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A B S T R A C T

New energy materials that act as clean power sources and data science are developing rapidly in the past decades
and the advancement of the two research areas have significantly benefited the development of each other. At
the meantime, structural information of materials have been obtained and stored in various structure databases,
such as the Cambridge Structure Database (CSD) and the Inorganic Crystal Structure Database (ICSD).
Researchers have developed various structure-property relationships of the energy materials, which could be
applied to screen the potential suitable materials from structure databases; this has become an efficient route to
explore and design new energy materials. In this article, we review recent progresses on the data mining study of
new energy materials based on structure databases such as CSD and ICSD, in the context of dye-sensitized solar
cells and perovskite solar cells, and also include other energy systems such as water splitting systems, lithium
batteries, thermoelectric devices and gas adsorbent materials. The structure descriptors that are more funda-
mental in the data mining procedure employing the structure-properties relationships are focused; the structural
descriptors are complementary to the quantum descriptors and are efficient in the materials design process. We
believe that with the successful formulation of more advanced and case-by-case structure-property relationships
of energy materials, many new energy materials could be efficiently identified with much lower cost and shorter
design period via the data mining process.

1. Introduction

There has been global energy crisis and environmental issues in the
past decades due to the overuse of fossil fuels. New energy materials
should be identified and developed to provide clean energy [1–5]. For
example, efficient solar cell materials should be explored to harness the
clean energy from the non-exhaustible solar system to provide the
electricity; materials incorporated in water-splitting systems should be
screened to provide solar fuels; lithium-based materials could be
exploited to be tailored to undergo charge/discharge process reversibly
and store electrical energies for portable devices and vehicles; metal-
organic frameworks could be discovered to capture the carbon and gas
molecules effectively; thermoelectric materials and piezoelectric ma-
terials should be identified to covert the thermal and mechanical energy
into the electric current. At the current stage, the discovery of these
energy materials relies predominantly on the experimental serendipity
and the try-and-error experimental process that are inefficient and
time-consuming. Nevertheless, many evidences have shown that the
discovery process of new energy materials could be greatly accelerated
by the data mining process, which have already shown their excellence

in pharmaceutical drug discovery, finance, medicine, and marketing
[6,7].

A large amount of structure information of new materials have been
determined and stored in structure databases, which are mainly pre-
pared by the crystallization processes and solved by the X-ray diffrac-
tion techniques and other crystallographic techniques [8]. Most of these
materials have their structures accurately determined within the re-
solution of 0.01 Å and serve as outstanding platforms for the structural
analysis and more advanced structure-property analysis. Two out-
standing databases of materials structures have emerged: the Cam-
bridge Structure Database (CSD) and the Inorganic Crystal Structure
Database (ICSD), which focus on the accurate crystal structures of or-
ganic and inorganic materials, respectively [9,10]. These databases
formed a good foundation for the data mining process of new energy
materials. These databases store structures of materials that have al-
ready been synthesized in laboratory and exhibit significant advantages
to expedite the process towards achieving promising candidates
[11,12].

To help the fundamental understanding of the energy materials and
facilitate the following-up materials engineering methods, a series of
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design principles based on materials structures ‘structure-property re-
lationships’ have been developed. Many researches have been devoted
to the formulation of the structure-property relationships of new energy
materials to better understand the mechanisms involved. A bonus of the
structure-property relationship study is that new energy materials with
targeting properties could be efficiently identified from the structure
database by proper algorithms that consider the structure-property re-
lationship [13,14]. By simply inputting the algorithms that consider the
structure-property relationships using specific codes, potential mate-
rials available for experimental validation can be retrieved from
structure databases [15–21].

In this manuscript, we focus on recent progresses on data mining
new energy materials exploiting the structure–property relationships
from structure databases, especially CSD and ICSD, in the context of
solar cells, water splitting systems, lithium batteries, thermoelectric
devices and gas adsorbents. The structural descriptors are mainly fo-
cused, with the quantum descriptors also discussed to reveal the data
mining process of the new energy materials. While we emphasize on the
fundamental crystal structure databases such as CSD and ICSD, it
should be noted that a number of derived databases exist such as those
storing the calculated materials properties. The readers could be re-
ferred to the existing literatures reviewing the high-throughput calcu-
lations and derived databases [14,22–28].

