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a b s t r a c t 

One of the cornerstones of content-based image retrieval (CBIR) for medical image diagnosis is to select 

the images that present higher similarity with a given query image. Different from previous literature 

effort s, the present work aims to seamlessly fuse a powerful machine learning strategy based on the ac- 

tive learning paradigm, in order to obtain greater efficacy regarding similarity queries in medical CBIR 

systems. To do so, we propose a new approach, named as Medical Active leaRning and Retrieval (MAR- 

Row) to aid the breast cancer diagnosis. It enables to deal with more feasible strategies, specifically for 

the medical context and its inherent constraints. We also proposed an active learning strategy to select 

a small set of more informative images, considering selection criteria based on not only similarity, but 

also on certain degrees of diversity and uncertainty. To validate our proposed approach, we performed 

experiments using public medical image datasets, different descriptors for each one and compared our 

approach against four widely applied and well-known literature approaches, such as: Traditional CBIR 

without relevance feedback strategies, Query Point Movement Strategy (QPM), Query Expansion (QEX) 

and SVM Active Learning (SVM-AL). From the experiments, we can observe that our approach presents a 

strong performance over state-of-the-art ones reaching a precision gain of up to 87.3%. MARRow also pre- 

sented a well-suited and consistent increasing rate along the learning iterations. Moreover, our approach 

can significantly minimize the expert’s involvement in the analysis and annotation process (reducing up 

to 88%). The results testify that MARRow improves the precision of the similarity queries. It is capable to 

explore at the maximum the experts’ intentions, which are captured during the relevance feedback pro- 

cess, incrementally improving the learning model. Therefore, our approach can be suitable and applied 

in challenging processes, such as real and medical contexts, enhancing medical decision support systems 

(e.g. breast cancer diagnosis). 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Over the last decades, medical image databases have been

rowing due to technological advances in data acquisition and stor-

ge devices. Hence, the improvements of automatic retrieval and

lassification [1–10] approaches have become necessary to handle

nd organize such data. To perform these tasks we can use the

ontent-based image retrieval (CBIR) process. It aims to retrieve

mages based on the similarity (or dissimilarity) between a given

uery image and an image dataset. 

To compute these similarities, low-level features based on color,

exture and/or shape are extracted from images [11] . Besides the
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et of features, the dissimilarity function (or distance function)

nd the expert (e.g. radiologist) interaction with the CBIR process

re key aspects to obtain more precise results. Once each expert

as his/her own perception and expertise, the relevance feedback

RF) paradigm can be applied to capture the expert’s intention in

 coarse-grained way [12] . It allows the expert to label the re-

rieved images as relevant or irrelevant regarding a given itera-

ion. In other words, it leads to a query refinement. Then, when

he CBIR process returns the similar images according to a query

mage, the pipeline can be fed with the relevance degree of each

etrieved image. This information is aggregated with the image fea-

ures and the distance function to perform a new query that is

loser to the expert’s intention. The RF process can be done un-

il the expert is satisfied with the returned images. 

Although there is a plenty of RF methods in the literature

13–16] , to the best of our knowledge, the majority of them leave

he definition of the degree of relevance and irrelevance to the ex-
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Fig. 1. Examples of informative (uncertain) samples from two different classes: (a) 

benign and (b) malignant lesions. It is possible to notice that both images (regions 

of interest from different classes) present a high similarity degree regarding their 

lesions (highlighted by dashed lines) and other tissues. 
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Algorithm 1: Proposed Approach - MARRow. 

input : query image q 

output : final learning model M 

� and final list L 

�
R 

ordered by relevance (from the most similar to 

the least similar to q ) 

auxiliaries : image dataset I, sets of feature extractors F i and 

distance functions D j , learning set Z 2 , best 

feature extractor Best F D.F eat ureExt ractor, 

number of clusters k , set of centroids C, ordered 

list L S of the closest images to q , best distance 

function BestF D.Distance , number of desired 

samples ns , temporary training set Z 

′ 
1 , training 

set Z 1 , current learning model M , number of 

selected samples nu . 

