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Abstract—Bayesian network utilizes graphical model to 

describe dependencies among variables in probabilistic way, it 

is one of the most important model for uncertainty processing 

in Artificial Intelligence. Incremental learning of Bayesian 

networks has been received more attentions in recent years, in 

this paper a novel method is proposed to learn Bayesian 

network from incremental data. In this method, a novel 

incremental scoring function is designed to adaptively adjust 

the tendency of matching new and old data in the process of 

incremental learning. We propose an improved adaptive 

incremental structure learning algorithm for Bayesian network.  

Theoretical analysis and experimental results both 

demonstrate the proposed method outperforms other state-of-

the-art methods.   

Keywords-Bayesian network; incremental learning; machine 

learning; parameter learning 

I.  INTRODUCTION 

With the coming of big data era, the statistical machine 
learning for probabilistic graphical model has attracted 
extensive attention in recent years. Bayesian network is one 
of the most typical probabilistic graphical models which is a 
fundamental model for uncertainty processing in Artificial 
Intelligence [1]. 

Learning Bayesian networks from data is NP-hard 
problem and still one of the most challenges in machine 
learning [2]. The incremental learning of Bayesian networks 
is an area that has gained more importance in recent years, in 
this case, data records are received sequentially, and 
Bayesian network is constructed incrementally [3]. In this 
paper, we propose a score-based adaptive algorithm to learn 
Bayesian network in the presence of concept drift. We 
design a scoring function which makes the learning process 
adaptively regulate the searching strategy for each local 
structure of Bayesian network, then we propose an adaptive 
parameter learning method based on Lagrange multiplier, we 
also provide an improved structure learning method. 

The remainder of this paper is organized as follows: 
Section II provides the preliminaries and notations of the 
incremental learning of Bayesian network, and the novel 
scoring function is proposed in Section III. Section IV offers 
learning method. Section V offers the experimental results 
and comparisons of the proposed method. Finally, 
conclusions are summarized in Section VI. 

II. PRELIMINARIES AND NOTATION 

For a set of variables X={X1,X2,…,Xn}, a Bayesian 

network is composed of graph structure G and parameters ; 

in which  G is a directed acyclic graph (DAG), and each 
node of the graph represents the variable, edges represent 
direct dependencies between variables; the parent node set of 

variable Xi is denoted by i, then 
n
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1
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node given the values of their parent nodes in the network. 
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The problem of incremental learning of Bayesian 
networks can be stated as follows: the pre-existing data (old 

data) is presented as
1 2{ , ,..., }ND C C C 

  , N is the size of D, 

that means the old data contains Nsamples (observations), 

and the current Bayesian network which is learned from D is 

represented as B. The incoming new data is presented 

as
1 2{ , ,..., }N N N ND C C C     , N is the size of D, i.e. the new 

data contains N samples. The aim of incremental learning is 

to learn new Bayesian network B using B, Dand D, namely, 

update B to B with D. 

III. DESIGN OF SCORING FUNCTION 

The requirement of incremental learning is that the 
learned Bayesian network should fit (reflect or match) both 
old data and new data. That is to say the scoring function 
reflects not only the fitness between current Bayesian 
network and old data, but also the fitness between current 
Bayesian network and new data. In addition, the more 
complex Bayesian network is more difficult to utilize 
because of the high inference complexity, so the learning 
algorithm should tend to learn concise network structure. For 

the above requirements, log-likelihood log ( | )P D B is used 

to measure the fitness between a Bayesian network B and old 

data D, and log-likelihood log ( | )P D B is used to measure 

the fitness between a Bayesian network B and old data D.  

If the scoring function only uses log ( | )P D B  

and log ( | )P D B , then during the process of incremental 

learning, the proportion of log ( | )P D B will grow large 

gradually with the collection of old data. So in order to 
ensure the fairness of old and new data in the learning 

process, we adopt log ( | ) /P D B N  and log ( | ) /P D B N in 

scoring function, that is the fitness divided by the size of data 
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set, in other words, the fitness between Bayesian network 
and each sample of the data set. 

Furthermore, we hope the learning algorithm is adaptive 
and flexible. When the new data arrives, if the current 
Bayesian network fits the new data well, it indicates the 
current network is fairly accurate, so at this moment the 
learning algorithm can trend to old data because the learning 
result need not change too much compared with the current 
Bayesian network. On the contrary, if the current Bayesian 
network fits the new incoming data poorly, it indicates the 
current network is not precise, thus the proportion of new 
data in scoring function should be enhance to make the 
learning algorithm update the existing Bayesian network 
substantially, so that the learning result can adapt the new 
data. 

