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a b s t r a c t

Two-stage programming (TSP) is popular in resources planning management, especially for limited and
precious resources. Remarkable study has been done to improve the model performance. However, one
of the biggest obstacle is lack of objectivity when it comes to penalty quantification derived from
recourse behavior. Besides, much attention has been paid in the resources deficiency penalty but little in
resources residual, which may lead to wasting. In order to clarify the physical meaning of mathematical
equation for recourse penalty from both resources scarcity and surplus, the production frontier was
estimated and the technical efficiency and shadow prices of resources were introduced into TSP to
characterize the resources deficiency and residual penalty, respectively. Then, an intuitionist fuzzy in-
terval two-stage stochastic programming (IFITSP) was generated integrating the uncertainty of fuzzy
membership and traditional TSP. An integrated solving approach was proposed coupling several previous
uncertain programming methods and an improved robust interval TSP method. A case study was con-
ducted in an arid area of northwest China to schedule agricultural cultivation scale based on limited
water resources. The inefficiencies were [0.26, 0.49], [0.14, 0.37] and [0, 0.03] for GZ, LZ, and GT. The
shadow prices of GZ, LZ, and GT in 2015 were 12.94, 2.61, 2.67 Yuan/m3 respectively, indicating the sever
water crisis of GZ. The relatively unbiased and abundant decision could be generated by the developed
IFITSP to help decision makers with various preferences make tradeoff between benefits and basic crop
production requirement as well as balance resources deficiency and surplus. The results also show that
the developed model could unveil the uncertainty influence of model inputs on decision strategies and
trigger managers to deeply analyze subjective effect and associated risk. By comparison, the proposed
methodology can not only clarify the physical meaning of penalty but deal with more complex uncer-
tainty than previous methods. Therefore, the established model can provide reliable and scientific
support for resources planning with recourse.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Resources scarcity is threatening human sustainable develop-
ment around the world. Climate change, population growth, envi-
ronmental contamination and industrial expansion have worsened
the resources crisis which urges managers to develop high-efficient
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resources management approaches (Singh, 2012). In response to
mitigating the resources crisis, the reasonable resources planning is
among the most popular resources management and has been
widely discussed worldwide.

Remarkable contributions have been done surrounding the
optimal resources planning and one of the achievements is two-
stage programming (TSP), which is capable of modifying the pre-
determined targets (called first-stage decision) based on the overall
influence of uncertain events and generating corresponding deci-
sion (called second-stage decision) after the uncertain events
happen. Resources planning optimization research on TSP covers all
walks of life, ranging from agriculture (Fu et al., 2018; Zhang et al.,
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2017), hydrology (Ding et al., 2017; Hu et al., 2016; Yu et al., 2016),
environment (Han et al., 2012; Han et al., 2013; Han and LEE, 2011),
energy (Yun et al., 2017), and transportation (Barbarosoglu and
Arda, 2004) to medicine (Dillon et al., 2017), manufacture (Alfieri
et al., 2012), and networks (Wu and Kucukyavuz, 2018). A high-
lighted part in TSP is penalty quantification caused by uncertain
events, which is usually expressed as benefits loss from resources
deficiency according to previous studies. However, the previous
achievements share two problems. Quantification method is the
first one as the loss from missing the targets is difficult to compute
precisely. The conventional method which is widely adopted in
previous studies is to amplify the profits that could have been ob-
tained from the resources shortage by multiplying some co-
efficients offered by decision makers, which are subjective and
unreliable if decision makers are unsophisticated and uninitiated.
The second one is neglecting the potential economic value of re-
sidual resources. Once the allocation strategy is decided, the waste
of precious resources from exceeding the targets should also be
punished. The first problem of how to quantify the punishment will
arise again when the second one is taken into account. Therefore, a
systematic and objective approach needs to be generated to solve
aforementioned problems.

Production efficiency analysis was proposed to examine how a
particular production sector transform their inputs into quantities
of outputs (Simar and Wilson, 2015). Production frontier is defined
in the relevant input-output spaces as the locus of the maximal
attainable level of output corresponding to a given level of inputs
(Cazals et al., 2002). Many approaches have been generated for
productive efficiency analysis and frontier estimation, such as the
nonparametric data envelopment analysis (DEA) (Farrell, 1957) and
the parametric stochastic frontier analysis (SFA) (Effiong, 2007;
Katuwal et al., 2016). However, DEA ignores any stochastic noise
while SFA demands hypothesis on functional form and parameters.
For improvement, stochastic nonparametric envelopment of data
(StoNED) was established by combining the DEA-type nonpara-
metric frontier with the SFA-style stochastic homoscedastic com-
posite error term (Kuosmanen, 2012; Kuosmanen and Johnson,
2017). By estimating the production frontier, the technical effi-
ciency and shadow price of inputs can be obtained. In order to solve
the above problems in TSP, the technical efficiency was introduced
to quantify the penalty caused by resources deficiency and the
shadow price of resources was adopted to quantify the penalty
caused by resources residual in this study. Then the physical
meaning of resources deficiency penalty would be the biggest po-
tential benefits of lacking resources under ideal production condi-
tion and that of resources residual penalty would be the marginal
benefits of surplus resources under present condition. Thus, the
physical meaning of the resources deficiency and residual penalty
can be clarified and becomes independent on subjective judgment
of managers but relies on the statistic data.

There are various types of uncertainty associated with data
quality, human subjective judgment and other factors within a
resources planning problem. Besides stochastic programming
driven by random events, the extension of TSP has been examined
in combinationwith interval programming and fuzzy programming
(Li and Guo, 2015; Zhang et al., 2018a). Among these improve-
ments, fuzzy programming has advantage in less data requirement
than stochastic programming and higher disposability than interval
programming when encountering high uncertain parameters
(Chen et al., 2017). However, most of the recent research focuses on
the traditional fuzzy sets (FSs) with distinct and certain member-
ship (Guo et al., 2010; Han et al., 2013; Xu et al., 2017). Since the
introduction of FSs by Zadeh (1965), ambiguity has also been found
in membership and several concepts have been defined to quantify
the blurry property of membership, among which are intuitionistic
fuzzy set (IFS) (Atanassov, 1986) and hesitant fuzzy set (HFS) (Torra,
2010). IFS possesses the capacity of quantifying the uncertainty on
the membership function of FS and permits some hesitant on the
membership by restraining the membership within a scope. As a
generalization of IFS, HFS can characterize higher-level uncertain
feature in membership but is more complex and difficult to tackle
than IFS. These improvements are more flexible and practical than
traditional FS theory (Li et al., 2017). The collaboration of TSP and
IFS has less been explored and needs more efforts.

