CHAPTER 7

Non-Power Use of Nuclear Energy

Contents

7.1	Non-Power Applications	71
7.2	Scientific Applications	71
7.3	Medical and Biological Applications	73
7.4	Industrial Applications	74
7.5	Food Processing and Agriculture	78
Refe	erences	79

7.1 NON-POWER APPLICATIONS

Nuclear energy is an important source of CO₂-free baseload electricity providing an excellent alliance with renewables which need underpinning baseload for when the wind does not blow or the sun shine. However, nuclear applications are not just limited to power generation. The nonpower uses of nuclear energy include many useful applications in science, medicine, industry, food preservation and agriculture. Applications use either radiations such as in accelerators and gamma irradiators or a combination of chemical properties and radiations emitted by radionuclides such as in radioactive tracers and radiopharmaceuticals (Tsoulfanidis, 2018). During the use of nuclear energy radioactive waste can be generated, which must be managed with particular care owing to its inherent radiological, biological, chemical and physical hazards. Producers and users of radioactive materials must be sure that a waste management strategy exists prior to the start of waste generation (IAEA, 2017a).

7.2 SCIENTIFIC APPLICATIONS

Geology, paleoethology and *archaeology* benefit from using radionuclides of primordial or cosmogenic origin in dating geological formations, minerals, rocks, fossil specimens and ancient artefacts. The age of a certain specimen is known from the contents of accumulated and remnant radionuclides

such as $^{40}\rm{Ar}$ and $^{40}\rm{K},~^{206}\rm{Pb}$ and $^{238}\rm{U},$ or $^{12}\rm{C}$ and $^{14}\rm{C}$ (see Sections 4.3 and 4.5).

Well logging in geological surveys characterises geologic formations through boreholes using natural radioactivity measurement and neutron and gamma rays. It involves neutron and gamma ray sources and radiation detectors which are lowered into boreholes. The epithermal neutrons typically used are losing energy through elastic scattering to near-thermal levels before being absorbed by the nuclei in the rock formation. Gamma rays and neutrons resulting from scattering and capture are detected, giving information on porosity and composition. Nuclear well logging helps assess the commercial viability of new or existing wells in oil and gas exploration.

Density of materials can be found using nuclear density gauges, which apply neutron and gamma radiations measuring the reflected (scattered) component that depends both on density and composition. Density gauges are often used in construction of roads to determine the density and moisture content of soils, asphalt, and concrete.

Physical and *chemical* research uses various aspects of nuclear energy. Neutron activation analysis is often used to quantify unknown compositions. Samples of unknown substances are bombarded with neutrons using either nuclear reactors or *neutron generators* producing neutrons from deuterium–deuterium (D–D) or deuterium–tritium (D–T) nuclei fusion. D–D fusion results in the formation of a ³He particle and 2.5 MeV neutrons whereas D–T fusion reaction generates ⁴He and 14.1 MeV neutrons. The nuclei of samples absorb neutrons with many resulting nuclei being radioactive. The activity induced A_c is found as:

$$A_{c} = N \sigma \phi [1 - \exp(-\lambda t)], \qquad (7.1)$$

where N is the number of nuclei in the sample, σ is the neutron absorption cross-section, ϕ is the neutron flux. The emissions resulting from the decay of radioactive nuclei formed are measured determining the spectra of emissions and so through their analysis the parent nuclei are identified.

Flow tracing aiming to analyse pollutant flow and movement of underground and surface waters, measure water runoff, determine leaks, flow rates, dilution and mixing rates is done by adding a radioactive tracer to a gas or liquid.

Radionuclides are used to study metabolic, toxicological or environmental pathways associated with a range of compounds such as drugs, pesticides, fertilisers and minerals. Work may be related to areas such as the manufacture of new drugs, crop production and environmental studies. The radionuclides most commonly employed in studying the toxicology of many chemical compounds and their associated metabolic pathways are ¹⁴C and ³H, as they can be readily incorporated into complex molecules, while ³³P is widely used as a tracer in genetics (IAEA, 2005).

Friction wear is found by impregnating a tracer in the body of working material and detecting the component when released. High temperature measurements for refractory materials such as those operating as internals of jet engines or turbine blades can be done using radioactive noble gases such as ⁸⁵Kr impregnated in the material.

7.3 MEDICAL AND BIOLOGICAL APPLICATIONS

Biological and *medical* research uses radiations and radionuclides because chemically they have a similar behaviour as non-radioactive nuclides. *Medicine* uses radiations such as X- and gamma-rays and radionuclides for diagnosis and treatment of diseases.

Diagnosis includes X-ray imaging such as chest X-ray imaging to detect diseases such as pneumonia, pneumothorax, interstitial lung disease, heart failure, bone fractures and others. Dental X-ray radiography is used in the diagnosis of dental structures, finding healthy and malignant parts that need treatment.

