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Abstract―Models of multiple linear regression and multilayer artifi cial neural network have been developed for 
modeling and predicting the stability constants of sodium and potassium coronates basing on the properties of 
aqueous-organic solvents (water–methanol, water–propan-2-ol, water–acetonitrile, and water–acetone). The values 
of the coronates stability constants in water–ethanol solvents have been predicted, and the predictions of the models 
of multiple linear regression and an artifi cial neural network models have been compared. The contributions of 
electrostatic, cohesive, and electron-donating interactions to the increase in the stability of the coronates have been 
quantitatively assessed basing on the models of multiple linear regression and the principle of free energies linearity. 
Neural network models based on unsupervised (multilayer perceptrons) and supervised (Kohonen networks) learning 
algorithms have been developed to classify the stability of sodium and potassium coronates. The neural network 
classifi ers have fully confi rmed the classifi cation of the coronated stability via the k-means exploration method.
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Majority of conventional prediction methods are based 
on the assumption of linear dependence of the predicted 
(dependent) variable and the set of independent descrip-
tors. The multiple linear regression models are built using 
the correlation and regression analysis methods.

Nonlinear relationships between the variables are 
conventionally modeled via fi tting of nonlinear curves 
(quadratic, cubic, power, exponential, logarithmic, hyper-
bolic, or logistic ones) or their linearization. However, the 
artifi cial neural networks approach has been recognized 
as promising method to model nonlinear dependences in 
the prediction tasks over recent decades [1]. Major ad-
vantages of the artifi cial neural networks algorithms are 
their capability to learning, generalization, and prediction 
of the data, fault tolerance, parallel data processing, and 
fast computation procedures. This has been supported by 
the neural networks application in theoretical and com-
putational chemistry, analytical chemistry, biochemistry, 
medicine, drugs chemistry, pharmaceutics, and food 
products studies.

It should be noted that artifi cial neural networks 
have been applied to the chemometrics tasks since early 
1990ies. Four applications of artifi cial neural networks 

in chemical engineering have been comprehensively 
described [2]: fault detection, quality prediction, signal 
processing, and modeling and control of the processes. 
Various architectures of artifi cial neural networks and 
their applications in chemistry have been demonstrated 
[3], outlining the advantages and disadvantages in com-
parison with conventional chemometrics methods. A 
novel approach to prediction of biological activity of pep-
tides and proteins, physics and chemistry-driven artifi cial 
neural network (Phys-Chem ANN), has been proposed 
[4]. The Phys-Chem ANN has been based on physical 
and chemical properties as well as structural features 
of proteins. The task on classifi cation and prediction of 
the strength of weak organic acids in aqueous-organic 
solvents has been solved [5].

The neural networks method has been used to model 
individual wave kinetic curves [6], to demonstrate the im-
portance of 1H, 13C, and 15N chemical shifts of proteins for 
confi rmation and refi nement of their three-dimensional 
structure [7], to elaborate the algorithm of spectral stud-
ies of traces of gases [8], to predict the lipophilicity of 
chemicals [9, 10], to realize the method of prediction of 
the peptides ions drift time in mass spectrometry [11], 
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to develop the model for prediction of calorifi c power 
of Slovenian coal [12], to simultaneously analyze two 
components of a powder drug (paracetamol and diphen-
hydramine hydrochloride) by means of IR spectroscopy 
[13], to quantitatively analyze potassium phenoxymethyl-
penicillin powder using the NIR spectroscopy data [14], 
to elucidate the eff ects of demographic, biochemical, 
and therapeutic parameters on the concentration of topi-
ramate serum level [15], to build the models predicting 
the trypanocide activity of quinonoid compounds [16], to 
investigate the antitumor (anticancer) activity of phenolic 
compounds [17], for drug development [18], to study the 
eff ect of cannabinoid compounds on mental activity [19], 
and to elucidate the infl uence of phenolic compounds 
on antioxidant activity of food products [20]. Novel 
technology of smart dynamic gas sensors [21] as well as 
algorithms of classifi cation of quality of potato [22], wine 
[23–25], honey [26, 27], cheese [28], tea [29], olive oil 
[30], and vegetable oil [31] have been developed basing 
on the neural networks approach.

