms of the error measure. In the same
light, as power is induced by the cutting force, ignoring the tool
wear in power calculationwould miss the power due to the cutting
force induced by the tool wear, thus adding more error to the es-
timate of power. Specifically, as also shown in Fig. 13, from the data
of 12 physical drilling tests, on average, our power predictionmodel
Pw that considers the tool wear deviates from the actually recorded



Fig. 5. Cutting force prediction in the drilling experiments under different cutting parameters: (a) n¼ 550 rpm, f¼ 60.5mm/min; (b) n¼ 700 rpm, f¼ 98mm/min; (c) n¼ 850 rpm,
f¼ 144.5mm/min.

Fig. 6. Relationship between the number of drilled holes and the tool wear VB under different drilling parameters: (a) n¼ 550 rpm, f¼ 44mm/min; (b) n¼ 550 rpm, f¼ 60.5mm/
min; (c) n¼ 700 rpm, f¼ 77mm/min; (d) n¼ 700 rpm, f¼ 98mm/min; (e) n¼ 850 rpm, f¼ 119mm/min; (f) n¼ 850 rpm, f¼ 144.5mm/min.
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power by only 0.99%, while that (i.e., P) without considering the
tool wear has an error of 2.97%.

4.2. Validation of the tool wear prediction model

The proposed prediction models for drilling cutting forces and
the power consumption can be used to predict the tool wear as a
function of the length of drill (i.e., the number of holes to drill,
assuming that all the holes have the same length). Specifically,
under any fixed drilling parameters (n, f), after having drilled a
certain length, we can use our power prediction model to predict
the total power consumption at that time; then, based on our
cutting force model, we predict the cutting power and the axial and
tangential cutting forces that consider the tool wear, as well as the
basic cutting power and basic cutting forces that ignore the tool
wear. The difference is then the change caused by the tool wear VB,
and it can be calculated from the formula of the wear coefficients,
i.e., either Eq. (21a) or Eq. (21b).

To validate the just prescribed prediction model of tool wear,
under the three different drilling parameters (n, f) of test No. 2, No.
7, and No. 12 from Table 2, we performed physical drilling experi-
ments and recorded the power readings and measured the



Fig. 7. Relationship graphs of tool wear e spindle speed and tool wear e feed rate.

Fig. 8. Relationship between VB and the tool wear coefficients.
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corresponding tool wear VB's at the sample lengths of drill. E.g.,
under test No. 7, after 5 holes had been drilled, we stopped the
drilling, used a microscope to measure the tool wear VB, and then
read the power value at the power logger. Meanwhile, using these
measured tool wear VB's, we calculated their corresponding pre-
dicted power based on our cutting force and power model. The
comparison data are given in Fig. 14; from which we can draw the
following points:

(1) Our prediction model for the power in general agrees with
the physical experimental data.

(2) The total power consumption increases with the increase of
the tool wear VB.
(3) With respect to a same threshold of VB, the larger the feed
rate f or spindle rpm n, the larger the power consumption is
when the threshold is reached; e.g., when VB¼ 100 mm is
reached, with respect to the (n, f) of (550 rpm, 60.5mm/min)
and (850 rpm, 144.5mm/min), the corresponding total po-
wer consumptions are 1865W and 2600W, respectively.

It should be noted that in the experiments of Fig. 14, the pre-
dicted power values are calculated using the actual measured tool
wear VB's and that is why they are said to be queasily predicted. On
the other hand, we have already established the relationship be-
tween the total power and the length of drill (see Fig. 12). This
means that, given the length of drill (i.e., the number of holes that
have been drilled), we can use it to directly predict the corre-
sponding total power which can then be used to inversely calculate
the corresponding VB. Naturally, we call this type of prediction a full
prediction e no physical data are needed. In Fig. 15, we show the
comparison between the powereVB graphs of full prediction and
the physical experimental data. As clearly seen in Fig. 15, the results
of full prediction closely match the physical experimental data,
which in turn implies the correctness of the proposed powermodel
and cutting force model considering the tool wear.

