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a b s t r a c t

The aim of this paper is to analyze the stock exchanges for a large set of countries (20
in total) before and after the subprime crisis, identifying which markets are the most
central and if the linkage pattern changed after the crisis. We started by calculating the
correlations between stock markets’ returns, using the ρDCCA, in order to identify if
there is some variation in the scale between the links in the different stock markets of
the network, in both periods. Additionally, a cross-correlation filtering process will be
performed with the intention of identifying which countries have stronger relationships
according to the used time scales. The results show the central role of European
markets among the world’s main financial markets, mainly France, Germany and the
United Kingdom. Moreover, after the subprime crisis we find the formation of two
large communities, one of European and American countries and the other formed by
Asian countries plus Australia, while in the pre-crisis period three communities could
be identified. It is possible to conclude that after the 2008 crisis the connectivity and
integration of the network for the whole set of analyzed timescales increased.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Financial markets move trillions of USD annually, and understanding their dynamics is of vital importance to the world
economy, for several types of economic agents: actual or potential investors, managers of firms and of mutual funds, for
economic authorities and also for policy makers. The fact that any information coming from financial markets could be
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used, for example, to prevent financial crises or to improve the financial system underlines the importance of continuing to
study these markets. In the context of financial markets, stock market integration is a much studied topic in the financial
literature and also a very broad one, not only with a vast amount of literature but also using different methodologies to
assess the evolution of stock market integration. So, it is firstly important to identify a general overview about integration,
as well as its advantages and disadvantages.

Stock market integration is a particular aspect of the broader issue of financial integration. As a whole, if markets are
more integrated, this is expected to boost countries’ growth, allowing citizens to increase their well-being. This is due, for
example, to the fact that more integrated markets could cause better savings allocation (see, amongst many others, [1] or
[2]). However, authors also recognize that, despite these potential advantages, increased market integration could have a
negative effect because this potentiates greater financial instability and financial contagion (see, for example, [3]). The fact
that economies increase their interdependence could heighten these effects [4]. Authors such as Bekaert et al. [5] identify
a constant increase in international trade, including in financial assets, besides causing instability in macroeconomic
variables such as exchange rates, national income or employment, and also affecting governments’ capacity in their policy
decisions.

Stock market integration could be studied using several approaches, with the use of correlations and cointegration
tests probably being the most common. The evolution of methodologies and data availability has led to multiple types of
studies, with linear and non-linear methodologies but also in different countries and regions. The use of so many different
approaches is seen, for example, in [6] and [7], who report strong evidence of integration over time, mainly in developed
markets.

In this paper, to analyze stock market integration, we will use a network of financial indices corresponding to twenty
stock exchanges worldwide. We study the periods before and after the subprime crisis to verify how these markets
behaved after this important economic event. The subprime crisis began with the real estate bubble in the US in 2006,
with the culmination of the crisis being the collapse of the Lehman Brothers Bank in 2008. Subprime loans are high-risk
bank loans to clients with a poor or unproven track record. Most of these credits were granted to buy real estate and
with a fixed interest rate. With increased interest rates in the United States, many clients became defaulters. Many banks
lending to subprime clients automatically went through a difficult situation, some of them becoming bankrupt and others
having to go through financial restructuring. This crisis has affected many countries around the world, causing recession
in several. Investor mistrust has increased, reducing investment in financial assets and causing instabilities in the financial
sector.

Financial markets in general and stock markets in particular are seen as complex systems, due to the large amount of
interactions between agents. The use of complex systems in economics has been termed econophysics by Stanley et al.
[8] and Mantegna and Stanley [9]. According to Pereira et al. [10], in the beginning econophysics was used to study only
the format of the distribution of financial assets’ returns (stocks, exchange rates, commodities and stock indexes). Later it
adapted other tools originating in statistical physics, such as the Hurst exponent, correlation cross-modeling, agent-based
models and complex networks. Complex networks have been established as important analytical tools in several areas,
providing a new vision in the study of several problems. The different methods and techniques can be found in classic
studies like Barabási and Albert [11], Albert and Barabási [12], Newman [13], Boccaletti et al. [14] or Jackson [15].