2. Structural databases

2.1. Crystal structure databases

The CSD database presented by the Cambridge Crystallographic
Data Centre (CCDC) starts from 1965 to represent the world’s largest
repository storing organic crystal structures; it provides a foundation
for the data mining of organic materials-based energy devices [14,29].
The CSD includes both small organic molecules and metal organic
frameworks (MOFs). The structure information is stored in a standard
crystallographic information file (CIF) format which includes the
crystal structure, the atomic positions, the bond length and the bond
angles [30]. The packing mode including the space group and the
symmetry elements are also available [31]. CSD now contains over
900,000 entries of accurate 3D structures from X-ray and neutron dif-
fraction analyses [30,32–34]. User-friendly interface software tools are
accessible for the detailed structural analysis [35]. The materials stored
in CSD have been already synthesized and structurally characterized,
but most of them have never been investigated for energy applications
[28,36]. Therefore, new materials could be mined directly from the
structure database either by a user-ready search interfaces such as
Conquest, or writing a code with algorithms describing the searching
criteria. For example, searches based on CSD have been conducted
using ConQuest, performed with short contact analyses and packing
diagrams [37].

In contrast with the organic material-based CSD database, the ICSD
database contains the crystal structure information of inorganic com-
pounds, with more than 199,000 crystal structure entries in June 2018
[38–40], and ca. 7000 new entries are added per year [16,41]. The
ICSD-based data mining process could be coupled with the CSD data-
base, where both organic compounds and inorganic compounds are
desired [42].

Other crystal structure database other than CSD and ICSD include
the powder diffraction database [43], the Protein Data Bank (PDB)
[44–48], and PDB-derived databases such as PDBSite [49,50] and
PhosphoSite [51], to name a few. These provide additional structure
information on the new materials could be employed to design suitable
materials for the targeting applications. In addition, it will not be sur-
prising that with the development of the new devices that requires in-
tegration of the energy materials and the biological systems such as
skin, the protein-based structure database might be very useful for the
development of new energy materials in the future.

In addition to the experimental crystallographic techniques that are
employed to obtain the CSD and ICSD databases, the in silico methods
have also been used to predict the crystal structures of new materials,
since in many cases the crystal structures are impossible to solve ex-
perimentally [52–55]. The crystal structure prediction (CSP) method
has been widely performed to obtain the hypothetical structures
[56–58]. The CSP method relies on the force-field method or the
quantum mechanics to identify the proper positions of the neighboring
molecules that interact stably with the central molecule to build up the
crystal structure. In many cases, a proper space group should be set in
advance. The CSP could be accelerated by evolutionary algorithms
[53,59–61], R-group enumeration [62], and more advanced analysis
[61]. In addition, the existing academic publications storing various
structures or property data could form a natural basis for the data
mining process [63]. Various techniques have been employed to data
mine the existing publications, such as text mining, link mining, cita-
tion network analysis, adaptive neuro-fuzzy inference systems, neural
networks and multilayer perceptrons [64,65].

2.2. Property databases

The property databases store property information that are closely
related to the materials requirements, but are usually computation-in-
tensive to prepare, The Materials Project is a well-known property da-
tabase and stores the calculated materials properties based on the
structures stored in ICSD [66]. The Materials Project database is pre-
pared to identify the “materials genome” that resembles the human
genome that could be conceptualized to represent the gene that dictates
their properties and applications. The Materials Project contains
structural, thermodynamic, electronic, optical and mechanical proper-
ties that are calculated by various materials simulation techniques
[25,41,45,67–70]. For clarification purpose, Materials Projects and the
related calculated databases based on CSD or ICSD are not focused in
this study, but are discussed especially in the areas where the structure-
property relationships of energy materials are not well-developed at the
moment. Similar to the Materials project, other computed properties
databases based on CSD or ICSD have been constructed such as Open
Quantum Materials Database (OQMD) [38,71], ab-initio electronic
transport database [72], MOF databases [11,73,74], JARVIS-DFT da-
tabase [75], and the Harvard Clean Energy Project [76,77].

3. Data mining techniques

3.1. Structure descriptors and structure-property relationships

The structure-property relationships of energy materials could be
coded via proper selections of structure descriptors for the data mining
procedure in structure databases. The atomic structures that could be
solved by the well-developed crystallographic techniques include the
information of the structural parameters specified in terms of bond
length, bond angle, conjugation, π…π stacking, intramolecular hy-
drogen bond (HB), intermolecular HB, molecular weight, packing mode
and symmetry that are closely related to the optoelectronic properties
of materials [36,62,78–83]. New materials could be mined directly
from the structure databases either by a user-ready search interfaces
such as Conquest, or a code incorporating algorithms describing these
searching criteria related to the structure-property relationships.