As a final validation work, for each of the 12 (n, f)'s from Table 2,
we performed physical drilling experiments in which, after every 5
holes had been drilled, we stopped the drilling, measured the tool
wear VB, and then resumed the drilling. These experimental data
were then compared with the VB's that were calculated by our full
prediction model, as shown in Table 4. (In the table, whenever a
blank, it means the tool wear VB at the time of measurement had
already reached the 150 mm tool wear threshold.) The comparison



Fig. 9. Cutting force prediction considering the tool wear under different cutting parameters: (a) n¼ 550 rpm, f¼ 60.5mm/min; (b) n¼ 700 rpm, f¼ 98mm/min; (c) n¼ 850 rpm,
f¼ 144.5mm/min.

Fig. 10. The idle power at different spindle speeds.

Table 2
The recorded total power (Ptotal) and the calculated idle power (Pidle) and cutting
power (Pcutting).

No. n [rpm] f [mm/min] Ptotal[W] Pidle[W] Pcutting [W]

1 550 44 1750.0 1340.6 360.9
2 550 60.5 1837.4 1340.6 430.9
3 550 77 1937.0 1340.6 501.1
4 550 93.5 2001.8 1340.6 571.5
5 700 56 1906.1 1404.7 459.3
6 700 77 1988.8 1404.7 548.4
7 700 98 2117.4 1404.7 637.8
8 700 119 2217.9 1404.7 727.4
9 850 68 2067.9 1482.3 557.7
10 850 93.5 2217.5 1482.3 665.9
11 850 119 2354.8 1482.3 774.4
12 850 144.5 2474.4 1482.3 883.2

Fig. 11. The relationship between the auxiliary power and the calculated cutting
power.
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data show that the maximum average error of the fully predicted
tool wear under various processing parameters (n, f) is less than 8%
in a large drilling range of 0mme1120mm, while the total average
error is 5.74%. However, if we removed the initial length of drill
from the calculation, the error would be much smaller. This is
because the tool wear is intense at the beginning of the tool's use,
which leads to irregular and drastic changes in the cutting force
(even the physically measured cutting force showed an irregular
decreasing trend in the beginning of drilling, as shown in Fig. 9). As
a result, our theoretical tool wear prediction model has a relatively
large error at the initial stage of drill (i.e., for the first 10 holes, or
160mm). However, as the main purpose of tool wear prediction is
to accurately predict the normal tool wear so to achieve a timely
replacement of the tool, and the initial stage of tool wear is not the
main predictor, this prediction error at the initial stage of wear can
be simply ignored. As the tool enters its normal wear phase, the tool
wear becomes more stable, and our tool wear prediction error is
significantly reduced to a relatively accurate range, e.g., an average
of only 1.41% for the 30th e 60th holes in test No. 1.
5. Applications

As the final part of this research work, in this sectionwe present
two applications of our established prediction models for the tool
wear and power consumption in drilling.
5.1. Maximize the length of drill under a given threshold of tool
wear

Under any fixed setup of drilling, our prediction model for the
tool wear establishes a relationship between the length of drill L
and the drilling parameters (n, f) with respect to any given tool
wear threshold VB. Let LVB(n, f) denote such a function. As a con-
create example, under our setup of drilling given in Section 3.1,



Fig. 12. Total power prediction in the drilling experiments under different cutting parameters: (a) n¼ 550 rpm, f¼ 60.5mm/min; (b) n¼ 700 rpm, f¼ 98mm/min; (c) n¼ 850 rpm,
f¼ 144.5mm/min.

Table 3
Comparison of the prediction models with and without considering the tool wear.