The use of complex networks, which allows much information about financial series to be captured, according
to Mantegna [16], is a type of approach useful to analyze market integration. Additionally, complex networks allow
us to measure characteristics such as centrality, medium degree, network hub and others. Kwapień and Drozdz [17]
demonstrate the importance of the application of complex systems in several phenomena, including with the use of
econophysics.

Mantegna [16] applied the Minimum Spanning Tree (MST) method between July 1989 and October 1995, using
companies listed on the New York Stock Exchange (NYSE) detecting a hierarchical behavior in stock markets. Bonanno
et al. [18] used high-frequency data for the major stocks traded in the United States stock markets demonstrating that the
degree of cross-correlation varied according to the time horizon used to compute them. Onnela et al. [19] also analyzed
the New York Stock Exchange to build hierarchical structures corresponding to the networks. In this context, the use of
MST on the stock exchange to demonstrate the hierarchical structure of several financial markets has grown: see, for
example, [20–23]. Another application of MST was made by Kristoufek et al. [24], when studying the correlation between
biofuels and related commodities before and after the food crisis, finding that correlations are considerably higher in the
post-crisis period than in the pre-crisis one. In another study, Kristoufek et al. [24] also use MST and demonstrate there
are correlations between food and fuel commodity prices in the United States and the European Union between 2003 and
2008, the interaction dynamics varying according to the weekly, monthly and quarterly data.

Tumminello et al. [25] introduced the concept of the Planar Maximally Filtered Graph (PMFG) as an alternative to MST.
Another relationship involving networks and financial markets is the possibility of network theory measuring systemic
risk in the banking payment system: see [26–28]. It is also possible to analyze the dynamics of a financial network’s
connectivity, as a predictor of possible financial crises [29–31]. Other relevant studies involving networks and financial
markets are those by Boginski et al. [32], Billio et al. [33], Hautsch et al. [34], Diebold and Yılmaz [35], Wang et al. [36,37].

Rather than using the Pearson’s correlation, which is a linear measure of correlation amongst two series, considering a
given data sample, an alternative way of calculating the correlation between the nodes of a network is by using multiscale
methods. Multiscale methods allow the analysis of different networks for different time scales, allowing the identification
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of different behavior for each scale. They could be used, for example, to differentiate between the behavior of networks
in the short or long-term (considering, for example, lower or higher time scales). A pioneering study was that of Kenett
et al. [38], which studied the New York Stock Exchange (NYSE) from 2000 to 2003, using the 300 largest companies and
Partial Correlation Network (PCN), and with a dynamic window. The authors checked the persistence of financial sector
actions both for a window of one month and for a four-month trading window. Another study was that of Wang et al. [39],
which combined ρ DCCA (detrended cross correlation analysis) with MST (Minimum Spanning Tree) obtaining a multiscale
network from calculation of the cross correlation, applying 44 different currencies from 2007 to 2012. Following this idea,
Wang et al. [40] applied the MST and ρDCCA to analyze the network based on the exchange rate of several countries from
2007 to 2012, finding that the cross-correlation coefficient of the foreign exchange market has a long tailed distribution,
and identifying that USD and the euro are the predominant currencies.

Wang et al. [41] analyzed 57 stock markets using the MST Pearson and the MST Partial methods, finding different
results in relation to betweenness centrality and closeness centrality. Wang et al. [42] calculated the cross correlation
using wavelet cross correlation and Pearson correlation by analyzing 457 shares quoted in the SP 500 during the period
2005 to 2012, finding fat tail distribution with wavelet with clusters formed by the following sectors: Financial, Material
and Industrial. Kwapien et al. [43] generalized the Minimum Spanning Tree (MST) concept by introducing the q-dependent
minimum spanning tree family. This method allowed them to work with data ranging from one minute to one month,
in addition to using the value of the coefficient q = 2 and q ̸= 2, the latter value being more satisfactory. Battiston et al.
[28] and Battiston et al. [44] use Debt Rank’s concept of centrality, emphasizing that there are ‘‘too many core markets
not to fall’’, so the use of centralities in financial networks makes it possible to identify which exchanges or banks are
central to a financial network.