Positron emission tomography (PET) is a technique that detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide such as 15 F, 15 O, 11 C which is introduced into the patient body on a biologically active molecule. The distribution of radionuclide concentration within the body is constructed by computer based on detected signals in the form of 3D images. PET is used to diagnose diseases and to analyse metabolic processes in the body.

Radiopharmaceuticals are used for clinical diagnosis, therapy and medical research. Commercially available kits contain typically kBq quantities of radionuclides that are used for *in vitro* radioassay with ¹²⁵I as the main radionuclide (IAEA, 2005). Imaging of organs is typically done using ^{99m}Tc as the most common radionuclide ($T_{1/2} = 6$ hours), which is normally eluted in a sterile environment from a commercially supplied generator containing ⁹⁹Mo ($T_{1/2} = 66$ hours). Table 7.1 gives data on typical use of radiopharmaceuticals for injection, ingestion or inhalation (Tsoulfanidis, 2018). Table 7.2 gives data on the most frequently used radionuclides in medicine and biological research (IAEA, 2005).

Radionuclide	Chemical form	Organ
³² P	Chromic phosphate, sodium phosphate	Pleura, peritoneum, bone
⁵¹ Cr	Albumin, sodium chromate	Spleen
^{99m} Tc	Sodium pertechnetate	Most systems
¹¹¹ In	Indium pentetate, autologous leucocytes, OncoScynt	Brain surface or spleen
¹²⁵ I	Sodium iodide, albumin, fibrinogen, iothalamate	Thyroid and ovaries
¹³¹ I	Orthoiodohippurate, sodium iodide	Bladder wall and thyroid
¹³³ Xe	Gas	Lung
²⁰¹ Tl	Thallous chloride	Myocardial

 Table 7.1 Typical uses of radiopharmaceuticals for imaging or therapy

Radiotherapy treats diseases by using nuclear energy to kill malignant cells, irradiating them with suitable radiations. Two main types of radiotherapy are used – teletherapy and brachytherapy. *Teletherapy* uses intensive sources of radiation such as gamma rays provided by 60 Co, 192 Ir and 137 Cs sources or accelerators with beams of radiation focused on tumours and provision ensured to shield healthy tissue. *Brachytherapy* uses direct contact of small capsules with radionuclides – sealed radioactive sources – surgically implanted in the tumours. Radionuclides such as 131 I, 32 P, 90 Y and 89 Sr are administered to patients for therapeutic purposes in activities ranging from 200 MBq to 11 GBq. Table 7.3 gives typical data on sealed radioactive sources used in radiotherapy (IAEA, 2005).

7.4 INDUSTRIAL APPLICATIONS

Nuclear energy is used for various industrial applications, such as for seawater desalination, hydrogen production, district heating or cooling, extraction of tertiary oil resources and process heat applications such as cogeneration, coal-to-liquids conversion and assistance in the synthesis of chemical feedstock (IAEA, 2017b). Sealed radioactive sources are used extensively in industry for non-destructive testing such as radiography and gauging.

Radiography is used to analyse the inside of solid products, placing them between the source and a photographic film or imaging detector.

Thickness gauges and level indicators are widely used, measuring the intensity of radiation passing through the material and enabling a