1 BestF D ← findBestPairFeatureDistance( I, F i , D j ); 

2 Z 2 ← featureExtraction( Best F D.F eat ureExt ractor); 

3 C ← clusteringCentroids( Z 2 , k ); 

4 L S ← similaritySearch( q , Z 2 , BestF D.Distance ); 

5 Z 

′ 
1 ← C ∪ s i ∈ L S , i = 1 , 2 , ..., ns ; 

6 Z 1 ← annotation( Z 

′ 
1 ); 

7 M ← training( Z 1 ); 

8 repeat 

9 Z 

′ 
1 ← getALStrategy( nu , M , Z 2 \Z 1 , q , BestF D.Distance ); 

10 Z 1 ← Z 1 ∪ annotation( Z 

′ 
1 ); 

11 M ← reTraining( Z 1 , M ); 

12 until satisfied ; 

13 M 

� ← M ; 

14 L 

�
R 

← sorting( Z , M �), L 

�
R 

⊂ I; 
pert. Often these methods do not take into account or do not take

full advantage of this information throughout the learning itera-

tions. Besides that, once a query is refined at each iteration more

and more relevant images are returned. However, all these im-

ages may not contribute to the learning process of a given image

classifier. Therefore, to overcome these issues, active learning (AL)

strategies can be embedded into the CBIR process. 

AL [17] is a machine learning paradigm that selects the most

informative samples for the learning process. It allows a small set

of unlabeled learning samples to be selected and displayed, itera-

tively, for expert annotations. Then, the annotated set is used for

training a classifier. Several active learning techniques [18,19] have

been developed using different selection strategies to obtain the

most informative samples. Although well-known and widely used

in different domains, many of them are unfeasible, specifically for

the medical context and its inherent constraints (e.g. related to

dealing with large datasets, interactive response times, and mini-

mal expert intervention in the learning process). 

To take into account these characteristics, we propose in the

next section an active learning strategy dedicated to the RF in the

CBIR process, based on the uncertainty and diversity criteria. We

focus our main attention on the medical context, specifically in-

volving the diagnosis of breast cancer. 

2. Methodology 

We proposed an approach, named as Medical Active leaRning

and Retrieval (MARRow), that aggregates active learning strategies

for content-based breast image retrieval. In the first iteration, the

expert performs the traditional annotation process (indicating rel-

evant and irrelevant images, according to a given query image), as

the classic RF loop. Next, from the second iteration forward, the

selected and retrieved images, which will be trained in an active

learning process, are those that will most contribute to the learn-

ing process of a given classifier. Unlike the literature works, in our

approach the most informative images are those that present the

best balance between not only the similarity with the query im-

age, but also certain degrees of diversity and uncertainty. In other

words, those images that are from different classes and difficult

to differentiate, when we compare the query image semantics and

the retrieved image ones (e.g. images at the boundaries of two dif-

ferent/overlapped classes). 

For instance, in Fig. 1 , we can see an example of two in-

formative (uncertain) images located at the boundaries of two

different classes, benign and malignant lesions, respectively, that

will be presented to the expert (instead of only images closer

to the query center). It is possible to notice that both images

(regions of interest from different classes) present a high similarity

degree regarding their lesions (highlighted by dashed lines) and
ther tissues. Through our approach, we can balance the learning

rocess with the set of images that will most contribute to reach

 faster and higher accuracy of the classifier. Then, consequently,

t will improve the quality of the returned images in the CBIR

rocess. It occurs because the classifier will be trained with the

ost informative (similar and uncertain) images. 

Algorithm 1 and Fig. 2 present the main steps of our proposed

pproach. The dashed lines ( Fig. 2 ) represent the cycle of the in-

remental learning process. In Step 1, given an image dataset I,

nd a query image q , it is performed the selection of the best de-

criptor (best feature extractor and distance function pair). We an-

lyzed several sets of feature extractors F i and distance functions

 j ( Algorithm 1 , Line 1), due to their importance to the retrieval

rocess. Afterwards, low-level features are extracted from I, us-

ng the best feature extractor and generating the learning set Z 2 

 Algorithm 1 , Line 2). We also extracted features from q , using the

ame extractor. 