In this paper we propose to build a network based on Zebende’s [45] method, calculating the correlation coefficient
for multiple scales. Zebende [45] developed a method to investigate the cross-correlation power laws between two
simultaneous time series, called Detrended Cross Correlation Analysis (DCCA). According to Pereira et al. [10], the analysis
of cross-correlations between time series has been a new frontier in economics since the study by Podobnik and Stanley
[46] when they created the DCCA, extending the methods to analysis of cross-correlations between different variables,
including economic assets, such as the correlations between trade volume and share prices. Podobnik et al. [47] and
Gvozdanovic et al. [48] applied the DCCA between the Dow Jones index and 30 constituent companies.

Some variations of DCCA can be found in the literature, with Horvatic et al. [49] proposing the DCCA-ℓ (n) or Duan
et al. [50] using the random matrix theory of modified time lag to study time-delay cross correlations in several time
series in several countries. Another variation was proposed by Kristoufek [51]. Duan and Stanley [52] combined DCCA
with support vector machines (SVM) to predict returns from financial series. Podobnik et al. [53] introduced a new test
to quantify the long-range cross-correlations, observing the effects of trends in the series, and Podobnik et al. [54] used
time lag cross correlation in several phenomena.

Thus, this article has the following objectives: (i) to develop a model of financial networks with the calculation of
correlations from Zebende [45], since this is an established method in the literature allowing the use of different time
scales; (ii) analyze the behavior of the main stock exchanges in the world ten years after the subprime crisis with the
purpose of identifying which markets are the hubs, i.e., have the most central markets according to the indicated time
scale; (iii) identify the main communities formed among the stock markets of the countries studied; and (iv) analyze
the hypothesis that after the subprime crisis the market became strongly connected. Therefore, this article is divided as
follows: in the next section we present the data (Section 2), followed by the methodology (Section 3). Section 4 presents
the results and Section 5 concludes.

2. Data

The data was retrieved from the ADVFN and yahoo finance platforms and correspond to the period from 2nd February
2001 to 18th January 2017. We split the sample in two subsamples, considering the pre and post-subprime crisis periods.
The division was made in January 2009, with this date corresponding to the moment in which the Dow Jones index
(index of the American stock market) comes out of a downtrend and moves on to a bullish sequence and the period
after the subprime crisis. The period under analysis includes the Eurodebt crisis and the political crisis caused by the
Brexit referendum, which could give us interesting results. The 20 stock markets used are those included in Table 1. It
considers 19 of the most relevant stock markets, according to data availability, as well as the Eurostoxx50, representing
the Eurozone as a whole.

The descriptive statistics of the return rates are presented in Table 2. A brief reading reveals that 6 of the 20 indices
had negative means in the period considered. Curiously, 4 of those countries are European and the Eurozone is also in this
situation. Remember that in the European Union, after the subprime crisis, countries faced the Eurodebt crisis, which also
affected stock markets generally. The other country with a negative mean was Brazil, which also experienced a severe
economic crisis as well as a political one.

From the remaining indicators, the negative skewness for almost all indices stands out, meaning that for most of them,
higher losses are more frequent than higher gains (the exception is the Indian index). Furthermore, and regarding kurtosis,
all the indices but Taiwan show levels higher than the normal distribution benchmark, meaning that return rates should
suffer from fat tails, which is a well-known stylized fact in the financial literature.
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Table 1
Country and corresponding stock market index.
Country (region) Stock market index

Argentina Merval
Australia SandPASX200
Austria ATX
Brazil Ibovespa
Canada SandPTSX Composite index
Chile IPSA
China SSE Composite index
Eurozone Eurostoxx50
France Euronext 100
Germany DAX
India SandPBSE SENSEX
Indonesia Jakarta Comp index
Israel TA-100
Italy MIB
Japan Nikey 225
Mexico IPC
South Korea Cospi
Taiwan TSEC
United Kingdom FTSE 100
United States Dow Jones

Table 2
Descriptive statistics for the return rates of the considered indices.