Definition 1. (Local Structure) In Bayesian network, 
the local structure of node Xi is the sub-structure composed 

by node Xi and its parents nodes i in the Bayesian network. 
In the incremental learning algorithm, for each local 

structure of current existing Bayesian network B, we 

introduce an adaptive tendency factor  to adjust the learning 
tendency to old or new data. Based on above discussion, we 
proposed the novel scoring function for adaptive incremental 
learning of Bayesian network with Definition 2. 

Definition 2. (Scoring Function). For new data D and 

old data D, the scoring function of a Bayesian network B is: 
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where Nijk is the number of cases in D in which Xi =
k

ix and i 

= j

i ,
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 , and  is parameter. 

It can be seen from Definition 2 that if i >0.5, the fitness 
between current Bayesian network and old data has larger 
proportion in scoring function, so the learning process trends 

to old data. If i <0.5, the fitness between current Bayesian 
network and new data has larger proportion in scoring 
function, so the learning process trends to new data. The 
Pen(B) is a penalty function on Bayesian network B, the 
more complex the structure of B is, the larger the Pen(B) is.  

IV. STRUCTURE LEARNING 

One of the most commonly used structure learning 
method for Bayesian networks is hill-climbing search. The 
basic idea of a conventional hill-climbing based structure 
learning is: First, we choose an initial network structure B0, 
second, evaluate all the possible changes that can be made to 
B0, and then make the change to B0 which maximizes the 
scoring function, iterating above steps until there is no 
change can increase the scoring function. A change to a 
Bayesian network structure includes: add an arc (i.e. add a 

parent node to a node), delete an arc (i.e. delete a parent node 
from a node), and reverse an arc. All changes are subject to 
the constraint that the resulting network contains no directed 

cycles. Because reverse an arc Xj  Xi can be regarded as 

delete an arc Xj  Xi and add an arc Xj  Xi, so the core 
changes are add an arc and delete an arc. 

An efficient version of hill-climbing method is proposed 
by Gamez [4]. They introduced a set of forbidden parents 
FP(Xi) to each node Xi, the nodes in set FP(Xi) are 
independent of Xi, that means the nodes in FP(Xi) can not to 
be the parent nodes of Xi, so during the search, the nodes in 
FP(Xi) need not to be considered while evaluating the change 
that adding a possible potential parent node to Xi, thus the 
efficiency is improved. Their tabu list FP(Xi) is only used for 
adding a parent node. 

In this paper, we extend the idea of Gamez and  
introduced two other tabu lists during the search: one is used 
for deleting parent node, named FDP(Xi) (abbreviated from 
Forbidden_Delete_Parent), the nodes in FDP(Xi) have strong 
dependence on Xi, so during the search, the nodes in FDP(Xi) 
need not to be considered while evaluating the change that 
deleting a parent node to Xi. Another proposed tabu list is 
FCY(Xi) (abbreviated from Forbidden_Cycle) which is used 
to avoid cycles, there will generate a cycle in network 
structure if add a node from FCY(Xi) to be parent of Xi. So 
during the search, the nodes in FCY(Xi) also need not to be 
considered while evaluating adding a possible parent node to 
Xi. For consistency, FP(Xi) is represented as FAP(Xi) 
(abbreviated from Forbidden_Add_Parent). 

In detail, during the iteration of structure search, if 

adding a parent node Xj to Xi(i.e. add an arc Xj  Xi) would 

reduce the scoring function(Score<0), then in future the 

scoring function will also not increase by adding Xj  Xi 
until the local structure of Xi are changed. So Xj can be put in 
FAP(Xi). Similarly, if deleting parent node Xj of Xi(i.e. delete 

an arc Xj  Xi) would increase the scoring function 

(Score>0), that means add this arc will reduce scoring 
function, so put Xj into FAP(Xi). Conversely, if delete arc Xj 

 Xi would reduce the scoring function, that means in the 
subsequent iterations of search, scoring function could not 

increase by deleting Xj  Xi as long as the local structure of 
Xi are not changed, so Xj will not be considered when 
evaluating to delete a parent node, in this case we put Xj into 
FDP(Xi). 

After make the change which maximizes the scoring 
function of current Bayesian network, the tabu lists FAP and 
FDP of node corresponding to the final change will be 
cleared and reset, in detail, if the final change is delete arc Xj 

 Xi, that means add this arc will reduce scoring function in 
future, so put Xj into FAP(Xi). If the final change is add arc Xj 

 Xi, that means afterwards delete this arc will reduce 
scoring function, so put Xj into FDP(Xi). 