Therefore, this study aims to improve previous TSP for resources
planning from both physical meaning and programming approach.
On one hand, the proposed TSP structure clarified the penalty from
resources deficiency by introducing the technical inefficiency from
production frontier evaluation. Meanwhile, considering the likely
penalty caused by resources residual, the shadow price of resources
was brought in, thus supplementing and enriching the physical
meaning of two-stage planning. On the other hand, the IFS theory
was conflated with traditional interval two-stage programming
(ITSP) in order to solve more complex fuzzy uncertainty and an
intuitionistic fuzzy interval two-stage stochastic programming
(IFITSP) was proposed. Corresponding solving method was devel-
oped aimed at the new-developed model. Finally, the agricultural
cultivation scale planning under limited water resources was
demonstrated as case study to illuminate the proposed model (Li
and Guo, 2015; Zhang et al., 2017). The detailed study framework
is depicted in Fig. 1.

2. Methodology

2.1. Production frontier estimation and shadow price

Considering a production process with input xin and output yot,
the frontier production function f indicates the maximum output
that can be produced with the given inputs. Here, we describe the
model for single-output multiple-input case, i.e. xin2<m

þ , yot2<þ
and f : <m

þ/<þ. Each observed or actual output yoti may differ
from f(xini) due to the inefficiency and noise, which can be com-
bined known as composite error. The popular multiplicative error
structure was adopted in this study and the production function
with a multiplicative error term can be expressed as:

yoti ¼ f ðxiniÞexpðεiÞ ¼ f ðxiniÞexpðvi �uiÞ ci ¼ 1; :::; n (1)

where, f(xini) is the production frontier, εi is composite error term
and εi ¼ vi � ui ci, vi denotes the random disturbance and ui is
inefficiency term, satisfying ui � 0. We assume that: 1) function f
belongs to the class of continuous, monotonic increasing and
globally concave functions that can be differentiable; 2) terms vi
and ui are statistically independent with each other as well as input
xini, where the disturbance term vi has a symmetric distribution
with zero mean and a constant, finite variance s2v , while the in-
efficiency term ui has an asymmetric distribution with a positive
expected value m and a finite variance s2u. As the composite error
violates the Causs-Markov properties due toEðεiÞ ¼ � EðuiÞ ¼ �
m<0, a modification was made then after taking the logarithm of
both sides, equation (1) can be rephrased as:

ln yoti ¼ ln f ðxiniÞþ εi ¼ ½ln f ðxiniÞ�m�
þ ½vi � ui þm� ¼ gðxiniÞ þ di ci¼1; :::;n

where di is the modified composite error term and function g is the
average-practical production function. According to the StoNED
(Kuosmanen, 2012; Kuosmanen and Kortelainen, 2007), the shape
of frontier production function can be estimated using the
following nonlinear programming:



Fig. 1. Study framework of IFITSP considering recourse penalty from resources scarcity and surplus.
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min
a;b

Xn
i¼1

d2i

s:t:
di ¼ ln yoti � lndyoti ci ¼ 1; :::; ndyoti ¼ ai þ bi

0xini ci ¼ 1; :::; n
ai þ bi

0xini � ah þ bh
0xinh ci;h ¼ 1; :::; n

bi � 0 ci ¼ 1; :::; n

(2)

where dyoti is the estimator of yoti, and ai; bi are not parameters of
the estimated function g but rather they characterize tangent hy-
perplanes to the unknown function g at point xini, thus they are
specific to each observation i.

The modified composite error term di can be solved according to
model (2). Then the method of moments can be used to estimate sv
andsu based on the assumption that the technical inefficiency has a
half normal distribution ui �

��Nð0; s2uÞ�� and the randomdisturbance

is normally distributed vi � Nð0;s2v Þ. Then the variance can be: bsu ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibM3�
2
p

��
1�3

p

�3

vuuut ; bsv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibM2 �

�
p�2
p

�bs2
u

s
, where bM2 ¼

1
n
Pn

i¼1ðbdi � EðbdiÞÞ2, and bM3 ¼ 1
n
Pn

i¼1ðbdi � EðbdiÞÞ3. Thus the frontier
production function can be obtained by f ðxiniÞ ¼dyoti expðbsu

ffiffiffiffiffiffiffiffiffi
2=p

p Þ. Meanwhile, the technical inefficiency of each i
can be estimated as:
EðuijbεiÞ¼ � bεibs2
ubs2

u þ bs2v þ
bs2
ubs2

vbs2
u þ bs2

v

24 f
�bεi.bs2

v

�
1� F

�bεi.bs2
v

�
35

where bεi ¼ bdi � bsu
ffiffiffiffiffiffiffiffiffi
2=p

p
is the estimator of composite error term

and f is the standard normal density function while F is the
standard normal cumulative distribution function.

When decision makers pursue to maximize the production
profits, an optimization problem can be expressed as:

max
xin;yot

pyot 0yot�pxin
0xin s:t: Fðxin; yotÞ ¼ 0

where pyot and pxin are prices of output and input, F(xin,yot) is a
transformation function corresponding to the production function.
Lagrange multiplier method can be applied to solve the above
optimization problem and the shadow price of input can be derived
as:

pxini
¼pyoti

vbgðxiniÞ
vxini

expðbmÞ ¼ pyoti
bbi expðbmÞ (3)

where bb is the solution of model (2) (Shen and Lin, 2017).
2.2. Interval two-stage stochastic programming

A generalized TSP model can be expressed as follows (Birge and
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Louveaux, 1988):

maxz ¼ cxþ Eu2U½Qðx;uÞ�
s:t:

ax � b
x � 08>>>><>>>>:

QðX;uÞ ¼ minqðy;uÞ
s:t:

TðuÞxþWðuÞy � HðuÞ
y � 0

where x is first-stage decision variable, y is second-stage decision
variable, u is random variable defined in probability space ðU;F;PrÞ,
E denotes expectation, and c, a and b are known coefficient
matrices, TðuÞ;WðuÞ; and HðuÞ are functions of the random vari-
able u.

