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a b s t r a c t

The availability of reliable electricity and heat sources for community guarantees a better living envi-
ronment in terms of education, healthcare and economy. Two main parameters should be considered in
heat production which are the cost of this production and the performance of the devices used to
produce this heat. In this work, a thermodynamic analysis based on energy and exergy analyses as well
as economic analysis are presented to analyze the performance of parabolic trough solar collector (PTC).
A multiobjective swarm optimization (MOPSO) technique is used to find out the maximum exergy ef-
ficiency and the minimum heat production cost of PTC. The optimum results show that the exergy ef-
ficiency, energy efficiency and heat cost are 29.22%, 35.55% and 0.0142 $/kWh. The effect of PTC
geometrical parameters such as length, focal length, width and internal absorber diameter on the per-
formance of PTC and heat production cost are investigated. Energy efficiencies of the system at different
times during the day are calculated and they are in good agreement with the experimental results
available in literature. The proposed system of PTC is located in Tehran, Iran.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Solar energy is one of the abounded renewable energy resources
distributed in the world. Utilization of solar energy can be used
based on its application at low, intermediate and high temperature
(Jebasingh and Herbert, 2016; Yousefi and Ehyaei, 2017).

One of these applications is Concentrated Solar Power plant
(CSP). CSP depends on the reflected sun ray from the concentrator
to the receiver in order to increase the temperature of the working
fluid (Jebasingh and Herbert, 2016; Yousefi and Ehyaei, 2017).

There are two types of CSP which vary based on the shape of
optical concentrator namely point or line focusing. Point focusing
produces higher temperature than the line focusing and it requires
two axis tacking. Both power tower and parabolic dish CSP are
considered as point focusing, while Parabolic Trough (PT) and
Fresnel CSP are considered as line focusing (Fuqiang et al., 2017).

Parabolic trough concentrated solar power (PTCSP) can be
i).
integrated easily with conventional power plant such as steam
turbine (Rankine cycle) or gas turbine (Brayton cycle). This inte-
gration is carried out to achieve higher integrated system efficiency
at low environmental impact t (Jebasingh and Herbert, 2016;
Yousefi and Ehyaei, 2017).

There are many configurations of PTCSP used in power plants,
these configurations vary based on many parameters such as type
of integration, type of working fluid, thermal storage system, shape
of receiver, types of tracking system and reflector, and receiver
(absorber) materials (Ehyaei et al., 2019; Fern�andez-García et al.,
2010).

Due to the high dependency of PTCSP performance on the above
mentioned parameters it is not easy to find out the best perfor-
mance of PTCSP without helping of optimization methods
(Fern�andez-García et al., 2010).

There are many optimization techniques that have been used
recently for optimization purposes, which are known as Artificial
Intelligence (AI). These optimization methods are used to find the
maximum delivered power from any energy system under some
constrains. These constraints are related to the previously
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mentioned parameters and operating conditions of PTCSP.
Furthermore, these optimization techniques help the energy sys-
tem to operate at low level cost of energy (LCOE) and low Green
House Gas Emissions (GHGE) (Ehyaei and Rosen, 2019; S.
Aravindan, 2018; Sadeghzadeh, H et al., 2015; Shamoushaki et al.,
2017b).

Optimization problems existing in real world are multi-
objective problems which means optimal solutions should be ob-
tained simultaneously when considering multi conflicting objec-
tives. Among these techniques are the multi-objective optimization
problems (MOPSO) and Artificial Bee Colony (ABC). Multi Objective
Optimization or vector optimization is used for the problem that
has a set of objectives instead of single objective. Multi Objective
Optimization Problem (MOP) consists of two types: (1) linear and
nonlinear (2) convex and non-convex. Linear MOP is considered
when all objective functions and constraints are linear, whereas
nonlinear MOP is considered when any of the objective or
constraint function is nonlinear. Convex MOP is considered when
the objective functions are convex and feasible region is convex and
non-convex MOP is considered when the objective functions and
feasible region are non-convex (Ghasemian and Ehyaei, 2018; S.
Aravindan, 2018; Sadeghzadeh et al., 2015a,b; Shamoushaki et al.,
2017a).

There ae two popular AI techniques for solving MOPs, these are
Evolutionary Approaches (EAs) such as Vector Evaluated Genetic
Algorithm (VEGA) and Particle Swarm Optimization (PSO). Multi
objective Swarm Particle Optimization (MOSPO) is derived from
Particle Swarm Optimization (PSO) domain after Swarm Intelli-
gence (SI) techniques exist (Ab Wahab et al., 2015; Asgari and
Ehyaei, 2015; Yazdi et al., 2015).

Artificial neural network (ANN)model have been used to predict
LCOE, annual power generation and capacity factor for parabolic
trough solar thermal power plants (PTSTPPS) integrated with en-
ergy storage (Boukelia et al., 2017) where thermic oil and molten
salt as primary heat transfer fluids in the solar field were used.

Other optimization methods such as least squares support
vector machine (LSSVM) was developed to model solar collector
system in PT (Liu et al., 2012) where the feasibility and efficiency of
the LSSVMmethodwere evaluated experimentally and numerically
for two solar collector systems. Memetic algorithm was used to
study the influence of objective functions for life cycle savings,
LCOE and payback time on optimal design point location in PTSP
(Silva et al., 2014) where a multi-objective optimization approach
was used to design the PT from a multi-economic criteria point of
view.

A multi-parameter optimization of PTS receiver based on ge-
netic algorithm has been applied (Guo and Huai, 2016) where both
thermal and exergy efficiency were taken as objective function to
study the thermal behavior of PTS receiver. Again ANN models
based on the feed-forward back-propagation learning algorithm
with three different variants were used to predict the annual power
and LCOE for PTSTPP (Boukelia et al., 2016).

Hybrid optimization algorithm method including genetic algo-
rithm and sequential quadratic programming (SQP) was used in
non-convex and non-linear optimization process for thermal
analysis in a solar PT collector based on Nano fluid
(Shirmohammadi et al., 2015; Zadeh et al., 2015).

Optimization of two PTSTPP in Algeria was performed (Boukelia
et al., 2015) for which the optimization was used based on the
objective of maximizing the annual energy yield and minimizing
the LCOE. Solar multiple (SM) and full load hours of thermal energy
system parameters were implemented during the optimization
process. Solar multiple optimization has been extensively used by
many researchers (Boukelia et al., 2015; Montes et al., 2009a,
2009b).
Artificial Bee Colony (ABC) is another technique used for opti-
mization purposes. Compared to PSO technique, Artificial Bee Col-
ony (ABC) algorithm delivers more accurate optimization results
than PSO, but it needs more time for convergence. On the other
hand, PSO is faster than ABC; but its accuracy is relatively lower
than ABC (Kulkarni and Desai, 2016).

PSO has many advantages such as providing simple calculation,
less dependency of a set of initial points, fast convergence, easy to
implement and small impact of parameters to the solution. As a
result of these advantages, MOPSO technique is implemented in
this study remembering that it is just a tool to determine the best
performance of the proposed energy system. Hence, our main in-
terest is in obtaining the optimum values of exergy efficiency, en-
ergy efficiency and heat cost (Kulkarni and Desai, 2016).

