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Abstract—Models of multiple linear regression and multilayer artificial neural network have been developed for
modeling and predicting the stability constants of sodium and potassium coronates basing on the properties of
aqueous-organic solvents (water—methanol, water—propan-2-ol, water—acetonitrile, and water—acetone). The values
of the coronates stability constants in water—ethanol solvents have been predicted, and the predictions of the models
of multiple linear regression and an artificial neural network models have been compared. The contributions of
electrostatic, cohesive, and electron-donating interactions to the increase in the stability of the coronates have been
quantitatively assessed basing on the models of multiple linear regression and the principle of free energies linearity.
Neural network models based on unsupervised (multilayer perceptrons) and supervised (Kohonen networks) learning
algorithms have been developed to classify the stability of sodium and potassium coronates. The neural network
classifiers have fully confirmed the classification of the coronated stability via the k-means exploration method.
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Majority of conventional prediction methods are based
on the assumption of linear dependence of the predicted
(dependent) variable and the set of independent descrip-
tors. The multiple linear regression models are built using
the correlation and regression analysis methods.

Nonlinear relationships between the variables are
conventionally modeled via fitting of nonlinear curves
(quadratic, cubic, power, exponential, logarithmic, hyper-
bolic, or logistic ones) or their linearization. However, the
artificial neural networks approach has been recognized
as promising method to model nonlinear dependences in
the prediction tasks over recent decades [1]. Major ad-
vantages of the artificial neural networks algorithms are
their capability to learning, generalization, and prediction
of the data, fault tolerance, parallel data processing, and
fast computation procedures. This has been supported by
the neural networks application in theoretical and com-
putational chemistry, analytical chemistry, biochemistry,
medicine, drugs chemistry, pharmaceutics, and food
products studies.

It should be noted that artificial neural networks
have been applied to the chemometrics tasks since early
1990ies. Four applications of artificial neural networks

in chemical engineering have been comprehensively
described [2]: fault detection, quality prediction, signal
processing, and modeling and control of the processes.
Various architectures of artificial neural networks and
their applications in chemistry have been demonstrated
[3], outlining the advantages and disadvantages in com-
parison with conventional chemometrics methods. A
novel approach to prediction of biological activity of pep-
tides and proteins, physics and chemistry-driven artificial
neural network (Phys-Chem ANN), has been proposed
[4]. The Phys-Chem ANN has been based on physical
and chemical properties as well as structural features
of proteins. The task on classification and prediction of
the strength of weak organic acids in aqueous-organic
solvents has been solved [5].

The neural networks method has been used to model
individual wave kinetic curves [6], to demonstrate the im-
portance of 1H, 13C, and !>N chemical shifts of proteins for
confirmation and refinement of their three-dimensional
structure [7], to elaborate the algorithm of spectral stud-
ies of traces of gases [8], to predict the lipophilicity of
chemicals [9, 10], to realize the method of prediction of
the peptides ions drift time in mass spectrometry [11],
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Table 1. Descriptive statistics on the initial data (n = 33)

1439

Parameter Mean Minimum Maximum Dispersion g;i?i?(r)i Szr{izr?n;r;r
log K scenat 2.17 0.52 4.25 1.15 1.07 0.19
log K gcex* 3.50 2.04 5.85 1.02 1.01 0.18
/e 2.00 1.00 4.12 0.82 0.91 0.16
E; 0.75 0.46 1.00 0.02 0.13 0.02
Byr 0.51 0.19 0.89 0.04 0.19 0.03
82 0.67 0.24 1.00 0.05 0.23 0.04