Mean Std. dev. Minimum Maximum Skewness Kurtosis

Argentina 0.00036 0.0217 −0.1215 0.1749 −0.0117 4.7726
Australia 0.00019 0.0100 −0.0705 0.0579 −0.3028 4.1863
Austria 0.00024 0.0147 −0.0974 0.0910 −0.5510 5.3184
Belgium −0.00002 0.0129 −0.0736 0.0978 −0.0273 5.3258
Brazil −0.00002 0.0178 −0.1139 0.1343 −0.1690 3.2679
Canada 0.00002 0.0110 −0.0932 0.0982 −0.3416 9.9282
Chile 0.00039 0.0098 −0.0698 0.0590 −0.4597 5.0761
China 0.00016 0.0206 −0.1324 0.1478 −0.3704 6.2255
Eurozone −0.00019 0.0151 −0.0786 0.1035 −0.1052 3.3232
France −0.00017 0.0135 −0.0856 0.0884 −0.1623 4.1702
Germany −0.00004 0.0152 −0.0707 0.1128 −0.0482 3.7702
India 0.00045 0.0151 −0.1114 0.1734 0.1263 10.9177
Indonesia 0.00073 0.0140 −0.1038 0.0792 −0.6347 6.0060
Israel 0.00017 0.0110 −0.1000 0.0541 −0.7575 6.9863
Japan 0.00028 0.0158 −0.1141 0.1415 −0.1116 7.7960
Mexico 0.00040 0.0126 −0.0701 0.1031 −0.0868 4.6911
South Korea 0.00046 0.0139 −0.1057 0.0614 −0.5199 4.5341
Taiwan 0.00029 0.0128 −0.0651 0.0577 −0.2090 2.5397
UK −0.00017 0.0121 −0.0785 0.0805 −0.2998 4.8025
USA 0.00005 0.0112 −0.0993 0.1104 −0.5194 10.3279

3. Methodology

The basis of the network is built using the detrended cross-correlation analysis (DCCA) coefficient correlation to study
the cross-correlation dependence between series. DCCA was created by Podobnik and Stanley [46] and is performed
according to the following steps. It considers two different datasets xk and yk with k = 1, . . . , t equidistant observations.
Based on those variables, DCCA starts by integrating both series, i.e., calculating (t) =

∑t
k=1 xk and y (t) =

∑t
k=1 yk. The

next step is to divide the whole samples into boxes of equal length, of dimension n and divide into N-n overlapping boxes.
For each box, a local trend (x̃k and ỹk) is considered, using ordinary least squares. The detrended series are calculated,
based on the difference between original values and the previously calculated trend. The covariance of the residuals in
each box is calculated, given by f 2DCCA =

1
n−1

∑i+n
k=i(xk− x̃k)(yk− ỹk). Finally, the detrended covariance is calculated summing

all boxes of size n, i.e., F 2
DCCA(n) =

1
N−n

∑N−n
i=1 f 2DCCA. The process is repeated for all length boxes, allowing identification of

the relationship between the DCCA fluctuation function and n. The long-range cross correlation FDCCA (n) is given by the
power law: FDCCA (n) ∼ nλ, with the λ parameter as the parameter of interest which quantifies the long-range power-law
cross-correlations.

The DCCA method measures the covariation between series. However, to understand the degree of the relationship it
is more suitable to use the correlation coefficient created by Zebende [45], given by ρDCCA =

F2DCCA
FDFA{x}FDFA{y}

, where DFA{xi}
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and DFA{yi} represent the DFA method [55] for the series {xi} and {yi}, respectively. This has had several applications in
economics and finance [56–60].