Based on previous study (Huang and Loucks, 2000; Li et al.,
2011; Xie et al., 2013; Zhang and Guo, 2018), the random variable
can be discretized into a couple of certain values with associated
probabilities and interval number can be adopted to reflect the
uncertainty from parameters in the model. Then a simplified ITSP
model can be derived from the generalized TSP above as:

maxz¼ c±x± þ
Xn
h¼1

phq
�
y±h ;u

±
h

	
(4a)

subject to:

a±x± � b± (4b)

T
�
u±
h

	
xþW

�
u±
h

	
y±h � H

�
u±
h

	
;ch (4c)

x± � 0 (4d)

y±h � 0;ch (4e)

where ph, h¼ 1,…,n is the discrete probabilities, ± means the
parameter is an interval with “-” for lower bound and “þ” for upper
bound. A popular solving method (Huang and Loucks, 2000) was
proposed integrating the discreteness of random sets and the two-
step method for interval programming (Huang et al., 1992).
2.3. Intuitionistic fuzzy set theory

Membership of FS can reflect the degree to which elements
belong to the sets while the degree cannot always be defined
preciously. Compared with FS, IFS can quantify the uncertainty
existing in the membership by adopting membership and non-
membership jointly denoting the belonging degree (Atanassov,
2000). Let S be fixed as a reference set, an IFS A on S is defined as
A ¼ f< s; mAðsÞ; nAðsÞ> js2Sg, where mAðsÞ and nAðsÞ denote the
degrees of membership and non-membership of the element s to
the set A, respectively, with the conditions of 0� mAðsÞ � 1,
0� nAðsÞ � 1, and 0� mAðsÞþ nAðsÞ � 1. Besides, pAðsÞ¼ 1� mAðsÞ�
nAðsÞ is called the degree of indeterminacy or hesitancy of s to A
(Atanassov, 1986). Particularly, if mAðsÞ þ nAðsÞ ¼ 1, the IFS will be
equal to a FS. Based on IFS, HFS was introduced to extend the IFS by
covering all possible membership values. Similarly, let S be a fixed
set, a HFS E on S is in terms of a function that when applied to S
returns a subset of [0,1], which can be expressed as E ¼ f< s;
hEðsÞ> js2Sg, where hEðsÞ is a set of some values in [0,1], denoting
the possible membership degrees of s to the set E (Torra, 2010). This
definition encompasses IFS as a particular case, which means the
IFS and HFS can transform to each other to some extent. Given an
IFS A, the corresponding membership of HFS can be expressed as
hAðsÞ ¼ ½mAðsÞ;1� nAðsÞ �; ifmAðsÞs1� nAðsÞ. Oppositely, given a HFS
E, the corresponding IFS can be defined as the envelopment of hE,
i.e. mEðsÞ¼ minhEðsÞ; nEðsÞ ¼ 1�maxhEðsÞ (Xia and Xu, 2011).

However, too much uncertain information on the membership
of a FS may bring difficulty in accurately quantifying it. Some ac-
curacy functions or score functions have been proposed to help
solve this problem, such as xAðsÞ ¼ ½mAðsÞþ1�nAðsÞ�=2 (Geng et al.,
2013) or xAðsÞ¼ ð1�gÞmAðsÞ þ g½1�nAðsÞ� (Burillo and Bustince,
1996) for IFS and xEðsÞ ¼ 1

n
Pn

i¼1hEiðsÞ for HFS (Farhadinia, 2013;
Xia and Xu, 2011). However, these score functions lose a lot of
uncertain information of their membership values. In order to
improve the quantification method of IFS, the interval membership
value was adopted in this study, i.e.
xAðsÞ ¼ ½minðmAðsÞ;1�nAðsÞÞ;maxðmAðsÞ;1�nAðsÞÞ� and xEðsÞ ¼
½minhEðsÞ; maxhEðsÞ�. The membership interval is relatively
reasonable as an accuracy method when there is few information
about the relationship among different possible membership
values.

When it comes to FS with continuous membership functions,
defuzziness should first conducted before the fuzzy programming
can be solved, wherein the a� cut method has proved effective and
recognized (Li and Hong, 2013; Lu et al., 2010; Sudha and Anitha,
2015). In this study, the triangular intuitionistic fuzzy number
was discussed because of its simplicity and convenience and it was
expressed as A ¼ ða1; a2; a3; a10; a2; a3 0Þ shown in Fig. 2, where mA ¼
ða1; a2; a3Þ and nA ¼ ða10; a2; a3 0Þ witha1 0 < a1 < a2 < a3 < a30.
Specially, if a10 ¼ a1&a3 ¼ a30, the IFS will be a FS and if a10 ¼ a1 ¼
a2 ¼ a3 ¼ a30, the IFS will be a certain value. Based on the a-cut
method in fuzzy sets and the newly developed interval accuracy
method, the IFS parameters with membership function can be
defuzzified into a couple of dual intervals. Then the a-cutted dual

interval can be explicated as ½Aa±�± ¼
hh
Aa� ;Aa�

i
;
h
Aaþ ;Aaþ

ii
as

shown Fig. 2, which is a subset containing all the elements whose
belonging degree� a. The lower bound of the a-cutted A is taken
value between Aa� and Aa� while the upper bound is taken value
between Aaþ and Aaþ without any information about the bound-
value-taken rule. Therefore, the a-cutted dual interval has two ex-

tremes: the minimum interval or the internal interval
h
Aa�;Aaþ

i
and the maximum interval or the external interval

h
Aa� ;Aaþ

i
.

2.4. Solving method

Therefore, the intuitionist fuzzy two-stage stochastic program-
ming (IFTSP) can be depicted based on the IFSmentioned above and
TSP. Note that the model depicted in this paper belongs to a family
of linear programming and in order to exhibit the method clearly,
the objective here is exclusively set to maximize the benefits and
minimize the benefits loss caused by recourse as an example. The
developed IFTSP can be formulated as follows:

maxz¼~c,~x�
Xn
h¼1

~ph,~dh,~yh (5a)

subject to

~a , ~x � ~b (5b)

~Th , ~xþ ~Wh,~yh � ~Hh;ch (5c)



Fig. 2. A general view of the triangular IFS.
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~x � 0 (5d)

~yh � 0;ch (5e)

where ~ denotes the parameter is an IFS that can be expressed as
ða1;a2;a3; a10;a2;a3 0Þ; T, W, and H are linear parameters associated
with random events; and constraint (5c) is a reshaping of constraint
(4c). Set a couple of a values from high to low, i.e. 0� aiþ1 <ai � 1;
i and iþ 12f1; :::;mg and achieve corresponding a-cut values of
IFSs. The model (5) can be transformed by using a-cut method and
rephrased as a group of dual-interval two-stage stochastic pro-
gramming (DITSP) submodels with associated a, shown as model
(6).

max½zai±�± ¼ ½cai±�±,½xai±�± �
Xn
h¼1

½phai±�±,
dhai±
�±
,½yhai±�±

(6a)

subject to

½aai±�±,½xai±�± � 

bai±

�±
(6b)



Th

ai±
�±
,½xai±�± þ 


Wh
ai±

�±
,½yhai±�± � 


Hh
ai±

�±
;ch (6c)

½xai±�± � 0 (6d)

½yhai±�± � 0;ch (6e)

where ½ ±�± means the dual-interval number. In order to achieve a
relatively robust solution, the robust stepwise interactive algorithm
(RSIA) was adopted when splitting the IFTSP into a group of DITSPs
with a couple of additional interactive constraints (Fan et al., 2015).