Artifi cial neural networks have been successfully ap-
plied to the spectra interpretation [32, 33], optimization 
of medical diagnostics of pathologies [34], modeling of 
the properties of fi sh antibiotics [35], and predicting rate 
constant of the reactions of hydroxyl-containing com-
pounds [36], rate of dissolution of colemanite in water 
saturated with carbon dioxide [37], plasmons in silver 
nanorods [38], ionization potentials of the elements of 
groups I–III of the periodic table [39], survival of injured 

patients [40], activity of cannabinoid ligands [41], and 
organic reactions [42]. 

This study consisted in modeling, predicting, and clas-
sifi cation of stability of sodium and potassium coronates 
in aqueous-organic solvents by means of neural networks 
and multiple linear regression. The earlier determined 
stability constants of sodium and potassium coronates 
in aqueous-organic solvents (water–methanol, water–
propan-2-ol, water–acetonitrile, and water–acetone) have 
been presented in [43], along with the reference data on 
the properties of the aqueous-organic solvents: dielectric 
constants, Dimroth–Reichardt parameter ET, Kamlet–Taft 
parameter BKT, and cohesion energy density δ2.

The neural network and multiple regression models 
were built and the results were analyzed using the STA-
TISTICA 12 software package (Windows 10).

Multiple linear regression. The descriptive statistics 
on the initial data [n × m] data matrix, n = 33 being the 
number of observations and m = 6 being the total number 
of dependent (log K18C6Na+ and log K18C6K+) and indepen-
dent (four properties of the mixed solvents) variables] are 
collected in Table 1. Normality of the variables distribu-
tion was verifi ed by calculating the Kolmogorov–Smirnov 
criterion (Table 2). The calculated values for all the 
variables were below the critical one (Dcr = 0.2308 for 
n = 33 and α = 0.05). Hence, the empirical distributions 
of the variables did not diff er from the normal one, and 
the multiple regression analysis of the studied processes 

Table 1. Descriptive statistics on the initial data (n = 33)

Parameter Mean Minimum Maximum Dispersion Standard 
deviation

Standard error 
of the mean

log K18C6Na+ 2.17 0.52 4.25 1.15 1.07 0.19

log K18C6K+ 3.50 2.04 5.85 1.02 1.01 0.18

1/ε 2.00 1.00 4.12 0.82 0.91 0.16

ET 0.75 0.46 1.00 0.02 0.13 0.02

BKT 0.51 0.19 0.89 0.04 0.19 0.03

δ2 0.67 0.24 1.00 0.05 0.23 0.04

Table 2. Calculated values of the Kolmogorov–Smirnov criterion

Parameter Criterion Parameter Criterion
log K18C6Na+ 0.0987 ET 0.1230
log K18C6K+ 0.1383 BKT 0.1250

1/ε 0.1773 δ2 0.0782
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of complex formation between sodium (potassium) ions 
and 18-crown-6 ether should be valid.

Table 3 shows the results of correlation analysis of 
the variables. The stability constants of the coronates 
(log K18C6Na+ and log K18C6K+) were strongly negatively 
correlated with the cohesion energy density, the cor-
relation with the log K18C6Na+ dependent variable with 
the 1/ε and ET was average, and the weakest correlation 
was revealed for the 1/ε and BKT descriptors with the 
log K18C6K+ variable.

Variables selection for the regression model was per-
formed using two methods implemented in STATISTICA 
12 package: direct selection of the regressors and their 
reverse exclusion. Table 4 lists the results of the multiple 
regression analysis. As revealed by the determination co-
effi  cient values (R2 = 0.961 for the log K18C6Na+ model and 

R2 = 0.835 for the log K18C6K+ model), the linear multiple 
regression explained 96.1 and 83.5% of the data varia-
tion relative to the mean level for the log K18C6Na+ and 
log K18C6K+ parameters, respectively. That fact evidenced 
strong dependence of the stability constants of sodium 
and potassium coronates on the selected independent 
parameters (regressors) of the aqueous-organic solvents.

