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This paper presents an adaptive nonlinear observer for sensorless passivity based control applied to per-
manent magnet synchronous motor. The passivity based control approach is applied to a complex and
coupled nonlinear mathematical model of permanent magnet synchronous motor without any approxi-
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mation or cancellation of nonlinearities.

A nonlinear adaptive observer is proposed to estimate the mechanical speed and the unmeasured load
torque (unknown disturbance) that has an effect on the control performance; therefore, those estimated
states are then used to improve the performance of the passivity based control for permanent magnet

The performance of the proposed controller-observer have been tested using MATLAB/SIMULINK,

where those Simulation results show a perfect tracking of the mechanical speed and load torque.
© 2019 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The permanent magnet synchronous motor has been widely
used for industrial applications due to its simplicity, robustness
and low cost; however, the permanent magnet synchronous motor
(PMSM) is described by a nonlinear coupled and complex mathe-
matical model; which is a challenging task for control engineering.

Many control techniques have been studied and applied to drive
the permanent magnet synchronous machine, such as: Feedback
linearization control, sliding mode control, adaptive control, back-
stepping control, passivity based control. ..

The passivity based control term was introduced in (Ortega &
Spong, 1988), which was inspired from three proposed control
laws that are applied to a robot manipulator (Paden & Panja,
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1988; Slotine & Li, 1991; Takegaki & Arimoto, 1981). The passivity
based control (PBC) was applied to dynamical systems that could
be modeled using Euler-Lagrange, such as permanent magnet syn-
chronous motor (PMSM) in (Romeo, Antonio, Per, & Hebertt, 1998).
Hence the passivity based control technique has been used to
enhance the performance of the permanent magnet synchronous
motor such as: passivity based voltage control (PBVC) (Achour,
2011), passivity based current control PBCC (Achour, Mendil,
Bacha, & Munteanu, 2009), passivity based control with flux orien-
tation (Belabbes, et al., 2009) and interconnection and damping
assignment passivity (IDA-passivity) (Khanchoul, et al., 2014;
Petrovic, Ortega, & Stankovic, 2001). Therefore, different strategies
of the passivity based control combined with other control tech-
niques have been applied to drive the PMSM such as: integral
action control (Zhuang & Huang, 2017), sliding mode control
(Yang et al., 2018), backstepping control (Belabbes & Larbaoui,
2015), adaptive control (Liu et al., 2014) and Fuzzy sliding mode
(Shen & Ji, 2007).

In this work, the passivity based voltage control is applied to
drive the PMSM, the PBC is based on the energy that links the input
and output of the system. In order to construct such controller the
model of the system should be modeled using Euler Lagrange
method.

1018-3639/© 2019 Production and hosting by Elsevier B.V. on behalf of King Saud University.
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The contribution in this work is based on the following two
points:

- The passivity based control of the permanent synchronous
motor is affected by the variation of the unknown and unmea-
sured load torque (input disturbance); therefore, the load tor-
que has to be estimated to hence the performance of the motor.

- The unmeasured machine states as well as the parametric vari-
ation have a direct influence on the control performance.

A nonlinear adaptive observer is proposed to overcome the

aforementioned points, which is used to estimate the unmeasured
mechanical speed and the load torque of the PMSM.

2. PMSM modelling

Euler Lagrange method is used to construct the passivity based
controller for permanent magnet synchronous motor.

2.1. Euler-Lagrange model of PMSM

The Lagrangian function is given by (Dong-lian, Jia-jun, &
Guang-zhou, 2005):

. 1. . . 1 .
L(qm7qm7qe) = jque(me)qe(/)g(me)Qm + ijqfn (l)
_—

mechanical co - energy

electrical co - energy

The equations of motion of the machine are obtained by apply-
ing the Euler-Lagrange method (Achour, 2009; Mansouri, et al.,
2004; Mocanu & Onea, 2018):

De(pqm)Qe + Wi (pqm)pqmqe + Wz(pqm)pqm + Reqe =M..U (2)

qum + RQO =T-T (3)
- 1 LT . T .