Note that the law is unknown as mentioned above on how to
take bound value between external and internal bounds except for
the two extreme bound values, which means there is little distri-
butional information on bounds and thus the random interval
method by Joslyn (Joslyn, 2003; Liu et al., 2009; Zhai et al., 2016) do
not apply to the model (6). Therefore, two extreme scenarios were
discussed in this paper as a simplification, i.e. the internal and
external intervals. Then the DITSP can be converted into two con-
ventional single-interval TSP submodels. In order to guarantee the
reliability of solution, the internal interval submodel was solved
first and additional interaction constraints were incorporatedwhen
the external interval submodel was dealt with. Additionally, the
first-stage variables are predetermined inputs defined by decision
makers and the two-stage programming needs to modify them
according to the upcoming uncertain events. Therefore, auxiliary
variables should be introduced as x± ¼ xlþ t,Dx, where xl denotes
the lower bound of predefined first-stage decision variables (Huang
and Loucks, 2000; Li et al., 2006).

There has been remarkable research on improved interval pro-
gramming after the two-step method was generated (Fan and
Huang, 2012; Huang and Cao, 2011; Huang and Moore, 1993;
Zhou et al., 2008). Among these promotion, the robust two-step
method is outstanding due to its good performance and conve-
nience (Fan and Huang, 2012). However, when it comes to the ITSP,
the method proposed by Huang and Loucks (2000) has beenwidely
applied along with other compound ITSP coupled with other types
of uncertainty (Li et al., 2011; Xie et al., 2013; Zhang et al., 2017).
However, one of the weakness of ITSP in these research is that the
first-stage decision variable solved in the first submodel will be
directly used into the second submodel rather than being an
interactive constraint. This method will obviously lead to over-
optimistic first-stage decision when the best-case submodel is first
calculated (the objective is maximum and the upper-bound model
is first solved, vice versa) and to over-pessimistic first-stage deci-
sion when the worst-case submodel is first solved (the objective is
maximum and the lower-boundmodel is first solved, vice versa). In
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order to avoid this disadvantage and provide managers with a
relatively flexible decision, the second submodel is computed un-
der a supplemented interactive constraint based on the first sub-
model solution. Then instead of an exact first-stage modified
decision with strong subjective color, a restrained interval decision
could be offered. The detailed solving process of IFTSP can be
expressed as follows in Fig. 3.
Fig. 4. Study area.
3. Case study

3.1. Study area and problem overview

The study area is located in the middle researches of Heihe River
Basin (HRB), northwest China (97�37�~102�060 E, 37�44�~42�400 N),
covering Ganzhou District (GZ), Linze County (LZ), and Gaotai
County (GT) three administrative regions of Zhangye City, Gansu
Province, seen in Fig. 4. As the second largest inland basin of China,
HRB is faced with sever water crisis. The middle researches of HRB
is the main water consumption, where climate is characterized by
high evaporation of about 1400mm/year and low rainfall of
140mm/year (Guo et al., 2019; Zhang et al., 2018b). Meanwhile, the
middle researches of HRB is one of the most important agricultural
production base in northwestern China. Precious water resources
grows deficit because of the comprehensive influence including
social development, environment deteriorate and climate change.
The agricultural sustainability encounters big challenge the history
has ever seen, which urges managers to efficiently allocate the
limited water resources (Zhang et al., 2019). The agricultural
Fig. 3. The solving p
cultivation scale planning based on water allocation which regu-
lates the agricultural irrigated area targets of different crops has
been emphasized by local managers.

As a transformation of agricultural water resources planning,
agricultural cultivation scale planning under limited water avail-
ability is also paid attention by researchers, which applies for arid
area where the agricultural cultivation scale is highly dependent
upon available water resources (Li and Guo, 2015; Zhang et al.,
2017). The previous objectives of TSP in this area are mainly
rocess of IFTSP.
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targeted at the benefits of local farmers, which highlight the
recourse penalty caused by water deficiency. Thus, the derived
irrigation targets from conventional research relatively prefer to
avoid the water shortage penalty while the water surplus is
ignored. However, the water resources once allocated is difficult to
transfer to other sectors timely in practice. Thus the water wasting
is equally important from the perspective of the irrigation district
managers, especially for the arid areas like the middle researches of
HRB where the water resources is crucial for local development.
Besides, the previous study is subjective when it comes to penalty
quantification. Meanwhile, due to government intervention, the
current price of water resources is too low to reflect its potential
economic benefits. Therefore, a systematic and unbiased method is
desired to solve these problems.

3.2. Modelling

Therefore, based on the methodology developed in this paper,
the production frontier and shadow price of water resources were
introduced into the conventional TSP. The objective is maximizing
the agricultural benefits from the perspective of local managers and
minimizing the penalty led by water scarcity and waste. Moreover,
considering the widespread uncertainty, the intuitionist fuzzy
feature of the model parameters were analyzed. Due to the data
limitation, not all of the parameters can be qualified as IFS but
single-interval number or certain value. Therefore, based on the
available data, the IFITSP was developed and the definition of
symbols can be found in Table 1.

maxf ¼
X3
i¼1

X3
j¼1

eBij,AT±ij �X3
i¼1

X3
j¼1

X3
h¼1

ph,eBij,fASijh,exp�m±i 	
�
X3
i¼1

X3
h¼1

ph,WSP±i ,
gWresih

(7a)

wherein gWresih ¼ gWAih �
P3

j¼1ðAT±ij �fASijhÞ,M±
ij ci;h and

AT±ij ¼ ATLij þ tij,TDAij with DATij ¼ ATRij � ATLij.
Table 1
Definition and explanation of model symbols.

Indices

i Administrative district. i¼ 1, 2,
j Crop type. j¼ 1, 2, 3 means spr
h Inflow level. h¼ 1, 2, 3 represen
Sign
± Single-interval number. ‘-’ mea
~ IFS
Decision variables
ATij The first-stage decision variable
tij The ratio of irrigation target an
ASijh The missed irrigation area due
Coefficients
Bij The benefits produced by unit
ATLij & ATRij The lower bound and upper bo
ph The probability of hth hydrolog
mi The expected technical inefficie
WSPi The agricultural water shadow
Wresih The water residual (106m3)
WAih The available irrigation water r
Mij The irrigation quota per irrigati
Ai The available cultivation area (
Yij The yield per irrigation area of
Popi The present population in ith d
FDmin The minimum food demand pe
s Fairness coefficient
Aminij & Amaxij The minimum and maximum ir
The constraints involve water availability, land resources avail-
ability, food security, fairness constraint, irrigation area constraint
and nonnegative constraint.