Test No. Fz Ft Fz
w Ft

w P Pw

1 2.35% 12.3% 3.16% 1.78% 4.02% 1.12%
2 2.17% 8.48% 2.13% 1.73% 3.39% 0.97%
3 1.85% 6.95% 2.25% 1.54% 3.24% 0.83%
4 3.15% 4.81% 0.68% 2.82% 3.50% 1.00%
5 3.67% 8.94% 2.93% 1.27% 3.49% 1.00%
6 5.31% 6.94% 1.82% 2.49% 2.34% 0.83%
7 2.08% 8.27% 2.87% 2.44% 3.12% 0.97%
8 3.34% 4.36% 1.65% 1.53% 1.10% 0.84%
9 3.15% 11.0% 5.20% 2.89% 3.57% 0.98%
10 2.68% 8.50% 3.44% 1.68% 4.19% 1.75%
11 1.47% 3.87% 3.44% 3.22% 1.51% 0.80%
12 1.52% 3.69% 2.76% 2.85% 2.18% 0.78%
Average prediction error 2.73% 7.37% 2.70% 2.19% 2.97% 0.99%

Fig. 13. Comparison of the prediction errors of the power models with and without
considering the tool wear.

Fig. 14. Comparison between the power-VB graphs that are acquired from the physical
drilling experiments and queasily predicted respectively.
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when the tool wear threshold VB is set at 150 mm, Fig. 16 draws the
corresponding length of drill function LVB¼150mm(n, f). Explicitly,
given any pair of (n, f) within the domain [550 rpm,
850 rpm]� [44mm/min, 144mm/min], function LVB¼150mm(n, f)
gives the corresponding length of drill when the tool wear reaches
the threshold 150 mm. As can be seen in Fig. 16, LVB¼150mm(n, f) re-
sembles an inversed saddle shape, which naturally implies the
plausibility of optimizing n and/or f to maximize L.

For the specific function LVB¼150mm(n, f) of Fig. 16, we numerically
calculated the optimal (n, f) which is found to be around (n*, f*) ¼
(685 rpm, 92mm/min). As a benchmark to compare, we also picked
an arbitrary pair (nB, fB) ¼ (850 rpm, 44mm/min). We have
LVB¼150mm(n*, f*) ¼ 960 mm and LVB¼150mm(nB, fB)¼ 688mm. Under
(n*, f*) and (nB, fB), we then performed physical drilling for a length
of drill of 960mmand 688mm respectively, and thenmeasured the
tool wear VB. Meanwhile, we also recorded the total energy con-
sumptions of the two drills. Table 5 below lists the experimental
results. As clearly validated in the table, our prediction data in both
tool wear and energy consumption closely match their respective
physical experimental results. Moreover, the experimental results
have convincingly confirmed our intended optimization objective:
comparing to the arbitrarily chosen (nB, fB), the optimized (n*, f*)
not only increases the total length of drill by 40% but also at the
same time reduces the total energy consumption by 34%.

Sometimes, due to different process constraints, only one of n
and f is free to change while the other is predetermined. For
example, suppose the spindle rpm n is predetermined and in Fig. 17
we draw the function LVB¼150mm(f) at three different n's. Take
n¼ 550 rpm as an illustrative example. Intuitively, to increase the
productivity, a larger feed rate f is preferred, e.g., 140 over 70mm/
min, as the former doubles the latter. However, at f¼ 140mm/min,
the tool will have to be replaced by a new one after only a length of
700mm has been drilled; or in other words, a brand new tool can
drill only 44 holes. On the other hand, at the much smaller



Fig. 15. The fully predicted tool wear versus the measured tool wear: (a) n¼ 550 rpm, f¼ 60.5mm/min; (b) n¼ 700 rpm, f¼ 98mm/min; (c) n¼ 850 rpm, f¼ 144.5mm/min.

Table 4
Tool wear full prediction error under various machining parameters (n, f).