This study proposes, for the first time, the combined three an-
alyses namely energy, exergy and economic analyses using MOPSO
algorithm to obtain the best possible performance of PTC at the
cheapest heat production cost. Hence, the aim of this work is to
determine the energy, exergy efficiencies as well as the heat pro-
duction cost of PTC system located in Tehran, Iran. The novelty of
this work is as follows:

� Considering energy, exergy and economic analyses in optimi-
zation of PTC

� Optimization of a PTC with MOPSO algorithm
� Selection the best geometric specification and working fluid
mass flow rate to improve heat gain, energy and exergy effi-
ciencies and heat produced cost by PTC

� Sensitivity analysis of optimized parameters
� Extension of study by optimization of a PTCwithmulti-objective
shuffled frog-leaping algorithm

� Comparison optimized values of two optimization algorithms
2. Mathematical modeling

2.1. Energy modeling

The schematic diagram of the system as well as the side views of
PTC are shown in Fig. 1.

The solar time can be obtained as (Duffie, 1991):

Tls¼ Tl þ 4 (L loc- L st) þ E (1)

where Ts and Tls are the solar time and local time, respectively, Lst is
the local standard timemeridian and Lloc is the site longitude, and E
is the equation of time which is calculated by the (Duffie, 1991):

E ¼ 229.2 (0.000075 þ 0.001868Cos be0.032077Sin be 0.014615
Cos 2b �0.04089 Sin 2b) (2)

where b ¼ 360ðn�1Þ
365 (1st of January n¼ 1).

The sunset hour angle for horizontal surface is expressed as
(Duffie, 1991):

u¼ cos�1(- tan4 tand) (3)

where 4 and d are the latitude and deflection angle respectively.
The deflection angle can be found from d (Sukhatme and

Sukhatme, 1996):

d ¼ 23:45 sin
�
360ð284þ nÞ

365

�
(4)

The direct normal irradiance (DNI) is given by (Sukhatme and



Fig. 1. Schematic diagrams of the system and PTC.
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Sukhatme, 1996):

DNI ¼ A cosqz exp
� �B
cosqZ

�
(5)

where A and B are constants given in Ref (Sukhatme and Sukhatme,
1996), and qZ is the Zenith angle.

PTC optical efficiency is defined as (Hachicha et al., 2013):

hopt ¼ rtagKL0 (6)

where r is the mirror reflectance, t is the glass cover transmittance,
a is the receiver absorptance, g is the intercept factor, K is the angle
of incidence incident angle modifier and x is the end loss factor. g is
defined as the fraction of reflected radiation in the absorber to the
total reflected radiation by the collector and includes all the optical
errors (Forristall, 2003; Güven and Bannerot, 1986; Khaled, 2012).
In this work, the intercept factor is taken as 0.92 which is an
acceptable value in literature.

The end loss factor is expressed as (Alfellag, 2014; Vasquez
Padilla, 2011):

L0 ¼1� f
L
tgqz (7)

where f is the focal length and L is the collector length of collector.
The energy balance equations for cross-section views shown in

Fig. 1 are as follows (Ehyaei et al., 2019):

_q01 ¼ _q02 (8)

_q07 ¼ _q02 þ _q03 þ _q04 (9)
_q05 ¼ _q03 þ _q04 (10)

_q05 þ _q06 ¼ _q08 þ _q09 ¼ _q0loss (11)

The PTC outlet temperature of PTC is (Coccia et al., 2012;
Forristall, 2003):

Tiþ1 ¼Ti�1 þ
1�

_mcp
��

_q
0
6 þ _q

0
7 � _q

0
8 � _q

0
9
�
DL

(12)

where T is temperature, _m is the mass flow rate, DL is the section
length and cp is the specific heat.

Nusselt numbers for turbulent and laminar pipe flow are,
respectively (Bergman et al., 2011; Gnielinski, 1976):

NuD¼

�
f
8

�
ðRe� 1000ÞPr

1þ 12:7
ffiffiffi
f
8

q 0
@Pr

2
3 � 1

1
A
�

Pr
Prw

�0:11

2300 � Re � 106

(13)

NuD¼ 4.36 Re < 2300

Where f is the friction coefficient, Re is the Reynolds number, Pr
is the Prandtl number and Prw is the Prandtl number at the wall.

The convection heat transfer coefficient in the evacuated space
between the absorber and glass is expressed as (Kalogirou, 2012;
Ratzel et al., 1979):

h ¼ k

Douter�absorber

2 ln

�
Dinner� glass

Douter�absorber

�þ bl
�
Douter�absorber
Dinner� glass

þ 1
� (14)

where D is the diameter, k is the thermal conductivity, b is the
interaction parameter which is obtained from Ref (Kalogirou, 2012;
Ratzel et al., 1979) and l is the mean free path of molecules
collisions.

The radiation heat transfer rate in the evacuated space is (Yunus
and Afshin, 2011):

_q
0
rad; outer absorber�innerglass

¼
psDouter�absorber

�
T4outer�absorber � T4inner�glass

�
1

εouter�absorber
þ ð1�εinner�glass ÞDouter�absorber

εinner�glass Dinner� glass

(15)

where ε is the emissivity and s is the Stefan- Boltzmann constant
(5.672* 10�8 W

m2K4 ).
.The Nusselt number of the ambient air in the presence of wind

speed surrounding the outer glass is obtained as (Rathore and
Kapuno, 2011):

NuD; outer� glass ¼ C Remouter�glassPr
n
a

 
Pra

Prouter�glass

!1
4

(16)

where C, m, and n are constants determined from Ref (Rathore and
Kapuno, 2011).Subscripts a and outer-glass mean that Prandtl
number should be calculated at these temperatures, respectively.

The system energy efficiency is obtained as (Okonkwo et al.,
2018):



Table 1
The purchase cost of system components.

No. Component Unit Purchase cost Ref.

1 Solar collector $
.
m2 148 Palenzuela et al. (2015)

2 Working fluid
(water)

$
.
m2 4 Palenzuela et al. (2015)

3 Storage tank $
.
m2 27 Palenzuela et al. (2015)

4 Pump $
3540ð _W

0
pÞ

0:71 Silveira and Tuna (2003)
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Energy efficiency ¼
_qu � _Wpump

DNI � A (17)

Where the pump work is _Wp , It is the solar radiation and A is the
collector surface area. The useful heat gain _qu by the PTC is

_qu ¼ _m cp ðTo �TiÞ (18)

where _m is the mass flow rate of HTF. To ð�CÞ and Ti ð�CÞ are the
outlet and inlet HTF temperatures, respectively.

2.2. Exergy modeling

Neglecting the kinetic and potential exergies, and considering
that the chemical exergy is constant through the flow, then the
specific exergy can be only written in terms of physical exergy as
(Bejan, 2016; Padilla et al., 2014; Petela, 1964):

ex ¼ðh� h0Þ � T0ðs� s0Þ (19)

where h (kJ/kg) is the enthalpy and s (kJ/kgK) is specific entropy.
The subscript 0 represents the dead state (1 atm, 20�C).

Exergy destruction rate can be written as (Bejan, 2016; Padilla
et al., 2014; Petela, 1964):

_ED ¼ð _mðexi � exoÞþA � DNI
 
1� 4

3

�
Tamb
Tsun

�

þ 1
3

�
Tamb
Tsun

�4
!
þ _q

0
lossLþ _Wpump

!
(20)

where the sun temperature Tsun is taken as 5800 K, exi and exo are
the specific exergies of the HTF at the inlet and outlet, respectively.