That coefficient, which is considered efficient by Kristoufek [61], has the desired properties of a correlation coefficient:
−1 ≤ ρDCCA ≤ 1; ρDCCA = 0 when there is no cross-correlation between series; a positive or negative value meaning
evidence of cross-correlation or anti cross-correlation and Kwapień et al. [62] propose the q-dependent detrended
cross-correlation coefficient, i.e., ρq (q ∈ R) based on the so-called q-dependent fluctuation functions.

The Podobnik et al. [63] procedure is used to test the significance of this correlation coefficient, considering the different
sample sizes used in this study. Besides that, based on Silva et al. [64], we consider a high degree of ρDCCA correlation
coefficient ≥ 0.66. In this study, we consider the existing network connection in significant correlations and the correlation
grades already mentioned. A variation of ρDCCA is the ∆ρDCCA introduced by Silva et al. [65], which is used to measure
the contagion effect, with the work of Wang et al. [66] or Ferreira et al. [58] applying that new concept. Additionally,
Balocchi et al. [67] reconcile the ρDCCA with ARFIMA models and Kristoufek [68] shows that the DCCA coefficient is
more efficient than the Pearson coefficient in measuring the cross correlation between two non-stationary series.

For the analysis of communities, we then apply the Louvain method for community detection to identify closely
interconnected stock markets within the graphs proposed by Blondel et al. [69], named modularity.

To analyze centrality we will consider the weighted degree and the PageRank. Regarding the weighted degree, let us
consider that Γ (i) is the neighborhood of vertex i. The weighted degree of vertex i is given by the sum of the weights of
all in-or-out arcs connected to vertex i, kwi =

∑
j∈Γ (i) wij.

PageRank measures the importance of a node (sector) by counting the number and quality of arcs (if the network is
addressed). PageRank is a measure of quantity and quality because it captures both the number of arcs a node can have
and the importance of the node in the network. A node (stock market) can be important if it receives an arc from an
important node, according to Page et al. [70], PageRank is defined as:

1. At t = 0, an initial probability distribution is assumed, usually PR (i; 0) = 1/N , where N is the total number of
nodes;

2. At each time step, the PageRank of node i is computed as PR (i; t + 1) =
1−d
N + d

∑
j∈M(i)

PR(j;t)wij
S(j) , where M(i) are

the in-neighbors of i, wij is the weight of the link between the nodes i and j, S is the sum of the weights of the
outgoing edges from j, and the damping factor d is set to its default value, 0.85.

4. Results

Firstly, we build the network formed by the values of the significance test of Podobnik et al. [63], linking the edges for
a ρDCCA ≥ 0.66. The objective of using a ρDCCA ≥ 0.66 is to propose a filtering method to verify which edges remained
even for a high ρDCCA value. So we can verify which stock exchanges are most influential. For this, the total value of the
weighted degree of a given market together with the ρDCCA filtering will be used.

Fig. 1 shows the example of the networks for a time scale of 4 days, considering the values of ρDCCA and using the
significance test of Podobnik et al. [63], with the top panel representing the period before the crisis and the bottom panel
the period after the crisis. The larger the node size and the darker the blue tint, the greater the weighted degree value.
This helps in visualizing the most important nodes corresponding to the financial indices of the respective countries. We
can see that the larger knots in darker blue are European markets, mainly France, Germany, Belgium, the Eurozone as
whole and UK. In the background, American countries and China predominate.

During the pre-crisis period, the agglomeration coefficient of the network was 0.48 and the density coefficient 0.47,
while after the crisis our network has higher coefficients: 0.98 for the agglomeration and 0.97 for the density. This shows
that during the period analyzed, the twenty stock exchanges maintained relationships with each other, for a time scale
of 4 days. Regarding the analysis for a time scale of 28 days and 135 days, the results are similar (see appendix 1, which
shows the results of the correlation coefficient for all pairs of indices, for both subperiods).