The values of the Fisher criterion Fcalc(2, 30) = 
374.23 (at ν1 = 2, ν2 = 30 degrees of freedom) and 
Fcalc(3, 29) = 48.75 (at ν1 = 3, ν2 = 29 degrees of freedom) 
confi rmed the adequacy of the regression models. The 
corresponding critical values at the signifi cance level 
p = 0.05 were Fcr(2, 30) = 3.32 and Fcr(3, 29) = 2.93; 
Fcalc > Fcr.

The calculated values of the Student criterion of 
the multiple regression coefficients were: |t|calc(30) 

Table 3. Correlation analysis results

Parameter Mean Standard
deviation 1/ε ET BKT δ2 log K18C6Na+  log K18C6K+

1/ε 2.00 0.91 –1.000 –0.827 –0.899 –0.641 –0.352 –0.511

ET 0.75 0.13 –0.827 –1.000 –0.763 –0.732 –0.494 –0.648

BKT 0.51 0.19 –0.899 –0.763 –1.000 –0.507 –0.340 –0.406

δ2 0.67 0.23 –0.641 –0.732 –0.507 1.000 –0.849 –0.970

log K18C6Na+ 3.50 1.01 –0.352 –0.494 –0.340 –0.849 –1.000 –0.928

log K18C6K+ 2.17 1.07 –0.511 –0.648 –0.406 –0.970 –0.928 –1.000

Table 4. Multiple regression results

Parameter Bi Standard error of Bi |t|calc(30) p-Level

Model: log K18C6Na+ = B1 + B2δ2  + B31/ε
R = 0.981, R2 = 0.961,  Fcalc(2, 30) = 374.23, p = 0.00

B1 –6.08 0.24 25.53 0.00

δ2 –5.18 0.22 23.35 0.00

1/ε –0.22 0.06 4.03 0.00

Parameter Bi Standard error of Bi |t|calc(29) p-Level

Model: log K18C6K+ = B1 + B2δ2  + B31/ε  + B4BKT

R = 0.914, R2 = 0.835,  Fcalc(3, 29) = 48.75, p = 0.00

B1 –7.31 0.47 15.45 0.00

δ2 –5.01 0.45 11.14 0.00

1/ε –0.93 0.22 4.23 0.00

BKT –2.76 0.93 2.97 0.01
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between 4.03 and 25.53 (ν = 30 degrees of freedom) 
and |t|calc(29) between 2.97 and 15.45 (ν = 29 degrees 
of freedom). Hence, the coeffi  cients Bi of the analyzed 
regression models for log K18C6Na+ and log K18C6K+ 

were signifi cant at the level of 95%, the correspond-
ing critical values at p = 0.05 being tcr(30) = 2.04 and 
tcr(29) = 2.05; tcalc > tcr.

The following regression models were obtained from 
the data in Table 4:

log K18C6Na+ = 6.08±0.49 – (5.18 ± 0.45)δ2 

– (0.22 ± 0.12)1/ε,                              (1)
log K18C6K+ = 7.31±0.96 – (5.01± 0.92)δ2 

– (0.93 ± 0.45)1/ε + (2.76 ± 1.91)BKT.                    (2)

To verify the validity of the obtained regression 
models, we analyzed the residuals using the Kol-
mogorov–Smirnov criterion. The calculated values 

of the criterion (Dcalc = 0.156 for the log K18C6Na+ 

model and Dcalc = 0.154 for the log K18C6K+ model) were 
lower than the critical one (Dcr = 0.231 at n = 33 and 
р = 0.05). Hence, it could be suggested that the regres-
sion models residuals were normally distributed, and 
the models adequately described the dependence of the 
stability constants on the solvent properties.

Comparison of the results of our earlier solvation-
thermodynamic analysis [43] (Fig. 1) and the multiple 
regression analysis (Fig. 2) revealed the nature of the 
interactions in the considered aqueous-organic solvent–
salt (NaCl or KСl)–crown ether systems, the energy of 
which determined the increase in the stability constant 
of the coronates with the increase in the fraction of the 
organic component in the mixed solvent.