Exergy efficiency can be calculated by (Bejan, 2016; Padilla et al.,
2014; Petela, 1964):

Exergy efficiency ¼
__mðexi � exoÞ � _q

0
lossL � _Wpump

A � DNI
�
1� 4

3

�
Tamb
Tsun

�
þ 1

3

�
Tamb
Tsun

�4
! (21)

2.3. Economic modeling

The heat production cost of PTC is given by (Frangopoulos, 1987;
Horngren et al., 2010):

CH ¼
CI

ð1þiÞn
ð1þiÞn�1 þ COM

_qu
(22)

where C ($) is the cost. Subscripts H, I and OMmean heat, initial and
operation, and maintenance. i is the interest rate which is equal to
2% and n is a number of years.

The purchase costs of the proposed system components are
given in Table 1 (Palenzuela et al., 2015) (Silveira and Tuna, 2003).

3. Optimization algorithms

Generally, optimization deals with finding a maximum or
minimum for one and more objective functions which are function
of single or multi variables to satisfy some constraints. In many
engineering and real life cases, the optimization problems are so
complex and they cannot be solved by traditional optimization
methods. This problem is more complex when multi criteria or
multi objective optimization are involved. So heuristic methods are
more appropriate for this kind of problem, especially when the
objective functions are non-linear, discontinues and non-
differentiable functions (Hojjati et al., 2018).

The mathematical form for optimization problems is given as
follow (Han et al., 2018):

Min=Max FnðXÞ ¼ ½f1ðXÞ؛ f2ðXÞ؛ و fmðXÞ�T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
(23)

Subject to gjðXÞ � 0 for j ¼ 1, 2,…, J hkðXÞ ¼ 0 for k ¼ 1, 2,…. K
XL � X � XUwhere X is the multi-variable vector with n dimension
Xðx1, x2, …, xnÞ and m represents the number of the objective
functions. For m equals to 1, the optimization problem is single
objective, otherwise the problem is multi-objective function. Also,
L and U stand for lower and upper limit of vector X in search space,
respectively. Several non-traditional solutions based on search
methods can be applied for this problems.

3.1. Particle swarm optimization (PSO)

Evolutionary algorithms (EA) have been used for solving simple
and complex problems with single and multi-objective functions
for many years. One of the most recent evolutionary algorithms is
the particle swarm optimization (PSO). PSO algorithm is a sto-
chastic search method that is a powerful technique to solve com-
plex problems at which other conventional methods fail to work
(DASHENG, 2009).

The Particle swarm optimization (PSO) method is a compara-
tively new, innovative search method that is based on group
behavior of birds, insects and fish schools. Like evolutionary algo-
rithms, PSO algorithm is a population base where the population of
a potential solution is called swarm and each individual of solution
(population) within swarm is called a particle.

Each swarm initially is located at random locations in the multi-
dimensional search space. For each particle, two parameters of
position and velocity vector are assumed. Each particle can move
randomly in a design space and can remember the best position in
term of the food source or objective function value. Then, all par-
ticles are communicated information and good position to each
other and they individually chose best position and velocity toward
a best position received by the folk (Alvarez-Benitez et al., 2005;
Rao, 2009; Reyes-Sierra and Coello, 2006).

Consider a search space with d dimension and the space vector
and velocity vector for the ith particle are givenwith Xiðxi1 , xi2,…,
xidÞ and Vi ðvi1, vi2,…,vidÞ respectively. The Pi ðpi1 pi2,…,pidÞ stores
the position coordinates corresponding to the best individual per-
formance of the particle and it is called pbest. The best position
obtained by the swarm is denoted as g (g1,g2, ,gd)and it is called
gbest. The position and velocity of each particle is updated toward
the high or low value of objective function in maximization or
minimization case respectively (Alvarez-Benitez et al., 2005; Rao,
2009; Reyes-Sierra and Coello, 2006).

The new position and new velocity of the particle are governed
by the following equations (Alvarez-Benitez et al., 2005; Rao, 2009;
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Reyes-Sierra and Coello, 2006):

Vtþ1
i ¼wVt

i þ C1r1
�
xpbest � Xt

i

�
þ C2r2

�
xgbest �Xt

i

�
(24)

Xtþ1
i ¼Xt

i þ Vtþ1
i (25)

Where, w is an inertia weight, C1 is a cognitive acceleration coef-
ficient, C2is a social acceleration coefficient, r1 and r2 are random
numbers between [0, 1], xpbest is the personal best of the particle,
xgbest is the global best of the particle in the swarm. Also, Xt

i and Vt
i

are the current position and velocity of ith particle at iteration t
respectively and Xtþ1

i and Vtþ1
i are position and velocity vector of

the ith particle at iteration tþ 1 (Hosseini et al., 2015; Lalwani et al.,
2013; Tripathi et al., 2007). Fig. 2 shows the flowchart for PSO al-
gorithm (Tarique and Gabbar, 2013).
Fig. 3. Multi objective particle swarm optimization (MOPSO).
3.2. Multi-objective particle swarm optimization (MOPSO)

In PSO algorithm, there is just one objective function alongside
with equality and inequality constraints. However, in multi-
objective particle swarm optimization (MOPSO) algorithm, there
are several objective functions which always conflicting with each
other. The procedure of solution is same as before. Fig. 3 shows the
flowchart solution for dominate solution (Kusiak and Xu, 2012) (El-
Gammal and El-Samahy, 2009).

The performance of various Swarm Intelligence (SI) including
Particle Swarm Optimization (PSO), Genetic algorithm (GA), Ant
Colony Optimization (ACO), Differential Evolution (DE), Artificial
Bee Colony (ABC) for about thirty benchmarks functions by using
MATLAB have been performed. These benchmarks cover different
range of objective function such as unimodal, multimodal,
separate-able and in-separate-able function for different domains.
The performance of these algorithm based on these benchmarks
are evaluated. The results indicated the superiority of DE with the
Fig. 2. Particle Swarm Optimization algorithm.
ability to outperform or perform equally to the best algorithm in 24
out of 30 functions. PSO is the second best approach that out-
performed or performed equally to the best algorithm in 18 out of
30 functions and follows by GA with 14 out of 30 (Ab Wahab et al.,
2015).

In comparison of ability of PSO and GA algorithm for problem
solving, PSO is often refereed to outperformed over GA. It means,
when these two algorithm are applied to various problems, PSO has
better quality and faster performance relative to GA. Although PSO
and GA share many similarities, but PSO has no evolution operators
such as crossover and mutation in GA and potential solutions fly
through the problem space by following the current optimum
particles (Abdelhalim and Habib, 2009; Saed and Kadir, 2011).

4. Results and discussion

4.1. Description of model, PTC specification and climate condition

This system is located in Tehran (capital of Iran) at
longitude þ52.5� and latitude þ35.7� (Tchanche et al., 2009).
Table 2 shows the average air temperature, wind velocity and DNI
in Tehran (Tchanche et al., 2009). For this optimization the data of
20th July are considered.

Table 3 shows the specifications of PTC studied in this article
(Alfellag, 2014; Forristall, 2003; Kalogirou, 2012; Tzivanidis and
Bellos, 2016). One main code is prepared in MATLAB software,
one code is written for MOPSO algorithm and one code is written to
connect main code to optimization code.