(1) Water availability

X3
j¼1

�
AT±ij �fASijh�,M±

ij � gWAih ci;h (7b)
(2) Land resources availability

X3
j¼1

�
AT±ij �fASijh� � A±

i ci; h (7c)
(3) Food security

X2
j¼1

�
AT±ij �fASijh�,Y±

ij � Popi,FDmin ci; h (7d)
(4) Fairness constraint

�����
P3
i¼1

P3
j¼1

fASijh
P3
i¼1

P3
j¼1

AT±
ij

�

P3
j¼1

fASijh
P3
j¼1

AT±
ij

����� � s ci; h (7e)
(5) Irrigation area constraint

A±
minij�AT±ij � fASijh � A±

maxij ci; j;h (7f)
(6) Nonnegative constraint
3 denotes GZ, LZ, and GT, respectively.
ing wheat, maize, and economic crops.
ts high, medium, and low hydrological years

ns lower bound and ‘þ’ upper bound.

(103 ha)
d the auxiliary first-stage decision variable
to water deficiency and the second-stage decision variable (103 ha)

irrigation area of jth crop in ith district (103 Yuan/ha)
und of predetermined first-stage targets from decision makers (103 ha)
ical level year
ncy, and exp (mi) denotes the true production inefficiency, i.e. Farrell inefficiency
price (Yuan/m3)

esources (106m3)
on area of jth crop in ith district (103m3/ha)
106m3)
jth crop in ith district (kg/ha)
istrict (103 capita)
r capita (kg per capita)

rigation area of jth crop in ith district (103 ha)
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AT±ij � fASijh � 0 ci; j;hfASijh � 0 ci; j;h
(7g)

3.3. Data collection and processing

Data for the case study are mainly from the statistical yearbooks,
irrigation management yearbook, government reports, field survey,
and literature study. Firstly, the production frontier estimation was
conducted by evaluating the relationship between gross agricul-
tural value and several key inputs during agricultural production
including irrigation area, agricultural electricity, dosage of agri-
cultural fertilizer and agricultural water usage. The 2001e2015 data
of GZ, LZ, and GT were used from the Zhangye statistical yearbooks
(Zhangye-SY, 2016) and irrigation management yearbooks
(Zhangye-IMY, 2016). The descriptive statistics of input and output
variables is shown in Table 2. The price of the output in shadow
price equation, i.e. Equation (3) was set to 1 since the agricultural
value has been measured in monetary units. As the inflow is
random and naturally follows a Pearson type III distribution ac-
cording to the inflow statistical material from Yingluoxia hydro-
logical station (Zhang et al., 2017). Based on the frequency analysis,
three levels were divided representing the low, medium and high
water availability with associated probabilities. Considering the
data noise, it is bias to appoint a single certain value to express a
corresponding level. Besides, the cognition of low, medium and
high standards highly depends on subjective judgment. Together
with the uncertainty of other minor water sources like ground-
water, the IFS would be suitable to express the water availability
and the data are shown in Table 3.

Table 4 shows the benefits from crop production, the pre-
determined irrigation targets, irrigation quota for each crop, and
the yield per hectare of three main cultivated crops in the middle
researches of HRB. The benefits per unit cultivated area was
calculatedwith the yield per hectaremultiplying the corresponding
market price and was expressed as IFSs due to its relatively suffi-
cient data size. The predetermined irrigation targets were decided
by local managers. The irrigation quota is from Zhangye irrigation
management yearbooks (Zhangye-IMY, 2016) and literature (Li
et al., 2019; Wang et al., 2017). Based on the China Dietary Guide-
lines, the food demand per capita was chosen as 400 kg. The fair-
ness coefficient has important significant in balancing the crop area
and maintaining the crop diversity. The value of 0.4 was adopted in
this study as a standard of relatively reasonable allocation (Yang
et al., 2015).
Table 2
The descriptive statistics of inputs and output in production frontier estimation.

Unit Mean

GZ Gross agricultural value 106 Yuan 1973
Irrigation area 103 ha 50.65
Agricultural electricity 106 KWh 88.71
Dosage of agricultural fertilizer 103 t 36.35
Agricultural water 106m3 480.1

LZ Gross agricultural value 106 Yuan 799.0
Irrigation area 103 ha 20.77
Agricultural electricity 106 KWh 21.06
Dosage of agricultural fertilizer 103 t 13.43
Agricultural water 106m3 305.4

GT Gross agricultural value 106 Yuan 1206
Irrigation area 103 ha 21.91
Agricultural electricity 106 KWh 27.11
Dosage of agricultural fertilizer 103 t 9.29
Agricultural water 106m3 261.4
4. Result analysis and discussion

Based on the method proposed in Section 2.1, the production
frontier was estimated to obtain the technical efficiency and
shadow price of irrigation water resources. Then these parameters
were introduced into IFITSP model exhibited in Section 3.2 then the
developed solving method developed in Section 2.4 was applied to
solve the IFITSP. Five a values were defined for a-cut method, i.e.
a¼ {1, 0.75, 0.5, 0.25, 0} to divide IFS into dual intervals.

4.1. Production frontier estimation and shadow price of irrigation
water

The technical inefficiency m is not the real inefficiency as we
adopted multiplication model as production function. The Farrell
inefficiency and efficiency were defined as true output inefficiency
and efficiency measure by exp (mi) and exp (-mi) (Kuosmanen and
Kortelainen, 2010). Table 5 describes the expected inefficiency,
the associated Farrell output efficiency and inefficiency, as well as
shadow price of irrigation water. Fig. 5 shows the trend of the
Farrell efficiency from three subareas during 2001e2015. Overall,
the efficiencies of three subareas have been growing from 2001 to
2015, among which GT has achieved 1 since 2012. Among three
subareas, GT possessed highest mean technical efficiency while the
mean efficiency of GZ was the lowest. The Farrell efficiency of GZ in
2015 was 0.66, which implies that if the inputs were used effi-
ciently, the inputs could be scaled down by 34% while maintaining
the same output level. Therefore, local managers should pay more
attention to the production process in GZ and take action to
improve its production efficiency. Aimed at the optimization
model, the inefficiencies m were expressed as interval numbers
considering the possible fluctuation, namely [0.26, 0.49], [0.14,
0.37] and [0, 0.03] for GZ, LZ, and GT, respectively.