To implement cycle tabu list FCY(X), we know in fact 
the FCY(X) is set of descendant nodes of X, because add an 
arc from a descendant of X to X will generate a cycle in the 
Bayesian network structure. At beginning, we can obtain 
each FCY(X) by using Depth-First Search (DFS) to the 
graph of the Bayesian network structure with starting node X, 
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and the nodes in search route are the descendant of Xi to X. 
During the structure search, if a change adding or deleting 

arc Xj  Xi is made, only FCY of ancestors of Xj need update, 
thus we can implement that by using DFS to node X which 

Xj FCY(X).  
Finally, The proposed algorithm is described as 

Algorithm 1. 
 

Algorithm 1 Adaptive Learning of Bayesian Networks 

Input: current Bayesian network B; new data D; old data D; 

Output: new Bayesian network B; 

/* Initialization*/ 

finish  false; 

  B B; 

Calculate i for each i 

for each node X in B do 

FAP(Xi) ; FDP(Xi) ; 

Initialize FCY(X) using Depth-First Search with starting 

node X;  

end for 
/* Structure Search*/ 

while finish = false do 

   /* add an arc */ 

    for each node Xi and ( ( ) ( ))j i i iX FAP X FCY X   do 

       ( { }) ( )j iScore Score B X X Score B     ; 

if Score <0 then FAP(Xi)  FAP(Xi){ Xj }; 

Store the modification which maximizes Score ; 

  end for 

    /* delete an arc */ 

    for each node Xi and each node ( )j i iX FDP X   do 

( { }) ( )j iScore Score B X X Score B     ; 

if Score <0 then FDP(Xi)  FDP(Xi){ Xj }; 

if Score >0 then FAP(Xi)  FAP(Xi){ Xj }; 

Store the modification which maximizes Score ; 

end for 

   /* make the change */ 

( )

arg max ( )
m Modifications B

m Score B m


   ; 

     ScoreScore(B+m
*
)Score(B); 

if  Score > 0 then  

Bapply m over B; 

if  m=add Xj  Xi then 

FAP(Xi) ;   FDP(Xi) { Xj }; 

else if  m=delete Xj  Xi then 

FAP(Xi) { Xj };  FDP(Xi) ; 

end if 

for each X do 

if Xj FCY(X) then  

reset FCY(X) using Depth-First Search; 

end if 

end for 

    else finish true; 

    end if 

 end while 

 return B. 

V. EXPERIMENTAL RESULTS 

We use the dataset generated by the Alarm network [5], 
and compare the proposed algorithm with the algorithm of 
Friedman [6] and the algorithm of Alcobe [7]. The accuracy 
of learning results is measured by Lormalized Log-Loss. The 

expression is 
*( )

( )n
B

P X

P X
  [6], where P*(X) is the target 

probability distribution. This measurement can measure how 
close the learning result is to the network from which the test 
data is generated. The incremental algorithm reads k samples 
each time. We make experiments with k=200 and k=400, 
respectively record the results of the first 10 learning. Fig. 2 
to Fig. 3 shows the experimental results. It can be observed 
that the proposed algorithm outperforms other algorithms in 
most cases. 

 
Figure 1.  Comparisons of the algorithms on k=200  

 

Figure 2.  Comparisons of the algorithms on k=400 
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Figure 3.  Comparisons of the algorithms on concept drift 

In addition, we conduct an experiment on concept drifts. 
Three experimental networks are used, and the standard 
Alarm network is used as the first network. The second 
network is generated by randomly modifying the Alarm 
network. Then the random modification is performed again 
to generate the third experimental network. 2000 samples are 
generated from each of the three networks, totally 6000 
samples. The 6000 samples are incrementally inputted to the 
three algorithms. The experimental results are shown in Fig. 
3. It can be seen from the figure that the algorithm can 
quickly find the moment when the target Bayesian network 
changes, and can get better learning results than the other 
two algorithms. 

Figure 4 shows the comparison of the running time, it can 
be seen that the running time of the algorithm is better than 
that of Alcobe's algorithm and is very close to Fridman's 
algorithm. 
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Figure 4.  Comparisons of the algorithms on running time 

VI. CONCLUSIONS AND FUTURE WORKS 

In this paper, we proposed a Bayesian network learning 
algorithm to handle the concept-drift and incremental data. 
We first design a new incremental scoring function which 
can adaptively adjust the tendency of matching new and old 
data in the process of incremental learning. Then we propose 
an improved greedy-based algorithm to learn the structure of 
Bayesian network, we introduce tabu-lists for deleting nodes 
and loop nodes, this strategy can avoid searching for 
unnecessary redundant nodes and improve learning 
efficiency. Experimental results show the effectiveness and 
superior of the method. In future, we will integrate prior 
knowledge into the learning process based on convex 
evidence theory [8] to further improve the accuracy of the 
algorithm. And we also plan to apply the proposed method to 
performance assessment for electric meter.  
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