Considering Step 2, the learning set is partitioned in k clusters

sing a given clustering method. After the clustering process, it is

enerated the set of centroids C ( Algorithm 1 , Line 3). In addition

o the images from C, we selected the most similar images to q . To

o so, we obtained the desired number of images from L S , which

s ordered by an increasing order of distance from q ( Algorithm 1 ,

ines 4 − 5 ). Then, those images are presented to the expert for

nnotation (as relevant/irrelevant). The annotated images consti-

ute the initial training set Z 1 ( Algorithm 1 , Line 6), which is used

n the classifier training process, generating the first instance of the

earning model M (Step 3, Line 7). 

In Step 4, the current learning model actively participates in

he process of selecting the most informative images to be used

n its own training, and in order to improve the query result, re-

urning more similar images. Therefore, the proposed selection cri-

eria are based on uncertainty and similarity in relation to the

uery image q . So, the temporary training set Z 

′ 
1 receives the most
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Fig. 2. Pipeline of the proposed approach. 
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Algorithm 3: Proposed Selection Strategy. 

input : number of selected samples nu ,learning set 

Z 

′ 
2 ,query image q and best distance function 

BestF D.Distance 

output : list of selected candidate samples L C . 
auxiliaries : organized lists based on labels L i ,nearest 

neighbor adjs,ordered lists of positive and 

negative samples L P and L N , and list based on 

the center of mass of each label L com i . 

1 L C , L i ← ∅ , i = {1, 0}; 

2 for each s ∈ Z 

′ 
2 

do 

3 L i ← L i ∪ { s } , i = s.labelid; 

4 adjs ← get1NN( s ); 

5 if s.labelid 
 = adjs.labelid then 

6 L C ← L C ∪ { s, adjs } ; 
7 end 

8 end 

9 if L C 
 = ∅ then 

10 L P ← positiveSelection( L C ); 
11 L N ← negativeSelection( L C ); 
12 L P ← similaritySearch( q , L P , BestF D.Distance ); 

13 L N ← similaritySearch( q , L N , BestF D.Distance ); 

14 L C ← concatenation( L P , L N ); 

15 end 

16 if size( L C ) < nu then 

17 L com i ← centerOfMass( L i ), i = {1, 0}; 

18 L P ← decreasingOrder( L com 1 , L 1 ); 

19 L N ← decreasingOrder( L com 0 , L 0 ); 

20 repeat 

21 L C ← L C ∪ { s, t} , s ∈ L P and t ∈ L N ; 
22 until size( L C ) = nc; 

23 end 
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nformative images, obtained by our proposed active learning strat-

gy (described by Algorithm 2 ). 

Algorithm 2: Proposed Active Learning Strategy. 

input : number of selected samples nu , current learning 

model M , learning set Z 2 \Z 1 , query image q and 

best distance function BestF D.Distance 

output : list of selected samples L R 

auxiliaries : learning set Z 

′ 
2 
, ordered list of candidates L C 

1 if size( Z 2 \Z 1 ) < nu then 

2 nu ← size( Z 2 \Z 1 ); 

3 end 

4 Z 

′ 
2 

← classifying( Z 2 \Z 1 , M ); 

5 L C ← getSelection( nu , Z 

′ 
2 
, q , BestF D.Distance ); 

6 while i ≤ nu do 

7 L R 

← L R 

∪ s i ∈ L C ; 
8 end 

Then, the selected image set Z 

′ 
1 is displayed to the expert.

rom the first learning iteration, this set of selected images are

lready previously labeled by the current instance of the model.

o, the expert needs only to correct the labels of misclassified im-

ges (validating as relevant or irrelevant). The images confirmed

nd corrected properly by the expert are added to the previous

raining set Z 1 ( Algorithm 1 , Line 10). It is important to emphasize

hat our strategy does not show samples that were already labeled

 Z 2 

⋂ 

Z 1 = ∅ or in a simplified notation Z 2 \Z 1 ). Afterwards, the

raining is performed again and a new instance of the model M is

enerated ( Algorithm 1 , Line 11). 