The bond length is defined as the separation between the two
covalently bonded atoms and the number of bonded electrons. The
single/double/triple bonds defined by the bond length reveal the
strength of interactions between the atoms and the charge transfer
characters [84]. Based on the bond length values, the bond length al-
ternation (BLA) values, the harmonic oscillator stabilization energy
(HOSE) values, and the quinoidal structures could be determined, while
BLA, HOSE and the quinoidal structures are quantitative descriptors to
reveal the charge transfer characters [85,86]. The bond angles formed
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between multiple atoms across at least two bonds include dihedral/
torsion angles where four atoms are involved. The planarity is another
structure parameter: and the geometry is planar if all the atoms are
embedded on a particular plane [87,88]. Factors such as valency and
electronegativity are easily obtained from the structures and have been
applied to filter chemically implausible compositions [89].

The hydrogen bond is a moderate bond resulting from an electro-
static attraction between a proton in one molecule and an electro-
negative atom in the other. The hydrogen bond could be either in-
tramolecular or intermolecular. Similar to the double-helix DNA chain,
the hydrogen bond present in materials could greatly influence the
structure geometry and stability as well as various properties [90–92].
The π…π stacking is another important structural parameter that dic-
tates the crystal formation of many materials. The π bonds in the aro-
matic rings leads to intermolecular attractive interactions and result in
the arrangements in a sandwich, T-shaped or parallel-manner. Un-
fortunately, there is a lack of unified theory that accurately quantifies
the π…π interactions. Nevertheless, the π…π stacking shows evidence
to strongly influence the intermolecular charge transfer and optical
properties. The intermolecular interactions including the hydrogen
bonds, the π…π stacking, halogen bond, van der Walls forces, etc. from
various chemical motifs lead to a number of packing modes of crystals
that dictates the related electronic/optical properties such as the
emission properties and UV–vis absorption properties. The packing ef-
ficiency can be determined by the ratios of the total volume and the
volume of the unit cell [93–96].

Certain functional groups are especially important for particular
applications (vide infra); therefore a more efficient data mining pro-
cedure could include special chemical motifs. For example, the search
and detailed analysis of the chemical substructure and ligand con-
formations have been performed to explore the chemical motif candi-
dates [97]. The donor-π-acceptor motifs are especially important for the
design of solar cells and organic light emitting diode (OLED), and these
functional groups could be mined to design new energy materials [62].

Symmetry is considered to be critical for the crystal structure for-
mation since the repeating units arrange and stack upon one another in
particular ways such as the rotation or translation according to certain
symmetry operations. The symmetry is employed to determine the
crystal structures during the structural refinement [98–103]. Also, the
symmetry of a crystal has been employed to calculate the thermal
conductivity and optical properties. The CSD and ICSD databases con-
tain many other structures information that are less studied such as
cocrystals and disorder; these structure parameters could be explored in
the future [104].

3.2. Quantum descriptors and high-throughput computation

Various quantum descriptors have been proposed to represent
physical properties of materials calculated via the Schrödinger equa-
tions and related theories such as the band structure and the density of
states. The descriptors calculated from the wave function theory in-
clude atomic charges, molecular orbital energies including highest oc-
cupied molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO), energy levels, frontier orbital densities, super-
delocalizabilities, dipole moment, polarity indices, polarizabilities and
stability [41,69,105–108]. The quantum descriptors are often con-
sidered to be more versatile since they better represent the properties,
but they are most often more difficult to obtain and time-consuming
compared with the structural descriptors. High throughput calculations,
usually based on the first principles calculations, have been employed
to calculate the above quantities of the materials stored in database,
once their crystal structures are known. The calculations are usually
followed by procedures to exclude inappropriate structures in CSD and
ICSD such as to eliminate duplicates, disorders and inaccurate struc-
tures.

3.3. Other techniques

The computational cost is high for many materials discovery pro-
cesses and various methods have been employed to speed up the cal-
culation. Genetic algorithms and machine learning approaches have
been employed to accelerate the process [62]. The machine learning
technique that uses artificial intelligence automatically extracts pre-
dictive models from existing materials data. It has been used to extract
meaningful chemical trends from training data [109], for example the
prediction of solid-state properties with the local spin-density approx-
imation results as a training set [110–112]. Genetics-based machine
learning methods have shown scalability capacity which leads to their
capability in the large-scale data mining jobs [113,114]. The machine
learning models have been used to guide the materials researches such
as solvent choice when crystallising a compound [115], soft materials
engineering [116], crystal engineering [115], and classifying micro-
structures [56,117]. High-throughput calculations could be combined
with the machine learning procedures for better materials prediction
and validation [118]. Artificial neural networks (ANN) have been used
for the prediction of the materials properties, on the basis of their di-
electric and ionic properties [119,120].