Hole no. No. 1 No. 2 No. 3 No. 4 No.5 No. 6 No. 7 No. 8 No. 9 No.10 No.11 No.12

5 39.8% 39.1% 38.5% 29.4% 21.5% 14.7% 27.1% 32.8% 14.1% 3.79% 24.8% 9.01%
10 12.7% 17.0% 12.3% 12.8% 1.85% 8.63% 9.02% 8.43% 12.3% 1.59% 7.30% 19.7%
15 5.02% 1.55% 1.57% 1.06% 2.51% 13.1% 5.01% 8.44% 3.02% 2.65% 9.05% 10.6%
20 9.49% 11.2% 6.42% 6.20% 3.05% 0.19% 4.33% 8.49% 2.57% 0.06% 5.07% 5.32%
25 7.98% 5.28% 6.34% 6.56% 1.88% 1.89% 4.95% 6.76% 2.24% 0.43% 1.63% 6.32%
30 2.59% 1.17% 0.83% 4.56% 0.02% 0.13% 5.84% 0.46% 4.75% 2.50% 1.03% 3.81%
35 2.56% 3.51% 3.78% 1.81% 1.79% 1.55% 6.25% 5.85% 0.18% 2.11% 7.94% 8.80%
40 1.41% 0.08% 0.78% 0.62% 0.12% 0.51% 2.65% 0.71% 6.11% 1.18% 4.72% 3.91%
45 1.64% 2.68% 7.90% 1.96% 3.86% 0.59% 4.52% 0.59% 2.92% 3.25% 0.01% 3.26%
50 0.10% 7.07% 4.68% 0.41% 0.08% 0.73% 1.54% 7.46% 2.15% 3.08%
55 0.90% 6.40% 7.53% 0.67% 1.82% 1.09% 1.51% 6.97%
60 0.67% 1.51% 0.17% 5.37% 0.88% 0.11% 3.37% 0.21%
65 1.40% 0.01% 3.90% 3.22%
70 3.50%
Average Error 6.64% 7.15% 7.28% 5.74% 3.28% 3.60% 6.34% 7.26% 5.35% 1.97% 6.46% 7.86%

Fig. 16. Relationship between the drilling parameters (n, f) and length of drill L.
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Table 5
Comparison of energy consumption and VB prediction with the actual experimental data.

L(mm)/hole no. Experiment VB(mm) Predict VB(mm) Error(VB) Experiment E(J) Predict E(J) Error(E)

(n*, f*) 960/60 147.3 150.5 2.12% 3.70Eþ06 3.57Eþ06 3.51%
(nB, fB) 688/43 145.1 149.9 3.31% 5.64Eþ06 5.41Eþ06 4.08%

Fig. 17. Relationship between feed rate f and tool life L under different spindle rpm n.
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f¼ 70mm/min, 58 holes (i.e., length of drill¼ 928mm) can be
drilled by a single tool before its replacement, which is a 32%
reduction in the cost of tool.

5.2. Minimum energy consumption of drilling under a given length
of drill

Akin to the length function LVB(n, f), our prediction models for
the tool wear and power consumption also establish a relationship
between the total energy consumption E and the drilling parame-
ters (n, f) with respect to any given length of drill L. Specifically, we
will use EL(n, f) to represent this energy function, e.g., E800mm

(650 rpm, 980mm/min) stands for the total energy consumption
Fig. 18. Relationship between (n, f) and the total energy consumption: (
after drilling a length of 800mm using a single tool with (n, f) ¼
(650 rpm, 980mm/min). With EL(n, f) available for any valid L, the
following optimization problem naturally rises: given a tool wear
threshold (e.g., VB¼ 150 mm) and a length to drill (e.g.,
L¼ 800mm), what should be the optimal pair (n, f) that will
minimize the function EL(n, f)?