Radionuclide Half-life ¹	Typical activity	Application
³ H 12.3 y	\leq 50 GBq	Radiolabelling, biological research,
	-	organic synthesis
¹¹ C 20.4 m	$\leq 2 \text{ GBq}$	PET, lung ventilation studies
¹⁴ C 5730 y	<1 MBq	Medical diagnosis
	$\leq 50 \text{ GBq}$	Biological research
	$\leq 50 \text{ GBq}$	Labelling
¹⁵ O 122 s	$\leq 2 \text{GBg}^{1}$	PET, lung ventilation studies
¹⁸ F 1.8 h	$\leq 500 \text{ MBq}$	PET
²⁴ Na 15 h	$\leq 5 \text{ GBq}^{1}$	Biological research
³² P 14.3 d	$\leq 200 \text{ MBg}$	Therapeutic nuclear medicine
³³ P 25.4 d	$\leq 50 \text{ MBg}^{-1}$	Biological research
³⁵ S 87.4 d	$\leq 5 \text{GBg}^{1}$	Medical and biological research
36 Cl 3.01×10^{5}	$5 v \leq 5 MBq$	Biological research
⁴⁵ Ca 163 d	$\leq 100 \text{ MBg}$	Biological research
⁴⁶ Sc 83.8 d	$\leq 500 \text{ MBg}$	Medical and biological research
⁵¹ Cr 27.7 d	$\leq 5 \text{ MBg}$	Diagnostic nuclear medicine
	$\leq 100 \text{ MBg}$	Biological research
⁵⁷ Co 271.7 d	$\leq 50 \text{ MBg}^{1}$	Diagnostic nuclear medicine
⁵⁸ Co 70.8 d	?	Biological research
⁵⁹ Fe 44.5 d	\leq 50 MBg	Diagnostic nuclear medicine,
	1	biological research
⁶⁷ Ga 3.3 d	\leq 200 MBq	Diagnostic nuclear medicine
⁶⁸ Ga 68.2 m	≤2 GBq	PET
⁷⁵ Se 120 d	$\leq 10 \text{ MBq}$	Diagnostic nuclear medicine
^{81m} Kr 13.3 s	≤6 GBq	Lung ventilation studies
⁸⁵ Sr 64.8 d	\leq 50 MBq	Biological research
⁸⁶ Rb 18.7 d	$\leq 50 \text{ MBq}$	Medical and biological research
^{82m} Rb 6.2 d	$\leq 50 \text{ MBq}$	Diagnostic nuclear medicine
⁸⁹ Sr 50.5 d	\leq 300 MBq	Therapeutic nuclear medicine
⁹⁰ Y 2.7 d	\leq 300 MBq	Therapeutic nuclear medicine, medical and biological research
⁹⁵ Nb 35 d	\leq 50 MBa	Medical and biological research
99m Tc 6 h	$\leq 100 \text{ GBa}$	Diagnostic nuclear medicine
	= 100 ODq	biological research
¹¹¹ In 2.8 d	\leq 50 MBq	Clinical measurements, biological
¹²³ I 13.2 d	$\leq 500 \text{ MB}_{\odot}$	Medical and biological research
¹²⁵ I 60.1 d	$\leq 500 \text{ MBg}$	Diagnostic nuclear medicine
¹³¹ I 8 d	$\leq 11 \text{ GBa}$	Therapeutic nuclear medicine
¹¹³ Sn 155 d	$\leq 50 \text{ GBq}$	Medical and biological research

 Table 7.2 Radionuclides used in medicine and biological research

(Continued)

Radionuclide	Half-life ¹	Typical activity	Application
¹³³ Xe	5.3 d	\leq 400 MBq	Diagnostic nuclear medicine
¹⁵³ Sm	1.9 d	≤8 GBq	Therapeutic nuclear medicine
¹⁶⁹ Eu	9.3 d	\leq 500 MBq	Therapeutic nuclear medicine, diagnostic nuclear medicine
¹⁹⁸ Au	2.7 d	\leq 500 MBq	Therapeutic nuclear medicine, diagnostic nuclear medicine
²⁰¹ Tl ²⁰³ Hg	3 d 46.6 d	\leq 200 MBq \leq 5 MBq	Diagnostic nuclear medicine Biological research

Table 7.2	(Continued)
-----------	-------------

PET, Positron emission tomography.

 $^{1}y = years$, d = days, s = seconds, h = hour, m = minutes

Radionuclide	Half-life ¹	Typical activity	Application
²⁴¹ Am	433 y	1-10 GBq	Bone densitometry
¹⁵³ Gd	244 d	1-40 GBq	2
¹²⁵ I	60.1 d	1-10 GBq	
²³⁹ Pu-Be	$2.41 \times 10^4 \text{ y}$?	
¹⁹⁸ Au	2.7 d	50-500 MBq	Manual brachytherapy
¹³⁷ Cs	30.17 y	30-300 MBq	
²²⁶ Ra	1600 y	50-500 MBq	
³² P	14.3 d	?	
⁶⁰ Co	5.3 y	50-1500 MBq	
⁹⁰ Sr	29.1 y	50-1500 MBq	
¹⁰³ Pd	17 y	50-1500 MBq	
¹²⁵ I	60.1 d	200-1500 MBq	
¹⁹² Ir	74 d	?	
¹⁰⁶ Ru	1.01 y	?	
¹³⁷ Cs	30.17 y	?	Remote after-loading
¹⁹² Ir	74 d	200 TBq	brachytherapy
⁶⁰ Co	5.3 y	50-1000 TBq	Teletherapy
¹³⁷ Cs	30.17 y	500 TBq	
⁶⁰ Co	5.3 y	50-1000 TBq	Whole blood irradiation
¹³⁷ Cs	30.17 y	2-100 TBq	

Table 7.3 Sealed radioactive sources used in medicine

Pacemakers used to generate electrical impulses control heart muscles and regulate the electrical conduction system of the heart can be powered by small nuclear batteries (IAEA, 2014). $^{1}y = years$, d = days, s = seconds, h = hour

continuous control of such parameters as thickness, density, level of liquids or grainy materials.

Radionuclides such as ²⁴¹Am or ²¹⁰Po are used to remove electric charges on the material and to avoid the build-up of static electricity in production of paper, plastics and synthetic textiles.