Steps 3 and 4 ( Algorithm 1 , Lines 8 − 12 ) are repeated until the

xpert is satisfied with the results retrieved by the proposed learn-

ng process. Once satisfied, we can obtain a final learning model

 

� (which can be applied in an unlabeled dataset) and a final list

 R 

� ordered by relevance (from the most similar to the least one)

n relation to the query image q . 

.1. Active learning strategy 

We also proposed a new active learning strategy (described by

lgorithm 2 ) that selects a small set of more informative images.

ur idea is to explore and use the knowledge of the classifier,

hich was obtained from the most informative samples, improv-

ng the image retrieval process. 

Initially, Lines 1 − 3 from Algorithm 2 refer only to a control to

erify if there are nu desired samples to be selected in the learn-

ng set Z 2 \Z 1 , since it is an iterative process, in which a set of

mages is selected at each iteration. So, the learning set is classi-

ed by the current learning model, generating the classified learn-

ng set Z 

′ 
2 

( Algorithm 2 , Line 4). After the classification process,

e obtain the list of the most informative (candidate) images L C 
 Algorithm 2 , Line 5), according to the proposed selection criteria,

hich is deeply described by Algorithm 3 . Then, we obtain the se-
ected relevant set L R 

, composed of the nu most informative (most

ncertain and similar) samples from L C ( Algorithm 2 , Lines 6 − 8 ).

For the proposed selection strategy ( Algorithm 3 ), initially, an

rdered list of candidates L C is created to receive the candidate

amples to be displayed for the expert ( Algorithm 3 , Line 1). Learn-

ng lists L i , organized based on labels, are also created, where i

enotes the i th class ( i = { 1 , 0 } , i.e. relevant and irrelevant classes,

espectively). Then, each sample s from the learning set Z 

′ 
2 , which

as previously labeled by the current learning model, is analyzed

 Algorithm 3 , Lines 2 − 8 ), in order to evaluate which ones are the

ost informative candidates. All samples are separated according

o the class labels provided by the model. After that, each sample

 ∈ Z 

′ 
2 

is stored in a list of labels L i , corresponding to their respec-

ive class label i ( i = s.l abel id) ( Algorithm 3 , Line 3). 

So, we obtain the 1-nearest neighbor image (1-NN) to the im-

ge s , named as adjacent image adjs ( Algorithm 3 , Line 4). If the

abels (provided by M ) from the images s and adjs are different

i.e. s.labelid 
 = adjs.labelid , Line 5), both images are inserted into

he list of candidates L C ( Algorithm 3 , Line 6). These images are
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Fig. 3. P&R curves obtained by each approach over the I 1 dataset, considering the: (a) first, (b) third, (c) fifth and (d) eighth learning iterations. 
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considered the most informative (uncertain) candidate ones, since

they are close to each other and have been labeled by the current

instance of the model as being from different classes. These (di-

verse) samples can bring benefits rather than samples considered

from the same class. 

If the previous selection criterion is satisfied, the set of candi-

dates L C is not empty (i.e. L C 
 = ∅ , in Line 9). Then, samples from

L C are separated in two auxiliary lists L P and L N , containing the

images classified as relevant (positive) and irrelevant (negative), re-

spectively ( Algorithm 3 , Lines 10 − 11 ). Each sample from L P and

L N are ordered by the distance to the query image q ( Algorithm 3 ,

Lines 12 − 13 ). So, L C receives the concatenation of samples from

L P and L N ( Algorithm 3 , Line 14). 

If the desired number of images has not been obtained (i.e.

size( L C ≤ nu )), we considered another criterion for selecting im-

ages ( Algorithm 3 , Lines 16 − 23 ). The centers of mass com i from

each class i are located and stored in their corresponding list L com i 

( Algorithm 3 , Line 17). Afterwards, samples from L i , i = { 1 , 0 } (i.e.
ositive and negative samples) are organized in their respective

ists ( L P and L N ), in a descending order, according to the dis-

ances between them and the centers from L com i ( Algorithm 3 ,

ines 18 − 19 ). 