According to the solvation-thermodynamic model, the 
increase in the stability of sodium and potassium coro-
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Fig. 2. Gibbs energy of the transfer of the complex formation reaction (1, ΔΔrG°LM) and its terms [2, ΔΔG°LM(1/ε), 3,  ΔΔG°LM(δ2), 
4, ΔΔG°LM(BKT)] as function of the composition of water–methanol mixture. (a) 18-crown-6Na+ and (b) 18-crown-6K+. 
ΔΔrG°LM = ΔΔG°LM(1/ε) + ΔΔG°LM(δ2) + ΔΔG°LM(BKT), where М = Na+ or K+.

Fig. 1. Gibbs energy of the transfer of the complex formation reaction (1, ΔΔrG°LM), its starting compounds (3, ΔtrG°L, 4, ΔtrG°M), and the products (2, 
ΔtrG°LM) from water to the water–methanol mixtures and methanol. (a) 18-crown-6Na+ and (b) 18-crown-6K+. ΔΔrG°LM = ΔtrG°LM – ΔtrG°L – ΔtrG°M 
[43], where М = Na+ or K+.
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nates (ΔΔrG°LM < 0) upon the introduction of methanol 
into the solvent was due to the reduced stability of the 
solvates of the cations (ΔtrG°M > 0) and the crown ether 
(ΔtrG°L > 0) as well as the enhanced stabilization of the 
solvated coronates (ΔtrG°LM < 0) (Fig. 1).

Analysis of the multiple regression models (Fig. 2) 
revealed that the increase in the stability of sodium 
coronate in the aqueous-methanolic solvents was due 
to the infl uence of the cohesion forces [ΔΔG°LM(δ2) < 
0], whereas a similar eff ect for potassium coronate was 
due to cohesion [ΔΔG°LM(δ2) < 0] and electron-donating 
interactions [ΔΔG°LM(BKT) < 0]. The electrostatic ef-
fects reduces the stability of sodium and potassium 
coronates with the increase in the methanol fraction 
[ΔΔG°LM(1/ε) > 0].

The revealed eff ects could be rationalized as fol-
lows. The decrease in the cohesion energy density in 
aqueous-methanolic solvents in comparison with water 
facilitated the formation of voids in the solvent, which 
stronger stabilized the solvates of sodium and potassium 
coronates. The decrease in the dielectric constant of the 
solvent enhanced the interionic electrostatic interaction 
(Na+–Cl– and K+–Cl–), thus hindering the complex forma-
tion of the M–L pair due to the competition for the cation. 
The introduction of methanol into the solvent increased 
the electron-donating properties of the medium, which 
was refl ected in the additional stabilization of potassium 
coronate in the aqueous-methanolic solvents.

Approximators of neural network and multiple 
linear regression. Thousand of neural networks (radial 
basis or multilayer perceptron) were constructed in Statis-
tica Neural Networks [44, 45], and the optimal structure 
was selected as judged by the statistical merits; that was 
the MP 4-7-2 perceptron. The network consisted of three 
layers: the input one with four neurons, the output one 
with two neurons, and the hidden one with seven neurons 
(Table 5).

The three-layer perceptron was trained [46] using the 
single-step quasi-Newton BFGS (Broyden–Fletcher–
Goldfarb–Shanno) algorithm [47]. The learning was 
complete in 85 epochs with the training error 0.0038, 
validation error 0.0099, and test error 0.0077. Those 
errors were determined, respectively, for the training 
(70%), validation (15%), and test (15%) subsets of the 
input dataset of the coronates stability constants and the 
properties of the mixed solvents. The data in the training 
subset were used for the network learning. The validation 
subset was used to verify the training quality (to avoid 
overtraining and determine the fi nish point of the train-
ing). The test subset data were not used in the training 
to allow for independent determination of the network 
prediction quality. The training was stopped when the 
minimum validation error was achieved [44–46]. The 
error of the neural network training is the mean-square de-
viation of the network predictions from the corresponding 
empirical stability constants of the coronates. Neurons of 
the hidden and output layers were activated, respectively, 
with logistic and linear (identical) functions. 

One of the ways to estimate the quality of approxima-
tions was to compare the observed values log Kexp and 
the ones log Kcalc predicted by means of multiple linear 
regression and using the MP 4-7-2 perceptron. Analysis 
of those data for the water–acetonitrile solvents (Table 6) 
revealed that both methods gave highly accurate preci-
sion, yet the neural network was more effi  cient since it 
showed lower prediction error.