Powerful sealed radioactive sources are used for sterilisation of tools and equipment, and sterilisation of food and other products. Sealed sources are also used for process control and for the calibration of laboratory equipment. The dominant radionuclide is present in a very concentrated form with the total activity depending on the application (see Table 7.4; IAEA, 2005).

Radionuclide	Half-life ¹	Typical activity	Application
²² Na	2.6 у	?	Thickness gauges
⁵⁵ Fe	2.6 y	$\leq 5 \text{ GBq}$	Density gauges
⁸⁵ Kr	10.7 y	$\leq 100 \text{ GBq}$	Well logging
⁹⁰ Sr	28.1 y	$\leq 10 \text{ GBq}$	Moisture detectors
¹⁰⁹ Cd	1.27 y	?	X-ray fluorescence
^{134}Cs	2.1 y	\leq 20 GBq	
¹³⁷ Cs	30.17 y	$\leq 10 \text{ GBq}$	
¹⁴⁷ Pm	2.62 y	$\leq 2 \text{ GBq}$	
²⁴¹ Am-Be	433 y	≤ 500 GBq	
²³⁸ Pu	87.7 y	≤5 GBq	
²⁵² Cf	2.6 y	$\leq 10 \text{ GBq}$	
²¹⁰ Po	138 d	$\leq 20 \text{ GBq}$	Static eliminators
³ H	12.3 y	$\leq 10 \text{ TBq}$	Electron capture detectors
⁶³ Ni	100 y	\leq 50 GBq	-
¹⁶⁹ Yb	32 d	≤1 TBq	Industrial radiography
¹⁶⁰ Tm	128.6 d	≤1 TBq	
⁶⁰ Co	5.3 y	≤15 TBq	
⁷⁵ Se	120 d	≤2 TBq	
¹⁹² Ir	74 d	≤5 TBq	
⁶⁰ Co	5.3 y	$\leq 40 \text{ PBq}$	Sterilisation
⁶³ Ni	100 y	<4 MBq	Calibration sources
¹³⁷ Cs	30.17 y	<4 MBq	Anatomical markers
⁵⁷ Co	271.7 d	$\leq 400 \text{ MBq}$	Standard sources in instruments
²²⁶ Ra	1600 y	<10 MBq	
¹⁴⁷ Pm	2.62 y	<4 MBq	
³⁶ Cl	$3.01 \times 10^5 \text{ y}$	<4 MBq	
¹²⁹ I	1.57 10 ⁷ y	<4 MBq	

Table 7.4 Sealed radioactive sources used in industry (IAEA, 2005)

 $^{1}y = years$, d = days, s = seconds, h = hour

Figure 7.1 A typical smoke detector in the International Atomic Energy Agency building.

Smoke detectors containing extremely small amounts of radioactive substances are widely used both at industrial facilities and residential houses (Fig. 7.1). They typically contain ²⁴¹Am or ²³⁹Pu as a source of alpha radiation and two ionisation chambers, one of which is open to ambient air. Alpha particles ionise the air in both ionisation chambers, thus with a small electric voltage applied a small electric current exists in both chambers. In absence of smoke these currents are balanced. When smoke enters the open chamber an imbalance occurs between two currents coming from ionisation chambers so that the alarm is triggered at a certain threshold.

7.5 FOOD PROCESSING AND AGRICULTURE

Ionising radiation is used to stop the sprouting of root crops after harvesting, delay ripening and increase juice yield, and to kill any parasite microorganisms, bacteria, viruses or insects present. Radiation is typically

Application	Dose, Gy
Inhibition of sprouting	3-12
Insect disinfestation	20-80
Parasite disinfestation	10-3000
Shelf-life extension	50-3000
Bacteria sterilisation	1500-1700
Reduction of bacteria in dry food ingredients	3000-20,000
Production of meat and fishery products to shelf-stable at room temperature	25,000-60,000

 Table 7.5 Typical doses of gamma radiation in food processing

Food irradiation is currently permitted by over 40 countries and volumes are estimated to exceed 500,000 tonnes.

provided by sealed radioactive sources, X-ray generators or electron accelerators. The average amount of energy imparted for effective food irradiation is shown in Table 7.5 (after Tsoulfanidis, 2018).

REFERENCES

- IAEA. (2005). Management of waste from the use of radioactive material in medicine, industry, agriculture, research and education. IAEA safety standards series no. WS-G-2.7. Vienna: IAEA.
- IAEA. (2014). Management of disused sealed radioactive sources. Nuclear energy series NW-T-1.3. Vienna: IAEA.
- IAEA. (2017a). Selection of technical solutions for the management of radioactive waste. TECDOC-1817. Vienna: IAEA.
- IAEA. (2017b). Industrial applications of nuclear energy. Nuclear energy series NP-T-4.3. Vienna: IAEA.
- Tsoulfanidis, N. (2018). Nuclear energy (2nd ed.). New York: Springer, 438 p.