Then, we can obtain a list of candidates L C , selecting one image

rom each list L P and L N , respectively, until the desired number

f images is obtained ( Algorithm 3 , Lines 20 − 22 ). Finally, our se-

ection strategy returns the set of the most informative (most un-

ertain and similar) candidates L C . 

. Experiments 

.1. Datasets 

The experiments were performed based on public image

atasets from the MAMMOSET database [20] , which is composed

f regions of interest (ROIs) of mammograms from three datasets

VIENNA, MIAS and DDSM). The VIENNA dataset was created by
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Fig. 4. P&R curves obtained by each approach over the I 2 dataset, considering the: (a) first, (b) third, (c) fifth and (d) eighth learning iterations. 
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Table 1 

Description of the dataset I 1 - VIENNA. 

Classes Images 

birads3-calcification 33 

birads4-calcification 113 

birads5-calcification 32 

birads3-mass 61 

birads4-mass 72 

birads5-mass 49 

Normal 41 

Table 2 

Description of the datasets I 2 - MIAS, I 3 - DDSM, I 4 - MIAS-DDSM. 

Classes Images 

MIAS DDSM MIAS-DDSM 

Calcification-benign 14 615 629 

Calcification-malign 12 547 559 

Mass-benign 38 906 944 

Mass-malign 20 824 844 
he Department of Radiology at University of Vienna. It is com-

osed of mammograms collected from the Breast Imaging Report-

ng and Data System (BI-RADS) Tutorium, which was carried out

t the same university. The Mammographic Image Analysis Society

MINI-MIAS) repository is a reduced version of the MIAS dataset.

he DDSM (Digital Dataset for Screening Mammography) reposi-

ory is composed of medical breast images with 12 bits per pixel,

rganized into four categories based on the view of the breast

mage, which are (i) LCC: Left CranioCaudal, (ii) RCC: Right Cran-

oCaudal, (iii) LMLO: Left MedioLateral Oblique, and (iv) RMLO:

ight MedioLateral Oblique. For a more detailed description of the

atasets see [20] . 

From these datasets, different subsets can be explored. Due to

pace constraints, we have selected some of them, in order to eval-

ate our approach in distinct complexity scenarios. Each subset

onsidered in our experiments is named as I n i , where the higher

he n i , the higher (more challenging) the image dataset complex-

ty. Tables 1–3 present the classes and the number of samples per
lass for each subset. 
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Fig. 5. P&R curves obtained by each approach over the I 3 dataset, considering the: (a) first, (b) third, (c) fifth and (d) eighth learning iterations. 

Table 3 

Description of the dataset I 5 - VIENNA-DDSM. 

Classes Images 

birads1-calcification 1040 

birads2-calcification 91 

birads3-calcification 56 

birads4-calcification 119 

birads5-calcification 34 

birads1-mass 1647 

birads2-mass 58 

birads3-mass 83 

birads4-mass 75 

birads5-mass 49 

Normal 41 

 

 

Table 4 

Properties of each feature extractor applied to the datasets. 

Feature extractor Category #Features 

BIC Histogram [22] Color 512 

Edge Histogram [23] Color 150 

Normalized Histogram [24] Color 256 

Haralick [25] Texture 24 

Rotation Invariant LBP [26] Texture 108 

Texture Spectrum [27] Texture 8 

Daubechies [28] Shape 16 

Haar [28] Shape 16 

Zernike [29] Shape 36 

s  

t  

f  

d  

e  
3.2. Scenarios 

In order to corroborate the generalization and enable the repli-

cation of our approach, we used public medical image datasets de-
cribed in Section 3.1 . From these datasets, we extracted color, tex-

ure and shape-based features, detailed in Table 4 , using different

eature extractors. Each type of feature was compared with several

istance functions, in order to obtain the best descriptor (a feature

xtractor joined with a distance function) to a given image dataset.
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Fig. 6. P&R curves obtained by each approach over the I 4 dataset, considering the: (a) first, (b) third, (c) fifth and (d) eighth learning iterations. 
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o do so, seven different distance functions were considered: L 1 ,

 2 , L ∞ 

, X 2 , Canberra, Jeffrey Divergence (JD), and dLog [21] . 