T= iqew1 (pqm)qe + WZ(pqm)qe (4)

where:

q,, the mechanical speed

- q,, the rotor position

- d. currents vector

- p the number of poles pairs
- Re = diag{Rs,Rs}

- U= [UY]

- D, = diag{Lq,Lq}

- Lq: Longitudinal inductance
- Lq : Cross inductance

- Rs: Stator resistor.

- D, moment of inertia

- Ry, friction coefficient

- T electromagnetic torque

7, load torque

9De (P
- Wi(paa) = e

5 ) —sin Pdm
- WZ(PCIm) = %g:))_d)f |: cos (l(:’qm)):|

- ¢¢ : Flux of the permanent magnets

Since the PMSM has a smooth poles (L4 = Lq) then De(pqy,) is a
diagonal matrix with a constant elements, and therefore
Wi(pq) =0

Thus the differential equations that describe the smooth poles
PMSM in op reference frame are given by (Achour, 2009; Dong-
lian et al., 2005):

LdQ:x - d’f sin (qu)qu + qua = Ua (5)
Lqdp + ¢¢ €0s (PG )Py + RsGy = Uy (6)
—T = DG + Rm Gy + Py SN (PGyy )Gy, — Pr €OS (PA,y) g (7)

The smooth poles PMSM model can be represented in state
space as follows (Khanchoul et al., 2014; Ramirez-Leyva, et al.,
2013):
{x:Ax+F(x,y,u)+Brl

Y=C ®)

where:

x=[d, G qn]

® 0 0
A=lo
0 B oge
pQq,, + 0
Fx.y,u) = | —pQg, + 1 |:B = _01
0 B

1 00 dy Uy
C= y=1_. [;u=

o ¥ o= [a] o= (5]
2.2. Forces factorization

The model of the PMSM can be written in a compact form as
(Mellah et al., 2011):

D(q)4 + W(q,q) +Rq = MUy + ¢ 9)

where:

D(q) = diag{De,Dn}, R = diag{Re,Rm}

¢=10,0,-1)"; M= [I,0,4]"

Rewriting the matrix Was product of a matrix C with q vector
yields:

%W1 pqm %W] qe +W2
c=| .7, ) (10)
—(7qe W, +W2> 01*1
Hence, Eq. (9) will be written in compact form as:
D(q)q +C(q.q)q + RG = MUyg + ¢ (11)

2.3. Passivity of PMSM in open loop:

The Hamiltonian (total energy) of the PMSM is (Achour, 2011;
Mocanu & Onea, 2018):

1. . .1 .
H= zquDE(pqm)qe + (pfr(pqm)qe + ijqm2 (12)

The Hamiltonian derivative is given by:
= —qRy+ % (o1 i T 13
=@ Rq+ 5 (@5 (PAm)]e ) +Y ¥ (13)

By the integration of Eq. (13) on the interval [0; T] we get:
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H(T) -
ﬁ_/

stored energy

/q Rqdo

dissipated energy

/y vd6+[<0f Pdm) qe

supplied energy

Note that H(T) > Oand H(0) initial stored energy hence:
T T .
[y = in® [18°1- (HO+ [ofpanal,) (15
0 0

ot = min{R}
here: -7
e\ b= (HO) + o pani], )
Therefore the PMSM is passive in the open loop (Achour, 2011).

2.4. Problem formulation

In order to perform a nonlinear sensorless control of the PMSM,
a nonlinear passivity based controller is applied to control the
speed and the torque of the PMSM; then the closed loop system
must give:
e lim(tT—1)=0

t—+o0
e lim gy =gy or lim gy = g’

A nonlinear adaptive observer is used to estimate the mechan-
ical speed and the load torque using the measured states (stator
currents).

2.5. Passivity based control design

The first synthesis step is to determine the desired dynamic.
According to the Eq. (2) the following dynamics is proposed
(Achour, 2011; Benfriha, 2014):

U, =D, (PAm)de"
1 . 1 ‘ . .
+ (§W1(qu)pqm)qe* + <§W1 (PAm)PA + Re> Ge" + W2(Pdm)PAm
(16)

where q.* is the vector of the desired currents.
The dynamic equation of the error is calculated by subtracting
(16) from (2), after calculation we obtain:

X . 1 .
Usp = Uy = De(Pqpp)ee + <§W1 (pqm)pqm> €e

1 .
+ <§W1 (PQm)Pdm + Re> € (17)

e. = g. — q.* is the error vector of the currents.