4.2. Validation of model

For validation of the obtained results in this model Ref (Alfellag,
2014) will be considered. The specification of PTC and climate
conditions studied in that reference are considered as input data.
Fig. 5.4, 5.5, and 5.6 of that reference are considered. In those fig-
ures outlet temperature of HTF, heat gain and energy efficiency are



Table 2
The monthly average air temperature, wind velocity and DNI in Tehran.

months Value

Air temperature ð�CÞ Wind velocity�
m =s)

DNI (W
.
m2)

Jan 2.8 1.5 136.5
Feb 5.1 2.6 190.0
Mar 9.5 2.4 225.0
Apr 15.1 2.8 280.3
May 21.2 2.7 299.9
Jun 26.2 3.1 316.2
Jul 29.3 2.6 311.9
Aug 28.6 2.9 282.7
Sep 24.4 2.8 243.9
Oct 18 2.3 199.0
Nov 11 2.2 156.1
Dec 5.4 1.5 130.8

Table 3
Specifications of PTC.

No Parameter Unit Value Ref

1 L m 4.5 Tzivanidis and Bellos (2016)
2 W m 2.3 Tzivanidis and Bellos (2016)
3 Dinner;absorber m 0.047 Tzivanidis and Bellos (2016)
4 Douter;absorber m 0.051 Tzivanidis and Bellos (2016)
5 Dinner;glass m 0.07 Tzivanidis and Bellos (2016)
6 Douter;glass m 0.074 Tzivanidis and Bellos (2016)
7 f m 0.8 Tzivanidis and Bellos (2016)
8 a e 0.9 [30]
9 kglass W =mK 1.04 Forristall (2003)
10 εglass e 0.86 Forristall (2003)
11 tglass e 0.9 Kalogirou (2012)
12 aglass e 0.02 Forristall (2003)
13 Mirror reflectively e 0.94 Alfellag (2014)
14 _m kg/s 0.08 e

15 Ti oC 30 e

Table 5
Variables considered for optimization by MOPSO algorithm.

No. Variable Unit Lowe bound Upper bound

1 Dinner;absorber m 0.04 0.06
2 L m 4 6
3 W m 2 4
4 _m kg=s

0.06 0.2

5 f m 0.4 1.2
6 Douter;absorber m Douter;absorber ¼ Dinner;absorber þ

0:004
7 Dinner;glass m Dinner;glass ¼ 1:49Dinner;absorber

8 Douter;glass m Douter;glass ¼ Dinner;glass þ 0:004

Table 6
MOPSO algorithm setting data.

Variable Values

Max iteration 450
Number of Particles 100
Repository size 100
Inertia weight 1
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calculated experimentally and theoretically for various hours on
19th Feb. Table 4 shows the comparison the results of this modeling
with experimental data of Ref (Alfellag, 2014).

Maximum errors are about 4e5% at 11:16 and 12:28, when it is
the highest solar radiation. The reason for this error is to calculate
the difference in heat loss in states of theoretical and experimental.
4.3. Optimization of PTC

For optimization with MOPSO algorithm, the two target func-
tions are considered:

CH
�
$=kWh

�
, Exergy efficiency (%)

The target is maximization the exergy efficiency and minimi-
zation of heat cost. Variables considered in this optimization are
shown in Table 5. Table 6 shows the MOPSO algorithm setting data.

The maximum iteration of MOPSO algorithm is about 450,
number of particles is equal to 100. The repository size and inertia
Table 4
The comparison the results of this modeling with experimental data of Ref (Alfellag, 201

Hour T0ðoCÞ Heat gain (W)

Model Exp. Error (%) Model

10:04 35.6 36.5 2.5 384
11:16 42.7 44.2 4.3 647
12:28 41.8 43.7 4.3 765
13:40 47.1 48.6 3.1 812
16:04 38.9 40.5 3.9 533
weight are equal to 100 and 1, respectively. Grid inflection
parameter is selected 0.1. Number of grid per each dimension is
equal to 10 and leader selection pressure parameter is 4. Extra re-
pository member selection pressure is equal to 2.

The position and velocity of each particle is updated toward the
high or low values of objective function is maximization (exergy
efficiency (%) or minimization (cH

�
$

kWh

�
).

Fig. 4 shows the Pareto front of these two target functions.
It is clear that by increasing exergy efficiency, cost of heat

(CH
�
$=kWh

��
is decreased and vice versa. So the optimal point is

located on the right side of this figure. In this point, exergy effi-
ciency is equal to 29.2% and heat cost is equal to 0.0142 ($=kWh

�
.

It is noticeable that for other systems, based on the system
configuration, the Pareto front is ascending. For these cases usually
the cost function is increased with increasing of exergy efficiency.
In these cases, we should define the scenarios for example mini-
mum cost function with minimum exergy efficiency or maximum
exergy efficiency with maximum cost function. The optimum
values of variable considered this optimization are shown in
Table 7. Table 8 shows the key parameters of system before and
after optimization.

As shown in Table 8, energy efficiency is improved from 30.81%
to 32.55%, but energy destruction rate is increased from 18895.8W
to 23661.44W due to increasing heat gain rate (1918We3536.7W)
and outlet HTF temperature (35.6 �Ce37.1 �C).

4.4. Sensitivity analysis

Fig. 5 shows the variation of heat gain rate by changing the inner
diameter of absorber from 0.041m to 0.06m. From this figure, it is
clear that by increasing the inner diameter of absorber, the heat
rate gain is decreased.
4).

Energy efficiency (%)

Exp. Error (%) Model Exp. Error (%)

400 4.0 24.9 26 4.2
683 5.2 27.4 29.0 5.5
810 5.5 27.6 29.0 4.8
850 4.4 28.1 29.5 4.7
560 4.8 26.0 27.1 4



Fig. 4. Pareto front of target functions.

Table 7
The optimum values of variable after optimization.

No Variable Unit Values

1 Dinner;absorber m 0.0453
2 L m 5.55
3 W m 2.98
4 _m kg=s

0.115

5 f m 0.457

Table 8
Key parameters of system before and after optimization.

Variable Values

Before After

qu(W) 1918.85 3536.7
To (oC) 35.6 37.1
Exergy destruction (W) 18895.8 23661.44
Energy efficiency (%) 30.81 35.55
Exergy efficiency (%) 25.93 29.22
CH ($/kWh) 0.0164 0.0142

Fig. 5. Variation in heat gain rate by PTC with inner absorber diameter.

Fig. 6. Changes in energy efficiency with inner diameter of absorber.

Fig. 7. The variation of exergy destruction with inner diameter of absorber.
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By increasing the inner diameter of absorber, the three oppose
effects can be seen:

1) Increasing the Nusselt number in the absorber. (Positive effect)
2) Decreasing the heat convection coefficient (h¼Nuk/D) (Nega-

tive effect)
3) Increasing the heat transfer from the absorber to glass and

surrounding. (Negative effect)

Combining these three effects causes a change in the heat gain
rate according to graph shown in Fig. 5. Fig. 6 shows the change in
energy efficiency with inner diameter of absorber. By increasing the
inner diameter of absorber from 0.041m to 0.06m, energy effi-
ciency is decreased from 35.86% to 34.69%. Physical justification of
Fig. 6 is similar to Fig. 5.