Regarding shadow price of water, GZ had the higher mean price
than other two subareas and the price in 2015 reached up to12.94
Yuan/m3, inferring that irrigation water resources severely
restrained local agricultural production. Although the shadow
prices of irrigation water in LZ and GT are relatively low, the mean
water prices are higher than the market price in Zhangye, where
the agricultural volumetric water price was 0.092e0.15 Yuan/m3

until 2015 according to the government document. Besides, there
exists some zero values in earlier years, especially in LZ and GT. One
possible reason may be that they had relatively less water stress
thus the marginal benefits of water was low. Another most-likely
reason may lie in the non-volumetric pricing methods of irriga-
tionwater in the early period adopted in China. The irrigationwater
expense was calculated by per unit irrigated area before and
Min Max Standard deviation (S.D.)

.15 592.57 3621.05 1000.72
45.60 62.54 6.14
49.99 149.09 26.37
32.37 43.07 3.59

6 422.00 565.40 49.30
0 245.68 1421.11 392.89

15.77 27.93 4.35
8.46 34.05 7.61
7.99 17.78 2.84

1 208.73 361.86 41.96
.38 421.97 2185.09 558.29

19.96 40.38 5.16
17.54 38.91 6.03
6.04 12.38 2.31

6 220.97 309.68 30.77



Table 3
The available irrigation water resources under different hydrological years and corresponding probabilities (106m3).

Probability GZ LZ GT

Low 0.37 (430.3, 440.0, 448.0;
408.6, 440.0, 489.8)

(202.0, 206.5, 210.3;
194.8, 206.5, 229.9)

(245.9, 251.4, 256.0;
236.5, 251.4, 279.9)

Medium 0.3 (476.9, 502.3, 528.0;
460.1, 502.3, 537.6)

(223.9, 235.8, 247.8;
215.9, 235.8, 252.3)

(272.5, 287.0, 301.7;
262.9, 287.0, 307.2)

High 0.33 (544.8, 557.7, 571.0;
526.4, 557.7, 609.9)

(255.7, 261.8, 268.0;
247.1, 261.8, 286.3)

(311.3, 318.7, 326.3;
300.8, 318.7, 348.5)

Table 4
The benefits of crop production, predetermined irrigation targets, irrigation quota
and the yield per hectare of different crops in three subareas.

Spring wheat Maize Economic crops

The benefits of crops (103 Yuan/ha)
GZ (18.2, 18.8, 19.3;

15.8, 18.8, 21.2)
(17.8, 19.0, 20.2;
17.6, 19.0, 21.6)

(159.3, 173.0, 186.6;
148.2, 173.0, 196.9)

LZ (17.8, 18.0, 18.4;
15.5, 18.0, 21.2)

(17.0, 18.4, 19.3;
16.8, 18.4, 20.1)

(150.1, 173.7, 185.6;
147.7, 173.7, 217.3)

GT (16.1, 17.7, 19.2;
14.1, 17.7, 22.7)

(16.9, 18.5, 19.4;
15.7, 18.5, 21.8)

(158.0, 168.6, 173.6;
127.8, 168.6, 215)

The predetermined irrigation targets (103 ha)
GZ [3.60, 5.70] [43.45, 51.84] [14.29, 17.78]
LZ [0.65, 1.31] [19.43, 22.29] [6.79, 9.38]
GT [5.88, 7.76] [16.89, 19.14] [13.66, 16.65]
The irrigation quota (103m3/ha)
GZ [5.5, 6.0] [6.9, 8.1] [8.5, 9.0]
LZ [6.3, 6.9] [7.0, 8.4] [8.4, 9.1]
GT [5.4, 5.7] [7.8, 8.6] [7.6, 8.9]
The yield per hectare (kg/ha)
GZ [8033.8, 8858.9] [8081.1, 8700.7] [41123.3, 50256.6]
LZ [7267.8, 8841.1] [6950.8, 8220.0] [37088.6, 100384.9]
GT [7716.8, 9447.6] [7284.3, 8422.6] [28239.8, 41882.8]

Table 5
The descriptive statistics of expected inefficiency, Farrell efficiency and inefficiency, and shadow price.

Expected inefficiency mi Farrell efficiency exp (-mi) Farrell inefficiency exp (mi) Water shadow price (Yuan/m3)

GZ Mean 0.79 0.49 2.96 2.96
S.D. 0.42 0.17 2.91 2.91
Min 0.26 0.18 0.00 0.00
Max 1.73 0.77 12.94 12.94

LZ Mean 0.44 0.65 1.58 0.24
S.D. 0.19 0.13 0.30 0.71
Min 0.14 0.47 1.15 0.00
Max 0.76 0.87 2.13 2.61

GT Mean 0.31 0.76 1.43 0.53
S.D. 0.29 0.20 0.44 1.09
Min 0.00 0.43 1.00 0.00
Max 0.85 1.00 2.34 2.67
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farmers would not stop irrigating until the marginal product of
irrigation equals zero (Shen and Lin, 2017). Considering the
precious value of limited water resources in the middle researches
of HRB, water price reform should be deepened to achieve high-
efficient water use. However, if the second reason dominated the
shadow price results, the shadow price in earlier years may be
imperfect to evaluate the true value of water in this particular case
study. Even so, the shadow price was still better than the real water
price. Since the situation is rare that the valuable resources were
wasted for a long term, themethod canmake bigger contribution in
other cases especially when the market controls price. Taking all
these into account, the shadow prices in 2015 were adopted in the
optimizationmodel, i.e. 12.94, 2.61, 2.67 Yuan/m3 for GZ, LZ, and GT.
4.2. Crop area planning strategies

Interval decision can be obtained from IFITSP for each particular
a, containing all the elements whosemembership is equal or bigger
than a. Then a curve was fitted based on the results from all a-cut
values. Fig. 6 describes themodified irrigation targets (themodified
first-stage decisions) based on the predetermined irrigation targets
from local managers. The optimal irrigation targets for crops in

three subareas were calculated through the equation:
h
ATa±ij

i± ¼

ATLaij þ
h
ta±ij

i±
$ΔATaij . The results are presented as IFS in Fig. 6 and 1-

nonmembership function was chosen to clearly demonstrate the
relationship between membership and non-membership. Particu-
larly, when themembership coincides with 1- nonmembership, the
IFS will degrade into traditional FS. Similarly, if the triangle mem-
bership becomes two vertical lines, the FS will degrade into a
conventional simple interval. Finally, if the membership curve is a
vertical line, a certain number is generated without any
uncertainty.