Table 2. Calculated values of the Kolmogorov—Smirnov criterion
Parameter Criterion Parameter Criterion
log Kgcenat 0.0987 Er 0.1230
log Kgcert 0.1383 Byt 0.1250
/e 0.1773 52 0.0782

to develop the model for prediction of calorific power
of Slovenian coal [12], to simultancously analyze two
components of a powder drug (paracetamol and diphen-
hydramine hydrochloride) by means of IR spectroscopy
[13], to quantitatively analyze potassium phenoxymethyl-
penicillin powder using the NIR spectroscopy data [14],
to elucidate the effects of demographic, biochemical,
and therapeutic parameters on the concentration of topi-
ramate serum level [15], to build the models predicting
the trypanocide activity of quinonoid compounds [16], to
investigate the antitumor (anticancer) activity of phenolic
compounds [17], for drug development [18], to study the
effect of cannabinoid compounds on mental activity [19],
and to elucidate the influence of phenolic compounds
on antioxidant activity of food products [20]. Novel
technology of smart dynamic gas sensors [21] as well as
algorithms of classification of quality of potato [22], wine
[23-25], honey [26, 27], cheese [28], tea [29], olive oil
[30], and vegetable oil [31] have been developed basing
on the neural networks approach.

Artificial neural networks have been successfully ap-
plied to the spectra interpretation [32, 33], optimization
of medical diagnostics of pathologies [34], modeling of
the properties of fish antibiotics [35], and predicting rate
constant of the reactions of hydroxyl-containing com-
pounds [36], rate of dissolution of colemanite in water
saturated with carbon dioxide [37], plasmons in silver
nanorods [38], ionization potentials of the elements of
groups I-III of the periodic table [39], survival of injured

patients [40], activity of cannabinoid ligands [41], and
organic reactions [42].

This study consisted in modeling, predicting, and clas-
sification of stability of sodium and potassium coronates
in aqueous-organic solvents by means of neural networks
and multiple linear regression. The earlier determined
stability constants of sodium and potassium coronates
in aqueous-organic solvents (water—methanol, water—
propan-2-ol, water—acetonitrile, and water—acetone) have
been presented in [43], along with the reference data on
the properties of the aqueous-organic solvents: dielectric
constants, Dimroth—Reichardt parameter E, Kamlet—Taft
parameter By, and cohesion energy density 62.

The neural network and multiple regression models
were built and the results were analyzed using the STA-
TISTICA 12 software package (Windows 10).

Multiple linear regression. The descriptive statistics
on the initial data [# x m] data matrix, n = 33 being the
number of observations and m = 6 being the total number
of dependent (log K gcena* and log K gcex+) and indepen-
dent (four properties of the mixed solvents) variables] are
collected in Table 1. Normality of the variables distribu-
tion was verified by calculating the Kolmogorov—Smirnov
criterion (Table 2). The calculated values for all the
variables were below the critical one (D, = 0.2308 for
n =133 and a = 0.05). Hence, the empirical distributions
of the variables did not differ from the normal one, and
the multiple regression analysis of the studied processes
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Table 3. Correlation analysis results
Parameter Mean g;i?i?;i /e E; Byt 82 log Ksconat | 108 Kigoex™
/e 2.00 0.91 1.000 —0.827 0.899 —0.641 0.352 0.511
E; 0.75 0.13 —0.827 1.000 —0.763 0.732 —0.494 —0.648
Byt 0.51 0.19 0.899 —0.763 1.000 —0.507 0.340 0.406
e 0.67 0.23 —0.641 0.732 —-0.507 1.000 —0.849 -0.970
log Kgcena™ 3.50 1.01 0.352 —0.494 0.340 —0.849 1.000 0.928
log K scex+ 2.17 1.07 0.511 —0.648 0.406 -0.970 0.928 1.000
Table 4. Multiple regression results
Parameter B, Standard error of B; |#]catc(30) p-Level
Model: log K gcenat = B + B20% + B;l/e
R=10.981, R2Z=0.961, F.(2,30)=374.23, p=0.00
B, 6.08 0.24 25.53 0.00
82 —5.18 0.22 23.35 0.00
1/e —0.22 0.06 4.03 0.00
Parameter B; Standard error of B; |t carc(29) p-Level
Model: log K gcex* = By + B,02 + Bsl/e + BBy
R=0914, R2=0.835, F_;.(3,29)=48.75,p=0.00
B, 7.31 0.47 15.45 0.00
&2 -5.01 0.45 11.14 0.00
/e -0.93 0.22 4.23 0.00
Byt 2.76 0.93 2.97 0.01

of complex formation between sodium (potassium) ions
and 18-crown-6 ether should be valid.