The conclusion was further confi rmed by the pre-
dictions of the coronates stability constants in the wa-
ter–acetone solvents (Table 7). It is important to notice 
that those data were not used in the construction of the 
multiple linear regression models and in the training of 
the neural network, and therefore they could be used in 
the independent testing of the multiple linear regression 
and approximators of multilayer perceptrons.

Table 5. Statistical parameters of the MP 4-7-2 perceptrona

Subset
MP 4-7-2 Correlation coeffi  cient

productivity learning error log K18C6Na+  log K18C6K+

Training 0.9978 0.0038 0.9971 0.9985

Validation 0.9997 0.0099 0.9995 0.9999

Test 0.9993 0.0077 0.9992 0.9995
a Training, validation, and test productivity: ratio of the standard deviation of prediction to that of the input data for the corresponding subset. 
  Training, validation, and test error: error of the network for the corresponding subset.
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Table 8 lists the constants of 18-crown-6 ether 
complex formation with Na+ and K+ obtained using the 
derived multiple linear regression and neural networks 
approximators basing on the descriptors of water–ethanol 
mixed solvents (dielectric constant, cohesion energy 
density, Dimroth–Reichardt parameter, and Kamlet–Taft 
parameter). It should be noted that the corresponding 
data are missing in the reference literature to the best of 
out knowledge.

Neural network classifi ers. We have earlier per-
formed clusterization of the stability of sodium and potas-
sium coronates via the k-means method [48]. The cluster 
analysis allowed interpretation of three clusters (classes).

Cluster 1 contained coronates which were moderately 
stable in the mixed solvents of intermediate composition 
(log KNaL = 1.5–2.5, 10 stability constants; log KKL = 
3.1–3.9, 7 stability constants).

Table 6. Results of the approximation of stability constants of sodium and potassium coronates in the water–acetonitrile mixed
solvents

CH3CN mole fraction
log K(18-crown-6Na+) log K(18-crown-6K+)

log Kexp
multiple linear 

regression
multilayer
perceptron log Kexp

multiple linear 
regression

multilayer
perceptron

0.0 0.52 0.68 0.63 2.04 1.89 2.14

0.1 1.18 1.03 1.06 2.42 2.57 2.41

0.2 1.46 1.39 1.33 2.74 2.95 2.67

0.3 1.55 1.74 1.61 3.02 3.24 2.96

0.4 1.64 2.09 1.86 3.28 3.46 3.23

0.5 2.17 2.45 2.19 3.53 3.71 3.51

0.6 2.69 2.81 2.66 3.80 4.04 3.83

0.7 3.20 3.17 3.17 4.08 4.36 4.15

0.8 3.65 3.53 3.64 4.41 4.60 4.36

0.9 4.01 3.90 4.00 4.78 4.81 4.80

1.0 4.25 4.26 4.26 5.20 5.01 5.18

Mean error of approximation, % 10.2 5.5  5.6 1.4

Table 7. Prediction of stability constants of sodium and potassium coronates in the water–acetone mixed solvents

Acetone 
mole fraction

log K(18-crown-6Na+) log K(18-crown-6K+)

log Kexp
multiple linear

regression
multilayer
perceptron log Kexp

multiple linear
regression

multilayer
perceptron

0.00 0.52 0.68 0.64 2.04 1.90 2.14

0.10 1.29 1.05 1.01 2.53 2.66 2.44

0.20 1.77 1.41 1.28 2.99 3.08 2.81

0.30 2.04 1.77 1.51 3.41 3.27 3.18

0.40 2.24 2.13 1.76 3.80 3.38 3.44

0.50 2.50 2.48 2.17 4.13 3.52 3.54

0.55 2.68 2.65 2.49 4.29 3.65 3.54

Mean error of prediction, % 12.8 20.0  8.6 7.4
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Table 8. Predicted values of stability constants of sodium and potassium coronates in aqueous-ethanolic solvents