The ordinate in Fig. 6 indicates the predetermined irrigation
targets. Compared with the interval of predetermined irrigation
targets, the optimal irrigation targets were more compact after
considering the influence from random events. Instead of a certain
number, the restrained intervals were capable to offer decision
makers more flexible references compared with traditional ITSP
solving method (Li and Guo, 2015; Zhang et al., 2017). Even though,
certain modified targets were still made for spring wheat and
economic crops in GZ and GT, which means the uncertainty in all
parameters of the IFITSP has no impact on the irrigation targets of
these crops in GZ and GT. Besides, the irrigation targets of spring
wheat and economic crops in GZ and GT were set to the biggest
predetermined values, implying that they made relatively high
profits when consuming same amount of water thus the model
gave them priority in water supply. The results of spring wheat in
LZ can be treated as traditional simple interval [1.17, 1.31]� 103 ha,
implying that the fuzzy feature of benefits and water availability
could make no difference during the whole decision process and
the irrigation targets stood close to the biggest predetermined
targets 1.31� 103 ha. The space between the membership and 1-
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Fig. 5. The trend of Farrell output efficiency during 2001e2015.

Fig. 6. The modified irrigation targets (first-stage decision) of three crops in subareas.
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nonmembership in irrigation targets of maize in three subareas and
economic crops in LZ represents the hesitancy of managers. The
bigger the space is, the more uncertainties the decisions contain,
which means more risk. Therefore, the decision makers should pay
more attention towards the crops with high hesitancy.

Figs. 7e9 show the optimal irrigation area of spring wheat,
maize and economic crops in three subareas under different hy-
drological years, respectively (the second-stage decisions). With
the increase of available water resources from low to high level
year, the irrigation area grows gradually until the maximum
modified irrigation targets are achieved. Meanwhile, the interval
range and hesitancy space in spring wheat and economic crops in
three subareas also decreasewith the growth of availablewater and
the membership distribution gradually approaches to the modified
targets (the first-stage decisions), which means the uncertainty of
the optimal decision drops with the water supply increase. The low
level year had biggest uncertainty in spring wheat and economic
crops in all subareas among three hydrological years. This
circumstance may result from the high targets optimized by the
IFITSP and when the water supply is insufficient, the systemwould
suffer from big water scarcity penalty. Particularly in low hydro-
logical year, spring wheat and maize in three areas had a more
uncertain upper bound and a stable lower bound, which means the
system preferred to guarantee the least irrigation area of spring
wheat and maize in three regions. On the contrary, the economic
crops were guaranteed a more exact upper bound, indicating the



Fig. 7. The optimal irrigation area of spring wheat in three subareas under different
hydrological years.

Fig. 8. The optimal irrigation area of maize in three subareas under different hydro-
logical years.

Fig. 9. The optimal irrigation area of economic crops in three subareas under different
hydrological years.
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economic crops possessed higher profits from unit water con-
sumption. The tradeoff between basic food production and high
profits of the economic crops could be inferred from this result
feature. The cultivation of crops is significantly motivated by profits
on the premise of basic need. When the water resources is limited,
the farmers and managers tend to guarantee food demand in
advance while when water resources is sufficient, the high profits
are pursued. Involving the tradeoff of crop production, the devel-
oped model proved to be suitable to the practice.

Therefore, according to the uncertainty (including the interval
range and the hesitancy space) of first and second-stage results, the
sensitivity of crops planting area could be analyzed. The sensitivity
of modified irrigation targets of maize in all three subareas is
relatively high among three types of crops, indicating they are likely
to be impacted by the uncertain input parameter. Besides, the low
level year possessed huge sensitivity among three kinds of hydro-
logical years. Therefore, more attention should be paid to the sen-
sitive crops especially when the water availability is low and the
situation is pessimistic.
4.3. Optimal objectives

Fig. 10 reflects the total obtainable benefits considering all the
probability of random events. The optimal benefits can be
expressed as an IFS. The space between membership and 1-
nonmembership lines denotes the hesitancy of the IFS. With the
increase of membership, the hesitancy of objective decreases.
When membership equals 0, the objective value is [[6200, 7416],
[9627, 10906]] million Yuan with the biggest hesitancy. This means
after taking the negative factor into account with biggest fuzzy
uncertainty, the system can obtain at least 6200 million Yuan
benefits, which can be regarded as the conservative decision from
pessimistic decision makers. By contrast, the objective of 7416
million Yuan is the conservative decision from optimistic decision
makers. The upper bound is similar. The IFS objective results can
provide a more professional reference involving the influence of
different attitudes fromvarious decision makers. This reference can
provoke thinking of managers with subjective preference and
contribute to rational decision.

Fig. 11 demonstrates the relationship between water deficiency
penalty and water residual penalty. Note that the lower and upper
bounds do not mean the real bounds of water deficiency and re-
sidual penalty values but the lower-bound and upper-bound sub-
models when solving IFITSP. The lower-bound submodel
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Fig. 11. The water deficiency penalty and its corresponding water residual penalty.
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corresponds to the lower-bound of benefits objective and available
water resources, thus creating relatively high water deficiency and
none water residual. The upper-bound submodel is associated with
the upper-bound water availability and produces the upper-bound
benefits. With alpha increasing from 0 to 1, the disposable water
resources of lower-bound model grows and the water scarcity de-
creases with the corresponding water surplus penalty being zero.
With alpha increasing from 0 to 1, the hesitancy of IFS decreases
thus the results from internal and external submodels approach to
be the same. Regarding upper-bound submodel, there are more
available water andwater residual dominates the penalty. Note that
the water deficiency and residual penalty coexist in the upper-
bound submodel solutions. The reason may lie in the influence of
random events. As the random events are unknown when the
irrigation targets are made, the tradeoff between low and high
hydrological levels must be considered. In order to guarantee the
overall interests, there are water deficiency in low level year and
water surplus in high level year. The tradeoff does not exist in
lower-bound model due to the serious water deficiency even in
high level years.

4.4. Model comparisons

As we have mentioned before, the previous studies on TSP of
resources planning have some common shortages including
ignoring resources surplus, rarely combined with IFS, and lack of
robust solving approach. Therefore, model physical meaning and
mathematical programming method including uncertainty repre-
sentation and solving method were separately considered when
comparing the IFITSP with other previous approaches.

As mentioned in Section 1, the recourse penalty caused by re-
sources scarcity has been popular in previous research while the
wasting of precious resources has not drawn enough attention.
Therefore, as a comparison of model physical meaning, an IFITSP
focusing on penalty of water deficiency was adopted without the
model component of water waste penalty in this study. The same
parameters and solving method were applied to the IFITSP focusing
on water deficiency. For convenience, the IFITSP considering the
water wasting used in this paper is called P and the IFITSP without
water waste for comparison is called C1. The gross benefits denoted
the total income from crop production by irrigation without any
penalty while the net benefits reflecting the total incomeminus the
water deficiency and surplus penalty.