Table 3 shows the results of correlation analysis of
the variables. The stability constants of the coronates
(log K gcenat and log K gcex+) Were strongly negatively
correlated with the cohesion energy density, the cor-
relation with the log K gcen,t dependent variable with
the 1/e and E; was average, and the weakest correlation
was revealed for the 1/e and By descriptors with the
log K gcex+ variable.

Variables selection for the regression model was per-
formed using two methods implemented in STATISTICA
12 package: direct selection of the regressors and their
reverse exclusion. Table 4 lists the results of the multiple
regression analysis. As revealed by the determination co-
efficient values (R2=0.961 for the log K gc¢n,+ model and

R2=10.835 for the log K gk + model), the linear multiple
regression explained 96.1 and 83.5% of the data varia-
tion relative to the mean level for the log K;gcengt+ and
log K 3csx+ parameters, respectively. That fact evidenced
strong dependence of the stability constants of sodium
and potassium coronates on the selected independent
parameters (regressors) of the aqueous-organic solvents.

The values of the Fisher criterion F (2, 30) =
374.23 (at v; = 2, v, = 30 degrees of freedom) and
F1.(3,29)=48.75 (at vi=3, v, =29 degrees of freedom)
confirmed the adequacy of the regression models. The
corresponding critical values at the significance level
p = 0.05 were F_(2, 30) = 3.32 and F_(3, 29) = 2.93;
Fcalc > Fcr'

The calculated values of the Student criterion of
the multiple regression coefficients were: |#].,.(30)
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Fig. 1. Gibbs energy of the transfer of the complex formation reaction (1, AAGS ), its starting compounds (3, A,G?, 4, A,G3y), and the products (2,
A, G?y) from water to the water-methanol mixtures and methanol. (a) 18-crown-6Nat and (b) 18-crown-6K*.AA G\ =A; G v —AGY — A G

[43], where M =Na* or K.

AAG®, kJ/mol
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Fig. 2. Gibbs energy of the transfer of the complex formation reaction (/, AA.GS ) and its terms [2, AAGS \(1/€), 3, AAGM(32),
4, AAG{m(Bkr)] as function of the composition of water—methanol mixture. (a) 18-crown-6Na* and (b) 18-crown-6K™.
AN G\ = AAGY\(1/8) + AAGE \(82) + AAGE \(Byr), where M =Na* or K*.

between 4.03 and 25.53 (v = 30 degrees of freedom)
and |#].,.(29) between 2.97 and 15.45 (v = 29 degrees
of freedom). Hence, the coefficients B; of the analyzed
regression models for log K gcenat and log Kigcex+
were significant at the level of 95%, the correspond-
ing critical values at p = 0.05 being #,(30) = 2.04 and
1./(29) =2.05; t 4. > 1o

The following regression models were obtained from
the data in Table 4:

log K gcengt = 6.08+0.49 — (5.18 + 0.45)32

— (0224 0.12)1/, (1)
log K gcert = 7.3140.96 — (5.01+ 0.92)32
—(0.93+0.45)1/g + (2.76 + 1.91)Byr. ©)

To verify the validity of the obtained regression
models, we analyzed the residuals using the Kol-
mogorov—Smirnov criterion. The calculated values

of the criterion (D, = 0.156 for the log K gcenat
model and D= 0.154 for the log Kgcsx+ model) were
lower than the critical one (D, = 0.231 at n = 33 and
p = 0.05). Hence, it could be suggested that the regres-
sion models residuals were normally distributed, and
the models adequately described the dependence of the
stability constants on the solvent properties.