Fig. 7 shows the variation of exergy destruction with inner
diameter of the absorber. Unlike the heat gain rate and energy ef-
ficiency, exergy destruction is increased by increasing the inner
diameter of absorber. This increase is considerable. By increasing
the inner diameter of absorber from 0.041m to 0.06m, exergy
destruction is increased from 139.55W to 2719.9W. Since,
regarding to Fig. 7, heat gain rate is decreased by increasing inner
diameter, so heat losses as well as exergy destruction are increased.

The variation of heat gain rate and outlet temperature with
length of PTC is shown in Fig. 8. It is clear that, by increasing the
length of PTC, heat rate gains and outlet temperature of HTF are
increased. In general, by increasing the length of PTC, considering
equation (12), outlet temperature of PTC is increased. Also due to
equation (18), heat gain rate is increased too.

Fig. 9 shows the variation of energy efficiency with the length of
PTC. Similar to Fig. 8, by increasing the length of PTC, energy effi-
ciency is increased.

By increasing the length of PTC from 4m to 6m, energy effi-
ciency is increased from 34.1% to 35.8% which this promotion is
equal to 5%. This increase in lower than increase in heat gain rate by
PTC (57%).



Fig. 8. The variation of heat gains rate and outlet temperature with length of PTC.

Fig. 9. The variation of energy efficiency versus length of PTC.

Fig. 11. The variation of heat gain rate and HTF outlet temperature with width of PTC.
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The reason is that regarding to equation (17), by increasing the
length of PTC, the denominator of this equation is increased too. So
the energy efficiency is not increased as much as heat gain rate.

The variation of heat cost with the length of PTC is shown in
Fig. 10. By increasing the length of PTC, heat cost is decreased. Since
according to denominator of equation (22) and Fig. 8, the denom-
inator of equation (22) is increased so heat cost in decreased
although the initial cost of PTC is increased.

Fig. 11 shows the variation of heat gain rate and outlet tem-
perature with the width of PTC.

By increasing the width of PTC from 2m to 4m, heat gain rate is
increased from 2369W to 4753.7W and outlet temperature of HTF
Fig. 10. The variation of heat cost with the length of PTC.
is increased for 30.24 �Ce37.51 �C. Both increases are considerable.
The effects of width of PTC variation on PTC energy efficiency is

shown in Fig. 12. It is clear that increasing thewidth of PTC does not
have a considerable effect on PTC energy efficiency. Since
increasing width of PTC from 2m to 4m only increases PTC energy
efficiency from 35.4% to 35.6%.

So it can be concluded that increasing the length of PTC has
more effect on PTC energy efficiency promotion than increasing the
width of PTC.

Fig. 13 shows the variation of PTC exergy destructionwith width
of PTC. It can be seen increasing exergy destruction with the width
of PTC is considerable. By increasing the width of PTC from 2m to
4m, exergy destruction is increased from 93.71W to 2873.4W.
Since increasing the width of collector, increases the heat loss from
PTC, more than heat gain rate by PTC. So exergy destruction is
increased.

Fig. 14 shows the variation of heat rate gained by PTC versus
focal length. By increasing the focal length from 0.4m to 1.2m, heat
gain rate is decreased from 3573.5W to 2959.2W. Since consid-
ering equations (6) and (7), by increasing the focal length, optical
efficiency (hopt) is decreased. So, the heat gain rate in decreased too.
It is important to mention that we cannot reduce focal length as
much as possible. Since in this case, we have not an appropriate
reflection of solar beam.

Fig. 15 shows the variation of PTC energy efficiency with focal
length. The effect of focal length on PTC energy efficiency is
considerable.

By increasing the focal length from 0.4m to 1.2m, energy effi-
ciency is decreased from 35.9% to 29.7%. The variation of exergy
destruction with focal length is shown in Fig. 16. The graph is
Fig. 12. The variation of PTC energy efficiency with width of PTC.



Fig. 13. The variation of exergy destruction of PTC by width of PTC.

Fig. 14. The variation of heat rate gained by PTC with focal length.

Fig. 16. The variation of exergy destruction with focal length.

Fig. 17. The variation of cost of heat produced by PTC with focal length.
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ascending. It means that by increasing the focal length, exergy
destruction is increased.

Fig. 17 shows the variation of cost of heat produced by PTC with
focal length. Since heat gain rate in decreased by increasing the
focal length, so regarding to equation (27), and the cost of heat is
reduced.

Fig. 18 shows the energy efficiency variationwith mass flow rate
of HTF. By increasing the mass flow rate of HTF, energy efficiency of
PTC is increased. In general, by increasing themass flow rate of HTF,
the following oppose effects can be seen.

1) Regarding to equation (13), the Nusselt number and conse-
quently the heat convection coefficient is increased.
Fig. 15. The variation of PTC energy efficiency with focal length.
2) Regarding to equation (12), the temperature difference in each
section is decreased and consequently the outlet temperature of
HTF is decreased.

It is clear that point 1 is dominated by point 2, so the heat gain
rate and consequently the energy efficiency is increased by
increasing mass flow rate of HTF.
4.5. Optimization with another algorithm (multi-objective shuffled
frog-leaping algorithm)

Meta-heuristic and evolutionary algorithms are popular algo-
rithms which applied for solving many complex engineering
Fig. 18. The energy efficiency variation with HTF mass flow rate.



Fig. 19. The Pareto-front curve of optimization by SFLA.

Table 10
Key parameters of system before and after optimization with shuffled frog-leaping
algorithm.

Variable Values

Before After

qu(W) 1918.85 3617.15
To (oC) 35.6 38.4
Exergy destruction (W) 18895.8 24112.13
Energy efficiency (%) 30.81 36.62
Exergy efficiency (%) 25.93 30.35
CH ($/kWh) 0.0164 0.0132
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optimization problems (Bozorg-Haddad et al., 2017). The Shuffled
Frog-Leaping Algorithm (SFLA) is suggested by Eusuff and Lansey
for solving combinatorial optimization problem in 2003.

The SFLA was originally developed as a population-based met-
aheuristic to perform an informed heuristic search using mathe-
matical functions to find a solution of a combinatorial optimization
problem. It combines the benefits of both the genetic-based MA
and the social behavior-based PSO algorithm (Rahiminejad et al.,
2014). This algorithm performs base on swarm intelligence heu-
ristic computing method that it has a highly effective computing
method to find a global optimum based on search method. In
shuffled frog leap algorithm (SFLA), the population contains of a set
of frogs (solutions) that is partitioned into subsets referred as
memeplexes.

The different memeplexes are considered as different cultures of
frogs, each performing a local search. In the interior of each
memeplex, the individual frogs hold ideas, which can be influenced
by the ideas of other frogs, and evolve through a process of memetic
evolution. After a defined number of memetic evolution steps, ideas
are passed among memeplexes in a shuffling process. The local
search and the shuffling processes continue until defined conver-
gence criteria are satisfied (Elbeltagi et al., 2005).

The initial version of this algorithm has some benefits such as
simple steps, fast speed, easy concept and few parameters are
involved. Nevertheless, some disadvantages are non-uniform initial
population, slow convergent rate, limitations in local searching
ability and adaptive ability (Jiang et al., 2013; Yuvaraj et al.). The
shuffled frog leap algorithm (SFLA) consist of three phases of
initialization, evaluation and shuffling which is described in Fig. 18
(Li et al., 2012).