The fast and efficient analysis of the chemical data is highly desir-
able [16,62,121,122]. Association analysis is used to reveal the patterns
of the data [16]. The cluster analysis is used to discover the correlations
of closely related groups [78]. Predictive modelling helps build models
for targeted objectives as a function of input. Anomaly detection in-
volves the opposite way by identifying data that differ from the normal
observation [16]. The classical force field–based methods could be
employed for larger systems. Monte Carlo simulations have been used
to calculate the adsorption of methane in 650,000 structures [25,123].
Aggregation of experimental data from the published literature have
been employed to allow the creation of interactive databases and ad-
ditional metadata to be visualized involving energy materials [63,124].
Text mining and visualization tools have been applied to search pub-
lication databases [125] including papers, books, patents, and literature
compilations [126,127]. Many efforts have been made to prepare da-
tabases that extract useful information from the pre-existing results in
publications [14].

4. Examples of data mining energy materials from structure
databases

4.1. Data mining dye-sensitized solar cell (DSSC) materials

The Dye sensitized solar cell is a new-generation solar cell that
mimic the solar synthesis in the plant and utilize molecular chromo-
phores that reside stably on semiconductor substrates to capture the
solar energy and covert into the electrical power [128–142]. The DSSCs
require specific dye structures such as the anchoring group and the D-π-
A structure, i.e., the dyes should have an electron donor, a conjugate π
bridge and an electron acceptor. The anchoring moiety is usually an
cyanoacrylic acid group. The structural aspects including the chemical
substitutions, the conjugation, planarity and bond length alternation
(BLA) correspond to the charge transfer characters of the DSSC-active
dyes [143].

A series of dye structures that are incorporated in DSSC photo-
anodes have been solved by the X-ray crystallography [144–147].
Ultra-strong X-rays that are produced by the synchrotron have been
used to determine the crystal structures of dyes that present weak dif-
fraction signal and previously structurally unattainable [148–152]. The
crystal structures of a series of polyoxotitanate clusters have been
solved crystallographically to understand the binding modes of dyes on
the semiconductor substrates, with their electronic and optical prop-
erties determined upon the modification with the dopants and the li-
gand structures. Apart from the single-crystal X-ray diffraction techni-
ques, the neutron diffraction, the terahertz spectroscopy, the powder
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diffraction, NMR, FTIR, as well as other crystallographic and spectro-
scopic techniques have been involved to understand the structural
origin of DSSCs either directly or indirectly [153–155].

Apart from the structure-relationships study on the experimental-
proven dyes, the data mining approach has been used to reveal entirely
new classes of DSSC dyes, based on the structural analysis of DSSC-
active molecular dyes that exhibit certain congruent bond length pat-
tern. Cole et al. employ graph theoretical algorithms and classification
tests to discover DSSC-active dyes, using the recursive depth-first, back-
tracking and graph traversal algorithms (Fig. 1) [156]. The CSD data-
base is crucial since this database contains potential DSSC-active dyes
that could be utilized to predict new dyes [157]. In particular, chemical
groups and molecular architectures with the D-π-A-phenyl-A backbone,
that commonly features in a well-performing DSSC dye have been
spotted and translated into the generic design principles for the data
mining process in CSD. The crystallographic R1 smaller than 0.07
threshold is used for data mining to ensure the accuracy, with all dis-
ordered materials, polymers and ionic salts excluded [157]. The
screening process involves the BLA analysis, the anchoring group po-
sition, the dipole moments calculation and the Hammett constants
calculation [158]. A simulated ‘molecular mutation’ with the addition
of a cyanoacrylate group is performed on the ‘top 10’ molecular can-
didate to ensure good electron withdrawing capabilities. Therefore, the
screening process relies heavily on the structural descriptors of the
DSSC-active dyes.

Apart from the predication of new functional dye molecules, the
data mining techniques have also been realized on the photocathode
material in a p-type DSSC by Moot et al. [159]. After screening in-
organic compounds in ICSD, they identified new photocathode mate-
rials such as the lead titanate (PbTiO3), a perovskite material, as the
promising photocathode material. The search procedure includes the
chemical similarity parameters used in cheminformatics, Tanimoto si-
milarity coefficient, and starts from the known p-type photocathodes
including NiO, Co3O4, Cu2O, CuI, CuAlO2, CuGaO2, NiCo2O4, and
ZnCo2O4 as reference query materials [159].