Comparison of the results of our earlier solvation-
thermodynamic analysis [43] (Fig. 1) and the multiple
regression analysis (Fig. 2) revealed the nature of the
interactions in the considered aqueous-organic solvent—
salt (NaCl or KCl)—crown ether systems, the energy of
which determined the increase in the stability constant
of the coronates with the increase in the fraction of the
organic component in the mixed solvent.

According to the solvation-thermodynamic model, the
increase in the stability of sodium and potassium coro-
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Table 5. Statistical parameters of the MP 4-7-2 perceptron?

MP 4-7-2 Correlation coefficient
Subset
productivity learning error log K\s3cenat log K gcex+
Training 0.9978 0.0038 0.9971 0.9985
Validation 0.9997 0.0099 0.9995 0.9999
Test 0.9993 0.0077 0.9992 0.9995

a Training, validation, and test productivity: ratio of the standard deviation of prediction to that of the input data for the corresponding subset.

Trainine. validation. and test error: error of the network for the corresponding subset.

nates (AA.G$ < 0) upon the introduction of methanol
into the solvent was due to the reduced stability of the
solvates of the cations (A, G$;> 0) and the crown ether
(A,GS > 0) as well as the enhanced stabilization of the
solvated coronates (A, G$ < 0) (Fig. 1).

Analysis of the multiple regression models (Fig. 2)
revealed that the increase in the stability of sodium
coronate in the aqueous-methanolic solvents was due
to the influence of the cohesion forces [AAGS (8?) <
0], whereas a similar effect for potassium coronate was
due to cohesion [AAGT 1(62) < 0] and electron-donating
interactions [AAGT \(Bgt) < 0]. The electrostatic ef-
fects reduces the stability of sodium and potassium
coronates with the increase in the methanol fraction
[AAGT pm(17€) > 0].

The revealed effects could be rationalized as fol-
lows. The decrease in the cohesion energy density in
aqueous-methanolic solvents in comparison with water
facilitated the formation of voids in the solvent, which
stronger stabilized the solvates of sodium and potassium
coronates. The decrease in the dielectric constant of the
solvent enhanced the interionic electrostatic interaction
(Na*—Cl-and K*—Cl-), thus hindering the complex forma-
tion of the M—L pair due to the competition for the cation.
The introduction of methanol into the solvent increased
the electron-donating properties of the medium, which
was reflected in the additional stabilization of potassium
coronate in the aqueous-methanolic solvents.

Approximators of neural network and multiple
linear regression. Thousand of neural networks (radial
basis or multilayer perceptron) were constructed in Statis-
tica Neural Networks [44, 45], and the optimal structure
was selected as judged by the statistical merits; that was
the MP 4-7-2 perceptron. The network consisted of three
layers: the input one with four neurons, the output one
with two neurons, and the hidden one with seven neurons
(Table 5).

The three-layer perceptron was trained [46] using the
single-step quasi-Newton BFGS (Broyden—Fletcher—
Goldfarb—Shanno) algorithm [47]. The learning was
complete in 85 epochs with the training error 0.0038,
validation error 0.0099, and test error 0.0077. Those
errors were determined, respectively, for the training
(70%), validation (15%), and test (15%) subsets of the
input dataset of the coronates stability constants and the
properties of the mixed solvents. The data in the training
subset were used for the network learning. The validation
subset was used to verify the training quality (to avoid
overtraining and determine the finish point of the train-
ing). The test subset data were not used in the training
to allow for independent determination of the network
prediction quality. The training was stopped when the
minimum validation error was achieved [44-46]. The
error of the neural network training is the mean-square de-
viation of the network predictions from the corresponding
empirical stability constants of the coronates. Neurons of
the hidden and output layers were activated, respectively,
with logistic and linear (identical) functions.