To ensure the convergence of the tracking error, the following
quadratic function is considered (Belabbes & Larbaoui, 2015;
Benfriha 2014):

1
Ve(ee) = zeeTDe(pqm)ee (18)

The derivative of Eq. (18) is given by:

. 1 . .
Ve(ee) = —ee' <§W1 (PAm)PGm + Re> ee+ee' Uy —Uy’)  (19)
Choosing:
U:x[s = Uu[i* (20)
The expression of Ve(ee) will be reduced to:
. 1 .
Ve(ee) = —e' <§W1 (PQm)PAm + Re) €e (21)

2.6. Damping injection

A damping term K. is inserted into the controller that ensure
the negativeness of Eq. (21), therefore Eq. (20) will be:

Usp = Uyy™ — Keee (22)

Therefore, Eq. (17) becomes:

. 1 .
(P + (5 W, (PG P
1 .
+ <§W1(pqm)pqm +Re + Ke> e =0 (23)

Choosing the same quadratic function V. of Eq. (18), the deriva-
tive of V. is given by:

. 1 .
Viee) = —es” (5 Wi (P Pl + Re + K e 24

The function V. is negative if:
1 .
Ke = Ke' > —Re — 5 Wi(Pdy)Pdry (25)
This condition can be satisfied if we choose (Achour, 2011):

1 .
Ke = iwl (me)me + keIZ k@ > Re (26>

2.7. Desired currents

The PMSM is working at a maximum torque if the desired cur-
rent iy is zero, then the torque equation is written as follows
(Sanjuan, et al., 2018):

T = pérd, (27)
Desired currents in the dq frame are given by:
o _ O

{ dq (28)
qq P¢/

Hence, the desired current vector in the afrefrence frame is
given by:
T {fsin (pqm)}
P¢y | cos (pqy,)

Ge (29)

2.8. Desired torque
The desired torque proposed in (Achour, 2011; Belabbes &
Larbaoui, 2015) is given by the following equations:

T (4", PAm) = Dmn" — 2+ T (30)

z=-az+b(q, —q,)a,b>0 (31)

The parameters (a,b) are chosen to ensure the stability and
improve the system performance.

Note: In practice the load torque is not a measured quantity,
therefore the proposed adaptive observer is used to estimate the
load torque.

2.9. Passivity of PMSM in closed loop

Let us consider the quadratic function (Achour, 2011):

(PQm)de (32)

The derivative of Eq. (32) is given by:

1.
He = quTDe
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Ha = —G.'V + G."(Re + Kel2)qe (33)

Following the same steps in Section 2.3, we get the following
dissipation inequality:
Te
[1141Pdo - He(0)
0

Tc
/ QAo > Jmn{Re} + Kely (34)
‘o

: . Oc = imin{R} + KeIZ
Taking:
® {Bc = —Hc(0)
Therefore the PMSM is passive in the closed loop.

3. Adaptive observer synthesis:
3.1. Adaptive observer structure

Based on the model of Eq. (8) a nonlinear adaptive observer is
proposed to estimate the mechanical speed and the load torque
of the PMSM as follow (Boufadene, et al.,, 2016; Hamida, et al,,
2013):

X = AX + F(X,y,u) + Bt + L(Y — CX)
T, = yB'Pe
y=0Cx

(35)

With the following assumptions are holds (Boufadene, et al.,
2018; Mohamed, et al., 2017):

e Assumptionl: The pair (A,C) Matrix are observable

e Assumption2: The signals y and u are measurable

e Assumption3: The unknown disturbance T, is bounded(t, = 0)

e Assumption4: the observer gain matrix L is chosen so that
A. = A — LC is Hurwitz, Such that P,Q are positive matrix that
satisfy Lyapunov function:

AP +PA. = -Q

where:

e=Xx-X
v is an adjustable gain of adaptation.