As a concreate example, under the setup of drilling given in
Section 3.1 and the tool wear threshold VB¼ 150 mm, suppose we
want to find the most energy-efficient pair (n, f) to drill 58 holes
(length of drill L¼ 928mm) without changing the tool. Fig. 18(a)
draws the corresponding total energy consumption function
EL¼928mm(n, f). With the help of function LVB¼150mm(n, f) as shown in
Fig. 16, we can then numerically find out the safety domain in (n, f)
in which the tool wear VB will not exceed the threshold 150 mm
after 58 holes are drilled, as shown in Fig. 18(b), where the red
coloured curve is the identified boundary of the safety domain. As
both functions LVB and EL are continuous, it is obvious that the
optimal (n, f) must lie on the boundary of the safety domain, i.e., on
the red coloured curve in Fig. 18(b). Next, on this boundary curve,
we numerically found the optimal (n, f) to be around (nmin, fmin) ¼
(685 rpm, 120mm/min). As a benchmark to compare, we also
numerically identified another pair (nmax, fmax)¼ (643 rpm, 56mm/
min) that maximizes the function EL¼928mm(n, f). The EL¼928mm
values of these two (n, f)'s are also shown in Fig.18(a). Finally, under
(nmin, fmin) and (nmax, fmax) respectively, we performed physical
drilling for a length of drill of 928mm, and then recorded the total
energy consumption. Table 6 lists the experimental as well as the
prediction results.

As revealed from Table 6, there is a significant difference in the
total energy consumption for drilling 58 holes using these two
different sets of parameters. Specifically, based on the real experi-
mental data, the total energy consumption of the most energy-
efficient (nmin, fmin) is only 52.8% of that of (nmax, fmax), i.e., 2.83/
5.35. The data also demonstrate that our predicted amounts of total
a) total energy as a function of (n, f); (b) the safety domain in (n, f).



Table 6
Predicted and experimental total energy consumption after 58 holes are drilled.

L(mm)/Hole No. Experiment E(J) Predicted E(J) Error

(nmin, fmin) 928/58 2.83Eþ06 2.72Eþ06 3.89%
(nmax, fmax) 928/58 5.35Eþ06 5.48Eþ06 2.43%
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energy consumption are very close to the real data, which further
validates the correctness and efficacy of the tool wear and power
prediction models that we have established in this paper.

6. Conclusions

We have presented a mechanics based model for predicting the
power consumption of drilling operations. The motivation behind
our work is that currently all the existing energy models for
machining ignore the effect of tool wear, while tool wear is
particularly worrisome in drilling and it induces extra and large
cutting force and thusmore energy consumption. Our powermodel
takes the tool wear into full consideration and thus is more accurate
in predicting the drilling power consumption. The physical cali-
bration drilling experiments performed by us have clearly validated
the accuracy of our prediction model and verified that drilling
power prediction without considering the tool wear is inaccurate.
Two applications of the presented power prediction model in
drilling process planning are then presented, one in minimizing the
average power consumption per unit length of drill and the other in
maximizing the tool usage before its replacement. Physical drilling
experiments were also performed by us to compare the optimized
drilling operations with some benchmarks (i.e., non-optimized),
and the comparison results firmly show the efficacy of the pre-
sented power prediction model in helping significantly reducing
the drilling energy consumption and increasing the tool usage.

About the potential future research on the subject, on the one
hand, we plan to consider more influencing factors regarding the
drilling energy consumption, such as different types of drilling
tools, the drilling hole diameter, and the cooling condition. On the
other hand, we plan to extend the proposed power consumption
model to the general process of milling of freeform surfaces.
Admittedly, when planning for milling a freeform surface, many
more process or machining parameters will be involved, such as the
number of passes of semi-finish cutting, the depth-of-cut of each
pass, the (variable) feed rate, and, in the case of five-axis machining,
the lead and yaw angle of the tool, all of which affecting the power
consumption and the tool wear. Additionally, unlike drilling, for
general machining, the tool path itself is also a critical factor
affecting the final total energy consumption. As an initial step, we
will assume a fixed pattern of tool path (e.g., the iso-planar type)
and also fixed lead and yaw angles of the tool, and establish the
prediction models of the tool wear and power consumption as
functions of the number of passes of semi-finish cutting, the depth-
of-cut of each pass, and the feed rate.
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