Fig. 2 reveals the communities extracted with the modularity property, using the modularity algorithm of Blondel et al.
[69]. For the period before the crisis (upper panel), the algorithm retrieved three communities: one formed by European
stock markets, another formed by American markets and the third formed by Asian countries and Australia. Regarding
the post-crisis period (lower panel), just two communities were formed: one by European and American stock markets
and another formed by Asian markets and Australia. This does not mean that the stock markets of a given community do
not influence one belonging to the other community. The algorithm only divides the stock markets that correlate most
with each other. For example, in the period after the crisis, there is a notable influence of European markets on American
markets and a community representing Asian countries, with the Chinese stock exchange being dominant, since this has
the highest weighted degree among the Asian markets.

Combining both subperiods, the reduction from three to two communities means that stock markets seem to increase
their levels of integration, since American and European indices now form just one community. This is not a new result:
for example, Ang and Chen [71] and Ang and Bekaert [72] found an increase in correlations between financial assets’
returns across international markets after a shock. The fact that Asian markets and the Australian one remain in a different
community means those markets are not fully integrated with the others.
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Fig. 1. Networks constructed for a time scale of 4 days and considering the significance test of Podobnik et al. [63]. Note that the larger the knot
and the darker the blue the larger the weighted degree. The upper panel is for the pre-crisis period and the lower panel for the period after the
crisis.

Considering a higher level of correlation (ρDCCA > 0.66), it is natural that the size of the network is smaller, since
a correlation with a more demanding level is being considered. It is noticeable that the longer the time scale, the more
integrated the market is, and there are more connections between the corresponding stock markets. In the scales of n =

4, n = 14, n = 28 and n = 60 (Figs. 3–6), the clear predominance of the European markets is noted. Thus, considering
a higher level of integration (measured by a higher level of correlation), European markets are not only among the most
integrated, but also those that can be considered as influencing other markets. Fig. 7, representing a time scale of n = 135,
shows the participation of several stock markets in different continents, emphasizing the European markets. The strong
connectivity of European countries was detected before and after the subprime crisis. The crisis had two effects on the
network: an increase in the connectivity in the network with the presence of a larger number of countries for all scales
and an increased presence of South Korea and Taiwan. Additionally, the network remained practically the same before
the crisis for smaller scales, having a change in scales 60 and 135 (see Figs. 3–5 ).

Tables 3 and 4 identify country rankings, for both subperiods, according to the centrality of Page Rank and the Weighted
Degree, considering the different time scales under analysis. In the period before the crisis, the results show that the
Eurozone as a whole has in important role in the network. France and the UK are other European countries prominent
in almost all time scales, in both the indicators used in the analysis. The US stock market appears in the lead of the
network for shorter time scales, when considering the Page Rank. A brief note for the presence of Mexico in the table in
the pre-crisis period, for higher time scales. And according to the centrality of the weighted degree and Page Rank, shows
the predominance of European markets, mainly the French, British, German, Belgian and Austrian ones and the Eurozone
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Fig. 2. Communities extracted with the modularity property. The upper panel is for the period before the crisis and the lower panel for the period
after the crisis.

as a whole. Few variations among the first five positions are noted. This really shows the predominance of the European
stock markets when compared with the remaining countries under analysis. The fact that in recent years the European
Union in general and the Eurozone in particular suffered a severe financial crisis could be one of the explanations of these
results.

5. Concluding remarks

The subprime crisis was the biggest crisis since 1929, and has caused the fall of several stock exchanges worldwide,
increased unemployment and reduced Gross Domestic Product (GDP) all over the world. In the ten years since its outbreak,
other financial phenomena such as the Eurodebt crisis and the United Kingdom’s decision to leave the European Union
(Brexit referendum) have taken place and this has affected the dynamics of the world financial markets. Therefore, this
work analyzed twenty world stock exchanges using a multiscale network with the intention to verify how these stock
markets are related after those ten years, compared to the situation in the pre-crisis period.