One of the ways to estimate the quality of approxima-
tions was to compare the observed values log K, and
the ones log K, predicted by means of multiple linear
regression and using the MP 4-7-2 perceptron. Analysis
of those data for the water—acetonitrile solvents (Table 6)
revealed that both methods gave highly accurate preci-
sion, yet the neural network was more efficient since it

showed lower prediction error.

The conclusion was further confirmed by the pre-
dictions of the coronates stability constants in the wa-
ter—acetone solvents (Table 7). It is important to notice
that those data were not used in the construction of the
multiple linear regression models and in the training of
the neural network, and therefore they could be used in
the independent testing of the multiple linear regression
and approximators of multilayer perceptrons.
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Table 6. Results of the approximation of stability constants of sodium and potassium coronates in the water—acetonitrile mixed

solvents
log K(18-crown-6Na*) log K(18-crown-6K*)

CH;CN mole fraction log K multiple linear multilayer log K multiple linear multilayer
08 Rexp regression erceptron 08 Rexp regression erceptron

g percep g percep

0.0 0.52 0.68 0.63 2.04 1.89 2.14

0.1 1.18 1.03 1.06 2.42 2.57 2.41

0.2 1.46 1.39 1.33 2.74 2.95 2.67

0.3 1.55 1.74 1.61 3.02 3.24 2.96

0.4 1.64 2.09 1.86 3.28 3.46 3.23

0.5 2.17 2.45 2.19 3.53 3.71 3.51

0.6 2.69 2.81 2.66 3.80 4.04 3.83

0.7 3.20 3.17 3.17 4.08 4.36 4.15

0.8 3.65 3.53 3.64 4.41 4.60 4.36

0.9 4.01 3.90 4.00 4.78 4.81 4.80

1.0 4.25 4.26 4.26 5.20 5.01 5.18

Mean error of approximation, % 10.2 5.5 5.6 1.4

Table 7. Prediction of stability constants of sodium and potassium coronates in the water—acetone mixed solvents

log K(18-crown-6Na™) log K(18-crown-6K+)
Acetone
mole fraction multiple linear multilayer multiple linear multilayer
log Kex10 re . log Kex10 .
gression perceptron regression perceptron
0.00 0.52 0.68 0.64 2.04 1.90 2.14
0.10 1.29 1.05 1.01 2.53 2.66 2.44
0.20 1.77 1.41 1.28 2.99 3.08 2.81
0.30 2.04 1.77 1.51 3.41 3.27 3.18
0.40 2.24 2.13 1.76 3.80 3.38 3.44
0.50 2.50 2.48 2.17 4.13 3.52 3.54
0.55 2.68 2.65 2.49 4.29 3.65 3.54
Mean error of prediction, % 12.8 20.0 8.6 7.4

Table 8 lists the constants of 18-crown-6 ether

complex formation with Na* and K* obtained using the
derived multiple linear regression and neural networks
approximators basing on the descriptors of water—ethanol
mixed solvents (dielectric constant, cohesion energy
density, Dimroth—Reichardt parameter, and Kamlet—Taft
parameter). It should be noted that the corresponding
data are missing in the reference literature to the best of
out knowledge.

Neural network classifiers. We have earlier per-
formed clusterization of the stability of sodium and potas-
sium coronates via the k-means method [48]. The cluster
analysis allowed interpretation of three clusters (classes).

Cluster 1 contained coronates which were moderately
stable in the mixed solvents of intermediate composition
(log Ky, = 1.5-2.5, 10 stability constants; log Kg; =
3.1-3.9, 7 stability constants).