Since the bond lengths stored in the structure databases are closely
related to the intramolecular charge transfer properties in dye mole-
cules, analysis has been carried out on retrieving the bond lengths of
different organic dyes to understand the intramolecular charge transfer
characteristics [160,161]. For example, the bond length values of the
azo group stored in CSD are compared to reveal the efficient charge
transfer characters in azo dyes toward the DSSC application [162].
Identifying suitable chemical fragments is important for the DSSC ma-
terials design. Donor groups have been screened [163], and DSSCs with
novel structures have been obtained [164,165]. Phenothiazine-based
dyes have been assembled from fragments in a synthetically tractable
manner, with predicted PCEs over 9% [166]. In order to help users
analyse the DSSC structure data more efficiently, a DSSC database
“DSSCDB” has been generated to afford researchers with information
from literatures on the detailed dye structures including triphenyla-
mines, carbazoles, coumarins, phenothiazines, ruthenium and por-
phyrins [167].

4.2. Data mining perovskite solar cell materials

Perovskite solar cells have their device structures originating from
dye-sensitized solar cells, and the perovskite solar cell research could be
dated back to 2009 when Miyasaka [168] et al. substitute dye mole-
cules in DSSCs with halide perovskites, and found a power conversion
efficiency above 3%. By changing the liquid electrolyte into the solid
state, as well as additional optimization of the perovskite crystal for-
mation process, the power conversion efficiencies of perovskite solar
cells rocket to 22% [169–200]. Despite of the astonishing development
on power conversion efficiency, the origin of the superiority of the
halide perovskite materials as well as the detailed mechanisms hap-
pening inside the crystal environment or at the interfaces still remains
elusive. For example, the halide perovskite structures for solar cell
applications have been accurately solved except the disordered cation
molecules, and the exact roles of the methylammonium cation are de-
batable [201,202].

Fig. 1. The bond length analysis involving the bond length alternation (BLA) to filter DSSC-active dye molecules from the CSD database (top) and the new dye
identified using the data mining procedure [157]. Reproduced with permission from Ref. [157]. Copyright RSC (2014).
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There have been researches carried out to data mine the new halide
perovskite materials and similar materials that can replace the tradi-
tional lead halide perovskites in solar cells, which suffer from the lead
contamination and instability issues [69,159,203–205]. The new ma-
terials that are mined from structure database should possess the small
effective masses of electrons and holes, the long charge diffusion length,
outstanding optical properties and small charge recombination possi-
bilities, all of which could be calculated bases on the ICSD databases.
Perovskites could have multiple organic and inorganic constituents
(CH3NH3, HC(NH2)2, Cs, Rb, Pb, Sn, I, Br), and various new structures
with layered, double, and metal-deficient perovskites, which naturally
give flexibility for rational strategies to replace the current experi-
mental trial-and-error-based approaches [203].

The ICSD database has been successfully exploited to identify po-
tential lead-free hybrid perovskites, with the stoichiometry as the
starting point to identify possible lead free perovskites. The halide
moiety is critical in the functioning of the halide perovskite materials.
Using the CSD database, the strength and geometric preferences of non-
covalent interactions in the halide polymers have been investigated
[206–214]. The structures of the halide polymer with different di-
mensions could be used for data mining new halide perovskites for solar
cells. The 3D halide perovskites are not unique structures for the per-
ovskite solar cells. Replacement of lead with di-, tri- and tetra-valent
cations has been performed, and iodosalts, dimers, layered structures,
and mixed and milti-dimensional perovskites have been employed
(Fig. 2); 12 A1+ (e.g., MA+/FA+/Cs+), 27M2+, 35M3+, and 25M4+

site cations could be chosen; three halogens (I−, Br−, Cl−) and a
mixture of these three elements could be chosen. For example, the di-
valent element could be Ge, Sn, Bi, Ag and In. The tetravalent metallic
cations such as Sn in Cs2SnI6 has been tried, while the double per-
ovskites (A2

+M+M3+X6) uncover the opportunity of including 3+ ca-
tions into the perovskite structures [203]. Taking into consideration of
the cationic valence states and volume ratios, possible perovskites
combining entries from ICSD databases and chemical intuition are>
24,138 for AMX3,> 31,290 for A3M2X9,> 22,350 for A2MX6,
and> 9×106 for A2MM’X6 [203].