During the pre-crisis period, European and North American indices show predominance in the network, despite the
main role of the European markets. In the post-crisis period, European stock exchanges are predominant. The importance
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Fig. 3. Relationships with ρDCCA > 0.66 for a time scale of n = 4. In this network, the darker blue represents the higher weighted degree of the
respective stock market. On the left the pre-crisis period and on the right the post-crisis one.

Fig. 4. Relationships with ρDCCA > 0.66 for a time scale of n = 14. In this network, the darker blue represents the higher weighted degree of the
respective stock market. On the left the pre-crisis period and on the right the post-crisis one.

of the Eurozone in the network is noticeable, namely in the lower scales. This means that, in the short run, the Eurozone
is an important market regarding the connection with others. The difference between the subperiods, namely the fact that
in the post-crisis period North American markets lost importance, could be justified by the crisis itself, because it caused
some decrease in stock market integration with European markets. However, and considering the number of communities
retrieved, it is possible to conclude on increased integration of European and American markets, after the crisis.

If the network is considered for a value of ρDCCA ≥ 0.66, again European stock markets predominate for all the time
scales analyzed. As for the variation of time in the scales, the larger the time scale analyzed the greater the financial
integration of the stock markets studied and for a time scale of 135 days, the markets of several countries in several
continents maintain a strong financial integration.

The number of communities extracted from the network changed from three (European, American and Asian plus
Australia) to two communities, with the joining of European and American markets as a single community. Therefore,
the analysis of financial networks that vary with time scale can contribute to financial risk containment policies both for
financial funds, where the time scale is important and also for hedge funds, helping to control financial stability.
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Fig. 5. Relationships with ρDCCA > 0.66 for a time scale of n = 28. In this network, the darker blue represents the higher weighted degree of the
respective stock market. On the left the pre-crisis period and on the right the post-crisis one.

Fig. 6. Relationships with ρDCCA > 0.66 for a time scale of n = 60. In this network, the darker blue represents the higher weighted degree of the
respective stock market. On the left the pre-crisis period and on the right the post-crisis one.

The results could also be an alert as they could be used for financial risk prevention, in the sense that any crisis in
the European Union, mainly in countries like France, Germany, Belgium or Austria, could have a negative influence on
several financial markets. The UK also has a relative predominance, which is very important in the current context of
Brexit. Therefore, for hedge funds it is vitally important to monitor the economic situation of this region.
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Fig. 7. Relationships with ρDCCA > 0.66 for a time scale of n = 135. In this network, the darker blue represents the higher weighted degree of the
respective stock market. On the left the pre-crisis period and on the right the post-crisis one.

Table 3
Country ranking according to the centrality of Page Rank and Weighted Degree, considering different time scales
(post-crisis period).
Weighted Degree ranking Scale 4 Scale14 Scale 28 Scale 60 Scale 135

1 France France France UK France
2 Eurozone Eurozone Eurozone France Eurozone
3 UK UK UK Belgium Mexico
4 Belgium Germany Germany Eurozone Canada
5 Germany Belgium Belgium Germany Germany

Page Rank ranking Scale 4 Scale14 Scale 28 Scale 60 Scale 135

1 Eurozone Eurozone Eurozone Eurozone Eurozone
2 UK UK UK UK Mexico
3 USA USA USA Mexico UK
4 France France France Belgium France
5 Belgium Belgium Belgium France Canada

Table 4
Country ranking according to the centrality of Page Rank and Weighted Degree, considering different time scales
(pre-crisis period).
Weighted Degree ranking Scale 4 Scale14 Scale 28 Scale 60 Scale 135

1 France France UK UK France
2 Germany UK Eurozone France Eurozone
3 Belgium Germany Germany Germany Germany
4 Austria Belgium Belgium Belgium UK
5 Eurozone Austria Austria Austria Belgium

Page Rank ranking Scale 4 Scale14 Scale 28 Scale 60 scale 135

1 France UK UK UK France
2 Germany France Eurozone France Austria
3 Belgium Germany Germany Germany Germany
4 Austria Belgium Belgium Belgium UK
5 Eurozone Austria Austria Austria Canada
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