EtOH mole fraction
log K(18-crown-6Na+) log K(18-crown-6K+)

multiple linear
regression

multilayer
perceptron

multiple linear
regression

multilayer
perceptron

0.0 0.52 0.52 2.04 2.04

0.1 1.00 0.86 2.40 2.32

0.2 1.32 1.38 3.11 2.80

0.3 1.63 1.66 3.41 3.24

0.4 1.94 1.92 3.61 3.74

0.5 2.25 2.22 3.82 4.27

0.6 2.56 2.61 4.03 4.70

0.7 2.88 3.06 4.23 4.82

0.8 3.19 3.56 4.47 4.73

0.9 3.51 4.01 4.77 4.76

1.0 3.83 4.27 4.95 4.72

Table 9. Basic parameters of the MP 4-4-3 and MP 4-3-3 classifi ersa

Training algorithm Error function
Neurons activation functions Number of classes members

hidden layer output layer class 1 class 2 class 3

MP 4-4-3 18-crown-6Na+

BFGS 42 SOS Logistic Tanh 10 12 11

MP 4-4-3 18-crown-6K+

BFGS 11 Entropy Logistic Softmax 7 10 16
a  (SOS) mean-square error E = 1/P[ΣPk=1(log Kcalc,k – log Kexp,k)2], (P) number of examples in subset; (Entropy) cross-entropy [51]
  H(p, q) = –Σxp(x)logq(x), (р and q) non-related random variables; (Logistic) logistic function σ(x) = 1/[1 +  exp(  – t x ) ] ,  [0 ,1 ] ;  (Tanh) 
  hyperbolic tangent th(Ax) = (eAx – e–Ax)/(eAx + e–Ax), [–1,1]; (Softmaх) generalization of logistic function for multivariate case
  σ(zj) = ezj/ΣKk=1ezj, [0,1].

Cluster 2 contained the complexes stable in the mixed 
solvents rich in the organic component and in pure non-
aqueous solvents (log KNaL = 2.6–4.3, 12 stability con-
stants; log KKL = 4.0–5.2, 10 stability constants). 

Cluster 3 contained the coronates weakly stable in 
water and the mixed solvents with high water content (log 
KNaL = 0.5–1.4, 11 stability constants; log KKL = 2.0–3.0, 
16 stability constants).

That classification was confirmed in [48] by the 
discriminant Fisher analysis with 96.97% confi dence 
(for both coronates) and by construction of the decision 
making trees with 90.9% (18-crown-6Na+) and 97.0% 
(18-crown-6K+) confi dence.

In this study, the k-means cluster analysis results 
were confi rmed with 100% confi dence using the artifi cial 
neural network classifi cation algorithms: multilayer per-
ceptron and self-organizing map (SOM) also known as 
Kohonen network [49, 50]. In contrast to the multilayer 
perceptron (supervised learning), the Kohonen network is 
the competing neural network for unsupervised learning.

Tables 9 and 10 give the basic parameters of the MP 
4-4-3 and SOM 7-3 classifi ers for sodium coronate and 
of MP 4-3-3 and SOM 5-3 ones for potassium coronate.

Overall, the study of stability of sodium and potas-
sium coronates in aqueous-organic solvents by means of 
multiple linear regression and neural network methods 
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revealed that diff erent data analysis approaches should be 
used to confi rm the validity of the solutions of multivari-
ate analysis tasks (nonlinear regression) and classifi cation 
of the coronates stability. Conventional statistical method 
(multiple linear regression) and the neural networks ap-
proach (with supervised training) were equally applicable 
for approximation of the complexes stability using the 
descriptors of aqueous-organic solvents. The multiple 
linear regression method gave somewhat less accurate 
predictions in comparison with the multilayer perceptron, 
yet the results of the former approach allowed quantitative 
estimation of the energy contributions of electrostatic, 
cohesion, and donor-acceptor interactions to the increase 
in stability of sodium and potassium coronates using the 
free energies linearity principle [52]. 

Artifi cial neural networks could be successfully ap-
plied to modeling, prediction, and classifi cation of the 
coronates stability in the mixed solvents, similarly to the 
multiple linear regression method. Stability constants of 
sodium and potassium coronates in water– mixtures were 
predicted using the elaborated artifi cial neural network 
and multiple linear regression models. The algorithms 
of supervised multilayer perceptron and the Kohonen 
network learning fully confi rmed the classifi cation of the 
coronates stability by the k-means method.
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