3.2. Observer stability analysis

Let us consider the following Lyapunov positive function:

ePe T, T,
5 + 2y (36)
with: :E( =T — 'EI
The derivative of V is given by:
T . + o1 ~ 2T
. ePe ePe T,T TT
1% -5 + 5 + 2y 2y (37)
Replacing é by its expression (é = Ace + B T;) we get:
~\T ~ L ~T T
Vo (Ace+BT)) Pe e'P(Ae+BT) 77, N T, (38)

2 + 2 2y 2y

i T [—sin(pqm)] <

- ﬁ cos(pqm)
|
d
at
v
v= De(me)q'e‘ +R.G." [¢—
U=v+ w1 (pqm)pc.lm = kelz =
yy
PMSM
% qel q'ml
Adaptive
Observer
T, A.
Am 1
- -

Fig. 1. Simulation block of BPC of PMSM associated to nonlinear adaptive observer.
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~ ~T L1 ~T
. e'PAce e'PBT, e'AlPe T/B'Pe TT, AT,

4. Simulation results

V= 2 2 2 2 2y 2y (39)
In order to conclude on the performance of the use of the pas-
sivity based control via adaptive observer, let’s introduce the sim-
eT(ATP + PA, )e o'PBT, TB'Pe %7 1A T ulations performed on a PMSM powered by a PWN inverter using
= ( ‘ 5 ) 5 | 5 2’ ! ’2 ! (40)  MATLAB/SIMULINK.
i i The PMSM'’s parameters are given in the table below (see
Using the expression of the Lyapunov function we obtain: Table 1):
. T
_— e'PBT, 1,B'Pe T, T
V=—-¢elQe L —L L 41
g et —; 2 T2y T2y “1)
. PS T . . . Table 1
Note that 7, = 0 and T, = B Pe, then the Eq. (41) will be simpli- PMSM parameters (Amrous, 2009).
fied to:
Rated power Pn 2 KW
. -1 T Phase resistance Rs 1Q
V= 79 Qe (42) Longitudinal inductance Ld 3.2mH
Cross inductance Lq 3.2mH
Number of pole pairs p 3
V <0 Flux of the permanent magnets ot 0.13Wb
Moment of inertia Dm 6.10"* Kg.m2
Therefore the proposed adaptive observer is stable in Lyapunov Friction coefficient R 9.5*107° N.m/rd/s
sense (see Fig. 1).
150 Desired speed Load torque benchmark
100 ¢
~ =
= E
g < |
< 50} ®0
2 2
& P
0
-50 -5
0 2 4 6 8 10 0 2 4 6 8 10
Time (s) Time (s)
Fig. 2. Speed benchmark and load torque benchmark.
Desired and real speed Tracking speed error
200 0.5
—,
---Q
150
) »
5 100 B
g g
e} e} 0
19 o)
g 50 8
(2] 2]
0
-50 -0.5
0 2 4 6 8 10 0 2 4 6 8 10
Time (s) Time (s)

Fig. 3. Tracking Speed.

Please cite this article as: E. Benfriha, A. Mansouri, A. Bendiabdellah et al., Nonlinear adaptive observer for sensorless passive control of permanent magnet
synchronous motor, Journal of King Saud University — Engineering Sciences, https://doi.org/10.1016/j.jksues.2019.06.003



https://doi.org/10.1016/j.jksues.2019.06.003

6 E. Benfriha et al./Journal of King Saud University - Engineering Sciences Xxx (XXxX) Xxx

4.1. Robustness test

To highlight the importance of passivity-based control associ-
ated with an adaptive observer, the following robustness tests
were carried out:

Test 1:

e variation —50% of stator resistanceR,
e variation —50% of stator inductance L
e variation —20% of the flux of magnets &,

Test 2:

e variation + 50% of stator resistanceR;

e variation + 50% of stator inductance L

e variation + 20% of the flux of magnets &;
e variation + 200% of moment of inertia D,

5. Results discussion

Fig. 2 shows the input load torque, and the mechanical speed that
were applied to the PMSM, where the speed benchmark is used to

Real and estimated speed
200

=i’
---Qest

0 2 4 6 8 10

test the performance of the proposed control method for several
speed profiles; low speed zone ([0s 3 s], [6 s 10 s]), the instant of
reversal of the motor rotation direction (6 s), the speed benchmark
also allows to test the period that the speed increases (upward) or
decreases (downward) and also when the speed is constant.