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 89 No. 7 2019
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Table 8. Predicted values of stability constants of sodium and potassium coronates in aqueous-ethanolic solvents

log K(18-crown-6Na*) log K(18-crown-6K+)

EtOH mole fraction multiple linear multilayer multiple linear multilayer

regression perceptron regression perceptron
0.0 0.52 0.52 2.04 2.04
0.1 1.00 0.86 2.40 232
0.2 1.32 1.38 3.11 2.80
0.3 1.63 1.66 3.41 3.24
0.4 1.94 1.92 3.61 3.74
0.5 2.25 2.22 3.82 4.27
0.6 2.56 2.61 4.03 4.70
0.7 2.88 3.06 4.23 4.82
0.8 3.19 3.56 4.47 4.73
0.9 3.51 4.01 4.77 4.76
1.0 3.83 4.27 4.95 4.72

Table 9. Basic parameters of the MP 4-4-3 and MP 4-3-3 classifiers?

Neurons activation functions Number of classes members
Training algorithm Error function
hidden layer output layer class 1 class 2 class 3
MP 4-4-3 18-crown-6Na*
BFGS 42 SOS Logistic Tanh 10 12 11
MP 4-4-3 18-crown-6K*
BFGS 11 Entropy Logistic Softmax 7 10 16

2 (SOS) mean-square error £ = 1/P[Ef_ (log Ky — log Koy, 1)?], (P) number of examples in subset; (Entropy) cross-entropy [51]

H(p, q) = —2,p(x)logg(x), (p and g) non-related random variables; (Logistic) logistic function o(x) = 1/[1 + exp(-tx)], [0,1];

(Tanh)

hyperbolic tangent th(4x) = (edx — e4x)/(edx + e—x), [-1,1]; (Softmax) generalization of logistic function for multivariate case

o(zj) = e9/Z4_,e7, [0,1].

Cluster 2 contained the complexes stable in the mixed
solvents rich in the organic component and in pure non-
aqueous solvents (log Ky, = 2.6-4.3, 12 stability con-
stants; log Kx; = 4.0-5.2, 10 stability constants).

Cluster 3 contained the coronates weakly stable in
water and the mixed solvents with high water content (log
Kyar, = 0.5-1.4, 11 stability constants; log Ky =2.0-3.0,
16 stability constants).

That classification was confirmed in [48] by the
discriminant Fisher analysis with 96.97% confidence
(for both coronates) and by construction of the decision
making trees with 90.9% (18-crown-6Nat*) and 97.0%
(18-crown-6K*) confidence.

In this study, the k-means cluster analysis results
were confirmed with 100% confidence using the artificial
neural network classification algorithms: multilayer per-
ceptron and self-organizing map (SOM) also known as
Kohonen network [49, 50]. In contrast to the multilayer
perceptron (supervised learning), the Kohonen network is
the competing neural network for unsupervised learning.

Tables 9 and 10 give the basic parameters of the MP
4-4-3 and SOM 7-3 classifiers for sodium coronate and
of MP 4-3-3 and SOM 5-3 ones for potassium coronate.

Overall, the study of stability of sodium and potas-
sium coronates in aqueous-organic solvents by means of
multiple linear regression and neural network methods

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 89 No. 7 2019
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revealed that different data analysis approaches should be
used to confirm the validity of the solutions of multivari-
ate analysis tasks (nonlinear regression) and classification
ofthe coronates stability. Conventional statistical method
(multiple linear regression) and the neural networks ap-
proach (with supervised training) were equally applicable
for approximation of the complexes stability using the
descriptors of aqueous-organic solvents. The multiple
linear regression method gave somewhat less accurate
predictions in comparison with the multilayer perceptron,
yet the results of the former approach allowed quantitative
estimation of the energy contributions of electrostatic,
cohesion, and donor-acceptor interactions to the increase
in stability of sodium and potassium coronates using the
free energies linearity principle [52].

Artificial neural networks could be successfully ap-
plied to modeling, prediction, and classification of the
coronates stability in the mixed solvents, similarly to the
multiple linear regression method. Stability constants of
sodium and potassium coronates in water— mixtures were
predicted using the elaborated artificial neural network
and multiple linear regression models. The algorithms
of supervised multilayer perceptron and the Kohonen
network learning fully confirmed the classification of the
coronates stability by the k-means method.
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