Fig. 19 shows the Pareto-front curve of PTC system by SFLA. By
using this algorithm, the exergy efficiency increases to 30.35%
(MOPSO 29.22%) and cost of heat decreases to 0.0131 $/kWh
(MOPSO 0.0142 $/kWh). Tables 9 and 10 show the values of decision
variables and key parameter after optimization by SLFA,
respcetively.
Table 9
The optimum values of variable after optimization with shuffled frog-leaping
algorithm.

No Variable Unit Values

1 Dinner;absorber m 0.0510
2 L m 4.84
3 W m 3.22
4 _m kg=s

0.54

5 f m 0.1075
5. Conclusions

Energy production in terms of electricity or heat is a challenging
task that needs to be considered when designing a system for that
purpose. Moreover, implementing renewable energy source for
that purpose makes the task more complex due to the dependence
of renewable energy source on weather conditions. Parabolic
trough solar collectors are efficient energy convertors for producing
steam or hot water. In this work, a PTC located in Tehran is under
investigation. Two main factors are the objective of this study
namely exergy efficiency and energy cost of PTC. Multiobjective
swarm optimization (MOPSO) is coupled with energy, exergy and
economic analyses to determine the best possible performance of
PTC with minimum energy cost. Three combined computer codes
werewritten for the optimization process. Themaximum efficiency
was obtained as 29.22% and the minimum energy production cost
was about 0.0142 $/kWh. The results of the present model showed
good agreement via comparing the energy efficiency with the
experimental one available in literature. The absorber inner diam-
eter, length width and focal length of PTC had a considerable in-
fluence on PTC performance and energy cost.
Nomenclature:

a Constant (Wm2 )
A Collector area (m2)
b Constant (Wm2 )
b Interaction coefficient
C Constant (Wm2 )
C Cost of heat produced by PTC ($)
cp Constant pressure specific heat ( kJ

kg K)
D Diameter (m)
DNI Direct normal irradiance (W)
L Length of collector (m)
Lloc Location longitude (Degree)
Lst Standard meridian of local zone time (Degree)
_m Mass flow rate (kg/s)
NuD Nusselt number
Pr Prandtl number
ex Specific exergy (J/kg)
f Friction factor
f Focal length (m)
h Convection heat transfer coefficient (W/m2K)
h Enthalpy (kJ/kg)
i Interest rate
K Incident angle modifier
k Thermal conductivity

�
W
mK

�
L Length of collector (m)
_qu Useful heat rate gain (W)
_q01 Heat convection transfer rate between internal absorber

and heat transfer fluid per length (Wm)
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_q02 Heat conduction transfer rate through absorber per
length (Wm)

_q03 Heat convection transfer rate between outer absorber
and inner glass per length (Wm)

_q04 Heat Radiation transfer rate between outer absorber
and inner glass per length (Wm)

_q05 Heat conduction transfer rate through glass per length
(Wm)

_q06 Solar irradiance absorbed by glass per length (Wm)
_q07 Solar irradiance absorbed by absorbed per length (Wm)
_q08 Convection heat transfer rate between outer glass and

air per length (Wm)
_q09 Radiation heat trans per rate between outer glass and

sky per length (Wm)
Re Reynolds number
s Specific entropy (kJ/kgK)
T Temperature (�CÞ
_m Mass flow rate (kgs )
W Width of a collector (m)

Greek Symbols
4 Latitude (Degree)
d Deflection angle ((Degree)
u Day time
qZ Zenith Angle (Degree)
r Mirror reflectance factor
r Density

�
kg
m3

�
t Transmittance of glass surrounded the absorber
a Absorbance factor of a absorber
g Intercept factor
L0 End loss factor
DL Length of segment (m)
l Mean free path of collisions of molecule (m)
s Stefan- Boltzmann constant
m Dynamic viscosity

�
Ns
m2

�

Subscripts
0 Dead state
amb Ambient
bf Base fluid
h Heat
i Inlet
I Initial cost
loc Local time
o Outlet
OM Operation and maintenance cost
st Solar time
w Wall

References

Ab Wahab, M.N., Nefti-Meziani, S., Atyabi, A., 2015. A comprehensive review of
swarm optimization algorithms. PLoS One 10 (5), e0122827.

Abdelhalim, M., Habib, S., 2009. Particle swarm optimization for HW/SW parti-
tioning. Particle Swarm Opt. 49e76.

Alfellag, M.A.A., 2014. Modeling and Experimental Investigation of Parabolic Trough
Solar Collector.

Alvarez-Benitez, J.E., Everson, R.M., Fieldsend, J.E., 2005. A MOPSO Algorithm Based
Exclusively on Pareto Dominance Concepts, International Conference on
Evolutionary Multi-Criterion Optimization. Springer, pp. 459e473.

Aravindan, S., N.G.a.B.A.S, 2018. The recent trends in optimization of thermal per-
formance of parabolic trough solar collector. Int. J. Mech. Eng. Technol. 9 (5),
655e661.

Asgari, E., Ehyaei, M., 2015. Exergy analysis and optimisation of a wind turbine using
genetic and searching algorithms. Int. J. Exergy 16 (3), 293e314.

Bejan, A., 2016. Advanced Engineering Thermodynamics. John Wiley & Sons.
Bergman, T.L., Incropera, F.P., DeWitt, D.P., Lavine, A.S., 2011. Fundamentals of Heat
and Mass Transfer. John Wiley & Sons.

Boukelia, T., Mecibah, M., Kumar, B., Reddy, K., 2015. Optimization, selection and
feasibility study of solar parabolic trough power plants for Algerian conditions.
Energy Convers. Manag. 101, 450e459.

Boukelia, T., Arslan, O., Mecibah, M., 2016. ANN-based optimization of a parabolic
trough solar thermal power plant. Appl. Therm. Eng. 107, 1210e1218.

Boukelia, T., Arslan, O., Mecibah, M., 2017. Potential assessment of a parabolic
trough solar thermal power plant considering hourly analysis: ANN-based
approach. Renew. Energy 105, 324e333.

Bozorg-Haddad, O., Solgi, M., Loaiciga, H.A., 2017. Meta-heuristic and Evolutionary
Algorithms for Engineering Optimization. John Wiley & Sons.

Coccia, G., Latini, G., Sotte, M., 2012. Mathematical modeling of a prototype of
parabolic trough solar collector. J. Renew. Sustain. Energy 4 (2), 023110.

DASHENG, L., 2009. Multi Objective Particle Swarm Optimization: Algorithms and
Applications.

Duffie, J.A., 1991. Solar Engineering of Thermal Processes. John A. Duffie, William A.
Beckman. Wiley, New York.

Ehyaei, M., Rosen, M.A., 2019. Optimization of a triple cycle based on a solid oxide
fuel cell and gas and steam cycles with a multiobjective genetic algorithm and
energy, exergy and economic analyses. Energy Convers. Manag. 180, 689e708.

Ehyaei, M.A., Ahmadi, A., Assad, M.E.H., Hachicha, A.A., Said, Z., 2019. Energy, exergy
and economic analyses for the selection of working fluid and metal oxide
nanofluids in a parabolic trough collector. Sol. Energy 187, 175e184.

El-Gammal, A.A., El-Samahy, A.A., 2009. Adaptive tuning of a PID speed controller
for DC motor drives using multi-objective particle swarm optimization. In:
2009 11th International Conference on Computer Modelling and Simulation.
IEEE, pp. 398e404.

Elbeltagi, E., Hegazy, T., Grierson, D., 2005. Comparison among five evolutionary-
based optimization algorithms. Adv. Eng. Inf. 19 (1), 43e53.