Learning strategies with RF in CBIR have been extensively stud-

ed to improve the semantic gap issue [11] . In order to show the ef-

cacy of our approach, besides the Traditional CBIR (CBIR-T) with-

ut relevance feedback strategies, we presented comparisons with

idely and well-known RF techniques, such as: Query Point Move-

ent strategy (QPM) [16] and Query Expansion (QEX) [15] . QPM is

ased on the concept of moving the query center, throughout the

terations, towards more dense and relevant regions of the query

pace according to the expert intention. QEX promotes the dilation

f the query aggregating to it new query centers. 

Moreover, in order to improve the learning efficiency of the rel-

vance feedback, active learning has been explored. Many active

earning methods have been developed considering different se-

ection criteria [18,19] , and also applied in different classification

asks and domains. For instance, it is possible to choose samples

ear the decision boundary of a classifier [18,19] . The insight is

o select the most diverse and uncertain samples which are close
o the decision boundary of the classifier, demonstrating that they

re the most difficult samples and, consequently, providing greater

enefit to the model. In [18] , it was proposed an active learning

ethod with support vector machines (SVM-AL) for retrieval tasks.

he method selects the samples which are closest to the classifica-

ion boundary of the SVM classifier. There are also some latter re-

earch efforts [18,30,31] . However, they require the optimization of

n objective function, resulting in high computational complexity.

hen, in the present paper, we also presented comparisons with

he well-known and pioneering SVM-AL proposed by Kremer et al.

18] , which is closer to our proposed approach, since it fuses the

ctive learning paradigm into the CBIR process. 

Our approach can be instantiated considering any supervised

lassifier or clustering technique. However, the analysis of differ-

nt classifiers and clustering techniques were not the main scope

f the present work. Then, to generate the learning model, in

ur experiments, we used the k -Nearest Neighbor ( k -NN) classi-

er. Regarding the clustering process, we considered the k -means

echnique. 
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Fig. 7. P&R curves obtained by each approach over the I 5 dataset, considering the: (a) first, (b) third, (c) fifth and (d) eighth learning iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Best distance function for each feature extractor and dataset I . The highlighted data 

indicate the best descriptor. 

I 1 I 2 I 3 I 4 I 5 

BIC L ∞ L 2 Canberra Canberra Canberra 

Edge Histogram JD L 2 Canberra Canberra JD 

Norm. Histogram L ∞ L 2 Canberra Canberra Canberra 

Haralick JD Canberra L 2 Canberra Canberra 

LBP JD L 2 L ∞ L ∞ L ∞ 
Texture Spectrum Canberra Canberra L 2 L 2 L ∞ 
Daubechies JD L 2 L ∞ L ∞ L ∞ 
Haar L 1 Canberra Canberra dLog Canberra 

Zernike L ∞ L 1 X 2 X 2 L 1 

L  

d  

e  

t

To evaluate our proposed approach, we generated Precision and

Recall (P&R) graphs [32] . As a rule of thumb, the closer the P&R

curve to the top of the graphic, the better is the technique. To build

the P&R graphs, we performed several similarity queries based on

the k -nearest neighbor operator and randomly choosing the query

images from the image datasets. The number of images retrieved

by each similarity search was defined as 30 (based on daily medi-

cal practice routine). When a given image class contains less sam-

ples than 30, the value of k is set according to the number of

samples of such class. To summarize the results, we employed the

mean average precision (MAP), as defined in [32] . 

3.3. Results and discussion 

Initially, we performed an analysis of the best descriptors for

the mammographic image datasets. Table 5 presents the best dis-

tance function for each feature extractor, and the best descrip-

tor highlighted for each image dataset. The best descriptors were
BP-JD, LBP- L 2 , Zernike- X 2 , Zernike- X 2 and Daubechies- L ∞ 

for the

atasets I 1 − I 5 , respectively. Then, these descriptors were consid-

red in the experiments to compare our proposed approach against

he state-of-the-art ones. 
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Table 6 

Overall MAP throughout the (1st–8th) iterations. Bold data correspond to the best 

results. 