From Fig. 12, the gross benefits and net benefits had little dif-
ference between P and C1. However, the penalty from water defi-
ciency and residual was different, which means P and C1 gave
different irrigation targets and irrigation area under different hy-
drological years. According to Fig. 12, the water deficiency penalty
of P is larger than that from C1 while the membership distribution
shared similar shape, which denoting the uncertainty of model
inputs had similar influence on model P and C1. Then we can infer
that the uncertain degree of water deficiency was independent
with whether the water surplus penalty was considered or not.
However, it would influence the uncertainty of water residual
penalty. From Fig. 12, the water waste caused by C1 was bigger than
that by P except for the external interval when a¼ 0. It can be easily
understood that when the water availability is poor, the results of
irrigation area from P and C1 will be the same as the water residual
of C1 equals zero as well as P shown in Fig. 11. However, when the
water supply is adequate, the water waste penalty will have a great
influence on model performance. The modified irrigation targets of
maize in GZ and irrigation area in high level year of maize in GZ are
demonstrated in Fig. 12 as examples for detailed decision strategy.
The modified irrigation targets of maize in GT tend to be smaller for
C1 as model C1 focused on the water scarcity penalty and in order
to reduce the water deficiency penalty in low hydrological year,
small irrigation targets were suggested. However, over-concern of
water shortage in low level year would aggravate water wasting in
high level year, which is detrimental to conservation-oriented
agricultural development.



Fig. 12. The results of water deficiency penalty, water waste penalty, the modified
irrigation targets of maize in GZ, and irrigation area in high level year of maize in GZ.

Fig. 13. The compared results of irrigation targets of maize in GZ, benefits, water
deficiency penalty and water waste penalty from IFITSP and ITSP by two solving
methods.

S. Guo et al. / Journal of Cleaner Production 234 (2019) 185e199 197
The other comparison was conducted aimed at uncertain pro-
gramming approach. The IFITSP proposed in this paper was
compared with conventional ITSP formulated as model (4) which
was solved by two different methods. One solving method (M1)
was similar as the developed method in this study, namely that the
worst-case submodel (lower-bound submodel particularly for the
case study) was solved first followed by the best-case submodel,
but a certain first-stage decision variable was generated only from
theworst-case submodel, which is similar with the robust stepwise
interactive algorithm (RSIA) (Fan et al., 2015; Fan and Huang, 2012).
The other one (M2) was the opposite, i.e. the best-case submodel
(upper-bound submodel) was solved first and the first-stage deci-
sion was passed to the worst-case submodel, which is consistent
with the widely used method (Huang and Loucks, 2000; Li et al.,
2010). Note that the first-stage decision is a certain value from
model (4) by above two solving methods. The external interval of
IFS used in model (7) was applied into ITSP. The results comparison
of IFITSP and ITSP by two solving approaches can be exhibited in
Fig. 13.

The irrigation targets of maize in GT were taken as examples for
comparison. For the worst-case submodel was solved first, the
irrigation targets derived from M1 was relatively conservative
while these from M2 was optimistic, which can be seen in Fig. 13.
The results of P were between the targets from M1 and M2,
covering the possible strategies from pessimistic to optimistic de-
cision makers. The benefits of system, water deficiency penalty and
residual penalty demonstrate the similar trend. Besides, consid-
ering the hesitancy of membership from traditional FS, the results
of IFITSP are more abundant and suitable for multilateral decision.

Therefore, following advantages can be drawn up according to
the comparison with previous studies. 1) Although the gross and
net benefits had few differences whether the surplus penalty of
water resources was involved or not, the water surplus penalty
would be remarkable decreased when the surplus penalty was
considered by adjusting the crop planting structure. Thus the
developed planning thinking could help to reducing the resources
surplus risk. 2) The proposed IFITSP combined IFS and traditional
ITSP, considering the ambiguity of membership in FS. The obtained
results can reflect the hesitancy of decision makers towards the
membership of input IFSs. 3) The established solving method can
not only solving the IFITSP, but improve the traditional solving
approach of ITSP. The improved solving approach of ITSP can
mitigate the subjective preferences between optimism and pessi-
mism for the first-stage decision.
5. Conclusions

Aimed at popular TSP for resources planning, this study was
conducted to improve model performance from two aspects:
model components and programming approach. In order to define
a clear recourse penalty, the technical inefficiency from production
frontier estimation was introduced. Meanwhile, instead of focusing
on the penalty caused by resources scarcity, the penalty of re-
sources surplus was emphasized alongside with the scarcity and
shadow price of resources was evaluated to represent the resources
residual value. Then IFS theory was applied to characterize the
uncertainty of fuzzy membership and an IFITSP was established for
resources planning. In order to solve the complex uncertain pro-
gramming, an integrated solving approach was proposed based on
the concept of IFS and HFS, the a-cut method of FS, robust stepwise
interactive algorithm, dual-interval programming and robust two-
stepmethod. Besides, an improved solving approachwas generated
regarding the traditional ITSP to generate a better first-stage deci-
sion modification to offer decision makers a more flexible choice.

The IFITSP was applied in a real case study in northwest China to
schedule agricultural cultivation scale based on limited water re-
sources. The results show that: 1) the modified irrigation targets of
maize in three subareas possessed highest uncertainty among three
kinds of crops, 2) the irrigation area of low hydrological year was
most uncertain especially for spring wheat and economic crops
among three level years, which should drawmanagers’ attention to
the likely risk associated with subjective preference, 3) the lower
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bound of spring wheat and maize was guaranteed due to their
function of basic survival while the upper bound of economic crops
was preferred due to the profit pursue of decision makers. The
results are capable of offering diverse decision references to deci-
sion makers with different subjective preference and dealing with
the tradeoff between basic food production and economic benefits
as well as among different hydrological years. The generated model
framework in this paper is particularly suitable for decision maker
group with great diversity.

Aimed at resources planning problem based on TSP, the devel-
oped IFITSP in this study has three advantages. 1) Based on pro-
duction frontier and shadow price, the recourse penalty caused by
resources deficiency and surplus was quantified scientifically,
clarifying the physical meaning of recourse and reducing the in-
fluence of subjective judgment. 2) From the perspective of sub-
jective influence during decision making process, the IFS was
introduced to express the uncertainty in fuzzy membership and an
IFITSP was exhibited to improve resources planning integrating the
IFS theory and the traditional ITSP. 3) An integrated solving
approach was proposed coupling the previous uncertain pro-
gramming methods and a modified robust ITSP solving method.
The decision strategies possess high diversity and robustness,
providing a more flexible and reliable decision references for
managers. However, there exist some limits about the proposed
method. The production frontier estimation requires a relatively big
data basis. It does not apply to the areawhere the statistical data are
scarce. Moreover, the discreteness of random sets may lead to the
loss of distributional information while it is the most convenient
way. The combination of more advanced TSP method and the
developed IFITSP structure is desired for further exploration.
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