Fern�andez-García, A., Zarza, E., Valenzuela, L., P�erez, M., 2010. Parabolic-trough
solar collectors and their applications. Renew. Sustain. Energy Rev. 14 (7),
1695e1721.

Forristall, R., 2003. Heat Transfer Analysis and Modeling of a Parabolic Trough Solar
Receiver Implemented in Engineering Equation Solver. National Renewable
Energy Lab., Golden, CO.(US).

Frangopoulos, C.A., 1987. Thermo-economic functional analysis and optimization.
Energy 12 (7), 563e571.

Fuqiang, W., Ziming, C., Jianyu, T., Yuan, Y., Yong, S., Linhua, L., 2017. Progress in
concentrated solar power technology with parabolic trough collector system: a
comprehensive review. Renew. Sustain. Energy Rev. 79, 1314e1328.

Ghasemian, E., Ehyaei, M., 2018. Evaluation and optimization of organic Rankine
cycle (ORC) with algorithms NSGA-II, MOPSO, and MOEA for eight coolant
fluids. Int. J. Energy Environ. Eng. 9 (1), 39e57.

Gnielinski, V., 1976. New equations for heat and mass transfer in turbulent pipe and
channel flow. Int. Chem. Eng. 16 (2), 359e368.

Guo, J., Huai, X., 2016. Multi-parameter optimization design of parabolic trough
solar receiver. Appl. Therm. Eng. 98, 73e79.

Güven, H.M., Bannerot, R.B., 1986. Determination of error tolerances for the optical
design of parabolic troughs for developing countries. Sol. Energy 36 (6),
535e550.

Hachicha, A., Rodríguez, I., Capdevila, R., Oliva, A., 2013. Heat transfer analysis and
numerical simulation of a parabolic trough solar collector. Appl. Energy 111,
581e592.

Han, H.-G., Zhang, L., Qiao, J.-F., 2018. A Gradient Multiobjective Particle Swarm
Optimization, Optimization Algorithms-Examples. IntechOpen.

Hojjati, A., Monadi, M., Faridhosseini, A., Mohammadi, M., 2018. Application and
comparison of NSGA-II and MOPSO in multi-objective optimization of water
resources systems. J. Hydrol. Hydromechanics 66 (3), 323e329.

Horngren, C.T., Foster, G., Datar, S.M., Rajan, M., Ittner, C., Baldwin, A.A., 2010. Cost
accounting: a managerial emphasis. Issues Account. Educ. 25 (4), 789e790.

Hosseini, S.S., Hamidi, S.A., Mansuri, M., Ghoddosian, A., 2015. Multi Objective
Particle Swarm Optimization (MOPSO) for size and shape optimization of 2D
truss structures. Period. Polytech. Civ. Eng. 59 (1), 9e14.

Jebasingh, V., Herbert, G.J., 2016. A review of solar parabolic trough collector.
Renew. Sustain. Energy Rev. 54, 1085e1091.

Jiang, J., Ma, P., Gao, X., Li, J., Zhao, F., 2013. An improved shuffled Frog Leaping
algorithm. J. Inf. Comput. Sci. 10 (6), 1665e1673.

Kalogirou, S.A., 2012. A detailed thermal model of a parabolic trough collector
receiver. Energy 48 (1), 298e306.

Khaled, A., 2012. Technical and Economic Performance of Parabolic Trough in Jor-
dan. Amman (Jordan).

Kulkarni, V.R., Desai, V., 2016. ABC and PSO: A Comparative Analysis, 2016 IEEE
International Conference on Computational Intelligence and Computing
Research (ICCIC). IEEE, pp. 1e7.

Kusiak, A., Xu, G., 2012. Modeling and optimization of HVAC systems using a dy-
namic neural network. Energy 42 (1), 241e250.

Lalwani, S., Singhal, S., Kumar, R., Gupta, N., 2013. A comprehensive survey: appli-
cations of multi-objective particle swarm optimization (MOPSO) algorithm.
Trans. Combin. 2 (1), 39e101.

Li, J., Pan, Q., Xie, S., 2012. An effective shuffled frog-leaping algorithm for multi-
objective flexible job shop scheduling problems. Appl. Math. Comput. 218
(18), 9353e9371.

Liu, Q., Yang, M., Lei, J., Jin, H., Gao, Z., Wang, Y., 2012. Modeling and optimizing
parabolic trough solar collector systems using the least squares support vector

http://refhub.elsevier.com/S0959-6526(19)32171-7/sref1
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref1
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref2
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref2
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref2
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref3
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref3
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref4
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref4
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref4
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref4
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref5
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref5
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref5
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref5
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref6
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref6
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref6
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref7
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref7
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref8
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref8
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref8
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref9
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref9
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref9
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref9
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref10
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref10
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref10
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref11
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref11
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref11
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref11
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref12
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref12
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref12
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref13
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref13
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref14
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref14
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref15
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref15
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref16
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref16
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref16
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref16
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref17
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref17
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref17
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref17
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref18
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref18
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref18
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref18
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref18
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref19
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref19
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref19
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref20
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref20
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref20
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref20
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref20
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref20
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref21
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref21
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref21
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref22
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref22
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref22
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref23
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref23
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref23
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref23
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref24
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref24
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref24
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref24
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref25
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref25
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref25
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref26
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref26
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref26
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref27
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref27
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref27
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref27
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref28
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref28
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref28
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref28
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref29
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref29
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref30
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref30
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref30
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref30
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref31
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref31
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref31
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref32
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref32
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref32
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref32
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref33
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref33
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref33
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref34
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref34
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref34
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref35
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref35
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref35
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref36
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref36
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref37
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref37
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref37
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref37
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref38
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref38
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref38
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref39
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref39
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref39
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref39
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref40
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref40
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref40
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref40
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref41
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref41


M.A. Ehyaei et al. / Journal of Cleaner Production 234 (2019) 285e296296
machine method. Sol. Energy 86 (7), 1973e1980.
Montes, M., Ab�anades, A., Martínez-Val, J., 2009. Performance of a direct steam

generation solar thermal power plant for electricity production as a function of
the solar multiple. Sol. Energy 83 (5), 679e689.

Montes, M., Ab�anades, A., Martínez-Val, J., Vald�es, M., 2009. Solar multiple opti-
mization for a solar-only thermal power plant, using oil as heat transfer fluid in
the parabolic trough collectors. Sol. Energy 83 (12), 2165e2176.

Okonkwo, E.C., Abid, M., Ratlamwala, T.A., 2018. Numerical analysis of heat transfer
enhancement in a parabolic trough collector based on geometry modifications
and working fluid usage. J. Sol. Energy Eng. 140 (5), 051009.

Padilla, R.V., Fontalvo, A., Demirkaya, G., Martinez, A., Quiroga, A.G., 2014. Exergy
analysis of parabolic trough solar receiver. Appl. Therm. Eng. 67 (1e2),
579e586.