The performances were established from the simulation of the
following operating modes: start without load followed by an
application of a positive load torque of Cr=5 Nm between 2s
and 3s, and another application of a negative load torque of
Cr= -5 NM between 7 s and 8 s (Fig. 2).

The results (Fig. 3) show that the tracking speed error is zero
when the speed is constant, however the appearance of a very
small error in the tracking speed when the speed varies (upward
or downward); it is noted also that the tracking speed error is cor-
responding to 0.45 rad/s during the period of application of the
positive load and —0.45 rad/s during the period of the application
of negative load.

According to the results in Fig. 3 we notice that the real speed
follows perfectly its reference.

A small chattering occurs in the simulation results due to the
use of the PWM inverter which is similar to the case in [20], where
a low pass filter is proposed to minimize it.

«104Speed estimation error

) e!2 est

1.5

-1.5

0 2 4 6 8 10

Fig. 4. Speed estimation.

Real and estimated load torque

_— T

|
2L TleSt

-6
0 2 4 6 8 10

Time (s)

g «10-3Load torque estimation

—e est

-3
0 2 4 6 8 10

Fig. 5. Load torque estimation.
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Tracking speed error

‘ T—Test 1
---Nominal case
-=--Test2

0.5 T T T

Speed (rad/s)

Time (s)

Fig. 6. Tracking speed error (robustness test).

<1074 Speed estimation error
4 T | | T T T T T
—Test 1
3L | -=-Nominal case
-—-Test2
2 l
w4l J
S 1
o
; 0 MAAAAPAR? FA"- 20k St
o]
a
e 1
21 .
3 -
-4 I 1 I I 1 1 I I 1
0 1 2 3 4 5 6 7 8 9 10
Time (s)
Fig. 7. Speed estimation error (robustness test).
Load torque estimation error
0.01 T T T T T T T T
—Test 1
- --Nominal case
-—-Test2
0.005 - B
E
<
9 0
g
S
'_
-0.005 | a
_0.01 Il 1 1 1 1 1 1 Il 1
0 1 2 3 4 5 6 7 8 9 10

Time (s)

Fig. 8. Load torque estimation error (robustness test).
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The results of the estimation of the speed and the load torque
(Figs. 4 and 5) show the appearance of some peaks corresponding
to the instants of the application and the cancellation of the load
torque. Moreover, small oscillations corresponding to the periods
of application of the load torque has been appeared.

Figs. 3-5 show the effectiveness and performance of the passiv-
ity based control via an adaptive observer. It gives good perfor-
mance vis-a-vis the desired speed, the application and the
cancellation of the load torque, the reversal of direction of motor
rotation and also in the zone of low speed.

Figs. 6-8 show the simulation results with simultaneous varia-
tion of motor parameters, it is noted that the speed tracking error
slightly increases especially in the period of the application of the
load torque, moreover the oscillation in the speed estimation error
corresponding to the period of the application of the load torque is
a bit important than that in the normal case.

The response to the desired speed is carried out with a rejection
of fast disturbance, otherwise the system is insensitive to paramet-
ric variations, and so it is robust.

6. Conclusion

In this paper a nonlinear passive control based adaptive obser-
ver is applied to drive the permanent magnet synchronous motor;
the damping coefficient injected into the controller makes the sys-
tem more stable and gives better performance.

Simulation results show the performance of the proposed
controller-observer against several speed profiles, load torque vari-
ations, and parameters uncertainties.

Some perspectives of this work can also be oriented towards:
the real-time implementation of the proposed method in the real
PMSM using a real environment based on microcontroller board
(dspace card), the use of new algorithms for chattering elimination
and the optimization of the gains of the proposed controller-
observer using genetic algorithms, neural network or fuzzy logic.
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