Dataset QPM QEX SVM-AL MARRow 

I 1 - VIENNA 65.7 92.7 76.4 97 . 0 

I 2 - MIAS 89.4 97.6 86.5 99 . 7 

I 3 - DDSM 34.6 42.4 41.4 53 . 3 

I 4 - MIAS-DDSM 34.4 42.1 41.3 52 . 7 

I 5 - VIENNA-DDSM 51.7 54.8 53.3 63 . 1 
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Figs. 3–7 show the results comparing our proposed approach

MARRow) against CBIR-T, QPM, QEX and SVM-AL approaches over

a) first, (b) third, (c) fifth and (d) eighth iterations, using the

atasets I 1 –I 5 , respectively. The precision obtained by the tradi-

ional CBIR (CBIR-T) approach was illustrated as a baseline in all

raphs. MARRow presented higher precisions than the state-of-

he-art approaches, considering all iterations and datasets. We can

learly note that MARRow also presented a well-suited and consis-

ent increasing rate along the iterations. 

For instance, in Fig. 3 (a), MARRow presented a precision up to

.8 and 2.4 times better when compared with QPM and SVM-AL,

espectively. Besides, it reached precision gains of 87.3% at a recall

evel of 50% against QEX. Considering the first recall levels, our ap-

roach also presented good results against QEX, for instance, 7.6%,

5%, and 65.3%, at recalls from 10% to 30%, respectively. 

The same behavior can be observed with the other datasets

 Figs. 4–7 ), which represent different scenarios of complexity. As

he complexity increases, they present considerably difficult classes

see Section 3.1 ), due to the intrinsic inter-class similarity, which

eads to a harder separation between relevant and irrelevant im-

ges, and a fine-grained annotation process. Despite these issues,

ARRow presented the best results in comparison with the other

pproaches. Analyzing the first iterations ( Figs. 5 –7 ), all approaches

lmost ties. However, at further iterations, MARRow presented a

etter and more consistent precision growth. This is a key ingredi-

nt of MARRow. While other approaches reach a saturation point,

ARRow is capable to mitigate this problem throughout the itera-

ions. It is possible to note that more naive approaches (e.g. QPM)

resented a stronger saturation plateau (i.e. saddle point). 

Summarizing the results, Table 6 presents the overall MAP

btained by each approach, throughout the (1st to 8th) learning

terations. According to our extensive experimental evaluation,

ARRow presented the best precisions for all datasets. Through

ur approach it was also possible to minimize the computa-

ional time of the learning process, once it reduces the expert’s

nvolvement in the analysis and annotation process (reducing

p to 88%). This reduction occurs because the expert does not

eed to annotate (correct) the labels of all samples, as required

y the literature works. Our approach enables to obtain a more

obust classifier (i.e. it has fewer misclassifications, as can be seen

rom the presented results, e.g. see Table 6 ), as more informative

amples are selected for its learning. 

. Conclusion 

In this paper, we proposed the MARRow ( M edical A ctive

ea R ning and R etrieval) approach, which aggregates AL and RF

ethods in the medical image domain. We also proposed a new

L strategy that was capable to be seamless integrated into the

BIR core process in order to mitigate several drawbacks, regard-

ng the efficacy and efficiency of such domain. This is because the

roposed AL strategy selects a small set of more informative im-

ges, considering selection criteria based on not only similarity, but

lso on certain degrees of diversity and uncertainty. These selected

mages can bring benefits rather than those from the same class

sually considered by literature works. 
From the experiments, it is straightforward to notice that our

pproach not only improves in a great extent the precision of the

edical similarity queries, but also boosts the efficiency of the

rocess. Our approach overcomes the other state-of-the-art ap-

roaches, reaching precision gains of up to 87.3%. The results tes-

ify that MARRow is feasible to be applied in challenging processes,

uch as medical image analysis. As future works, we intend to pro-

ose other AL strategies, in order to improve the selection of the

ost informative samples and then the quality of the retrieved

mages. 
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