Palenzuela, P., Alarc�on-Padilla, D.-C., Zaragoza, G., 2015. Large-scale solar desali-
nation by combination with CSP: techno-economic analysis of different options
for the Mediterranean Sea and the Arabian Gulf. Desalination 366, 130e138.

Petela, R., 1964. Exergy of heat radiation. J. Heat Transf. 86 (2), 187e192.
Rahiminejad, A., Alimardani, A., Vahidi, B., Hosseinian, S.H., 2014. Shuffled frog

leaping algorithm optimization for AC–DC optimal power flow dispatch. Turk. J.
Electr. Eng. Comput. Sci. 22 (4), 874e892.

Rao, S.S., 2009. Engineering Optimization: Theory and Practice. John Wiley & Sons.
Rathore, M.M., Kapuno, R., 2011. Engineering Heat Transfer. Jones & Bartlett

Publishers.
Ratzel, A., Hickox, C., Gartling, D., 1979. Techniques for reducing thermal conduction

and natural convection heat losses in annular receiver geometries. J. Heat
Transf. 101 (1), 108e113.

Reyes-Sierra, M., Coello, C.C., 2006. Multi-objective particle swarm optimizers: a
survey of the state-of-the-art. Int. J. Comput. Intell. Res. 2 (3), 287e308.

Sadeghzadeh, H., Aliehyaei, M., Rosen, M., 2015. Optimization of a Finned shell and
tube heat exchanger using a multi-objective optimization genetic algorithm.
Sustainability 7 (9), 11679e11695.

Sadeghzadeh, H., Ehyaei, M., Rosen, M., 2015. Techno-economic optimization of a
shell and tube heat exchanger by genetic and particle swarm algorithms. En-
ergy Convers. Manag. 93, 84e91.

Saed, A.A., Kadir, W.M.W., 2011. Applying Particle Swarm Optimization to Software
Performance Prediction an Introduction to the Approach, 2011 Malaysian
Conference in Software Engineering. IEEE, pp. 207e212.

Shamoushaki, M., Ehyaei, M., Ghanatir, F., 2017. Exergy, economic and environ-
mental analysis and multi-objective optimization of a SOFC-GT power plant.
Energy 134, 515e531.
Shamoushaki, M., Ghanatir, F., Ehyaei, M., Ahmadi, A., 2017. Exergy and exer-
goeconomic analysis and multi-objective optimisation of gas turbine power
plant by evolutionary algorithms. Case study: aliabad Katoul power plant. Int. J.
Exergy 22 (3), 279e307.

Shirmohammadi, R., Ghorbani, B., Hamedi, M., Hamedi, M.-H., Romeo, L.M., 2015.
Optimization of mixed refrigerant systems in low temperature applications by
means of group method of data handling (GMDH). J. Nat. Gas Sci. Eng. 26,
303e312.

Silva, R., Berenguel, M., P�erez, M., Fern�andez-Garcia, A., 2014. Thermo-economic
design optimization of parabolic trough solar plants for industrial process heat
applications with memetic algorithms. Appl. Energy 113, 603e614.

Silveira, J., Tuna, C., 2003. Thermoeconomic analysis method for optimization of
combined heat and power systems. Part I. Prog. Energy Combust. Sci. 29 (6),
479e485.

Sukhatme, K., Sukhatme, S.P., 1996. Solar Energy: Principles of Thermal Collection
and Storage. Tata McGraw-Hill Education.

Tarique, A., Gabbar, H.A., 2013. Particle swarm optimization (PSO) based turbine
control. Intell. Control Autom. 4 (02), 126.

Tchanche, B., Papadakis, G., Lambrinos, G., Frangoudakis, A., 2009. Fluid Selection
for a Low-Temperature Solar Organic Rankine Cycle.

Tripathi, P.K., Bandyopadhyay, S., Pal, S.K., 2007. Multi-objective particle swarm
optimization with time variant inertia and acceleration coefficients. Inf. Sci. 177
(22), 5033e5049.

Tzivanidis, C., Bellos, E., 2016. The use of parabolic trough collectors for solar cooling
e a case study for Athens climate. Case Stud. Ther. Eng. 8, 403e413.

Vasquez Padilla, R., 2011. Simplified Methodology for Designing Parabolic Trough
Solar Power Plants.

Yazdi, B.A., Yazdi, B.A., Ehyaei, M.A., Ahmadi, A., 2015. Optimization of micro
combined heat and power gas turbine by genetic algorithm. Therm. Sci. 19 (1),
207e218.

Yousefi, M., Ehyaei, M., 2017. Feasibility study of using organic Rankine and recip-
rocating engine systems for supplying demand loads of a residential building.
Adv. Build. Energy Res. 1e17.

Yunus, C.A., Afshin, J.G., 2011. Heat and Mass Transfer: Fundamentals and Appli-
cations. Tata McGraw-Hill, New Delhi, India.

Yuvaraj, N., SriPreethaa, K., Kathiresan, K., Extensive Survey on Datamining Algo-
ritms for Pattern Extraction.

Zadeh, P.M., Sokhansefat, T., Kasaeian, A., Kowsary, F., Akbarzadeh, A., 2015. Hybrid
optimization algorithm for thermal analysis in a solar parabolic trough collector
based on nanofluid. Energy 82, 857e864.

http://refhub.elsevier.com/S0959-6526(19)32171-7/sref41
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref41
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref42
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref42
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref42
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref42
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref42
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref43
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref43
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref43
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref43
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref43
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref43
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref44
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref44
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref44
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref45
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref45
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref45
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref45
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref45
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref46
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref46
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref46
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref46
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref46
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref47
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref47
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref48
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref48
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref48
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref48
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref49
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref49
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref50
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref50
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref50
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref51
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref51
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref51
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref51
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref52
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref52
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref52
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref53
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref53
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref53
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref53
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref54
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref54
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref54
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref54
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref55
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref55
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref55
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref55
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref56
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref56
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref56
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref56
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref57
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref57
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref57
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref57
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref57
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref58
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref58
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref58
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref58
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref58
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref59
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref59
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref59
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref59
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref59
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref59
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref60
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref60
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref60
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref60
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref61
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref61
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref62
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref62
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref63
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref63
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref64
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref64
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref64
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref64
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref65
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref65
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref65
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref66
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref66
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref67
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref67
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref67
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref67
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref68
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref68
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref68
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref68
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref69
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref69
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref71
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref71
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref71
http://refhub.elsevier.com/S0959-6526(19)32171-7/sref71

	Optimization of parabolic through collector (PTC) with multi objective swarm optimization (MOPSO) and energy, exergy and ec ...
	1. Introduction
	2. Mathematical modeling
	2.1. Energy modeling
	2.2. Exergy modeling
	2.3. Economic modeling

	3. Optimization algorithms
	3.1. Particle swarm optimization (PSO)
	3.2. Multi-objective particle swarm optimization (MOPSO)

	4. Results and discussion
	4.1. Description of model, PTC specification and climate condition
	4.2. Validation of model
	4.3. Optimization of PTC
	4.4. Sensitivity analysis
	4.5. Optimization with another algorithm (multi-objective shuffled frog-leaping algorithm)

	5. Conclusions
	Nomenclature:
	References