Efforts have been made to find that ionic radii, tolerance factor, and
octahedral factor are the important structural descriptors for the per-
ovskite halides using a support vector machine classification model.
With the training model, several novel perovskite structures have been
predicted [203,215,216]. Mechanically stable and electronically sui-
table electrons and holes extracting contacts materials for CH3NH3PbI3
have been selected according to the electron affinity, ionisation po-
tential, lattice parameters and crystal structure criteria. Potentially ef-
fective new hole and electron transporting layers according to these
descriptors include Cu2O, FeO, SiC, GaN, and ZnTe [205].

4.3. Data mining other solar cell materials

Similar to those in DSSCs and perovskite solar cells, proper de-
scriptors are needed to identify candidate solar cell materials. Starting
from the ICSD database, alternative polar chalcogenides have been
predicted to substitute the widely studied CIGS material [41]. In the
study, the stoichiometry with the AB2CX4 chemical formula is targeted,
where A=Li, Cu, Ag; B=Zn, Cd; C=Ga, In and X=O, S, Se, Te, leading
to a family of 48 members [41]. The criteria could be strong optical
absorption coefficients, a proper bandgap value such as ~1.3 eV sa-
tisfying the Shockley–Queisser limit, low cost and compatibility with
existing technologies. A set of high SLME materials are identified based
on ICSD, including the best already known thin-film solar absorbers,
such as CuInSe2, CuGaSe2 and CuInS2, while materials different with
the 1:1:2 stoichiometry (for example, Cu7TlS4, Cu3TlS2 and Cu3TlSe2)
are also identified [217]. Other approaches involving ordinary least
squares, sparse partial least squares, elastic net/least absolute
shrinkage, selection operator regression methods coupled to rough set
and principal component analysis methods have been developed for the

band gap prediction of new chalcopyrite compounds [218]. A data
mining workflow have been developed and applied to the analysis of
solar cell libraries based on titanium and copper oxides [26]. Con-
stituent elements have been focused to find new thin film solar cell
materials. Thermodynamic stability, electrical transport, electronic
structure, optical and defect properties have been evaluated to predict
the Cu2SnS3 as the promising photovoltaic materials [219].

High-throughput calculations are most often used to identify new
solar cell materials [28,220]. The Materials Project database that pro-
vides relaxed structures and related optoelectronic properties are
naturally selected as the starting point to identify solar cell materials.
For example in the area of the transparent p-type oxide, 3600 qua-
ternary oxides in the Materials Project database are searched and the
materials with a small effective mass are obtained according to their
band structures [221]. Phosphides and zinc blende boron phosphide BP
are found to be promising p-type transparent conducting materials
(requiring large band gap for transparency and low hole effective mass
for high mobility) by exploiting the weak absorption for indirect optical
transitions [222]. The CSD database stores a large amount of organic
structures that could be utilized to design organic electronics. Apart
from the low carrier mobilities in organic semiconductors, the elec-
tronic couplings and intramolecular reorganization energies are iden-
tified to be the two main descriptors for charge mobility, and materials
with long-range charge percolation pathways are identified [28]. In the
ICSD, for every nitride (3008 total entries) there are more than ten
oxides (41,529 total entries) [223]. As a consequence, new nitride
materials with structural motifs and crystal structures that have never
been reported previously i are discovered with good regularity [223].
Similar electronic structure databases and initiatives include the
JARVIS-DFT database [75] and the Harvard Clean Energy Project (CEP)
toward the new organic solar cell materials [76].

4.4. Data mining water splitting materials

Water splitting materials employing the photocatalyst to harvest the
solar energy and produce hydrogen fuel from the water provides an
effective alternatives to fossil fuels [176,224–228]. The photocatalysts
that split water have been searched from ICSD [229,230]. For example,
by analysing the bulk metals and the most stable single- and bi-metal
oxides in ICSD and the Materials Project databases, new water splitting
materials are proposed [169], based on the descriptors of appropriate
band gap, band edges relative to the water redox levels, high mobilities,
and chemical stability under light irradiation [169]. 10 oxides and 5
oxynitrides including AgNbO3, BaSnO3, BaTaO2N, CaTaO2N, SrTaO2N,
and LaTiO2N are identified as the candidates for light harvesting ma-
terials, which agree with the literature [169]. Oxynitrides and com-
pounds containing d10 cations (Ga3+, In3+, Ge4+, Sn4+, Sb5+, and
Bi5+) or d0 cations (Ti4+, Zr4+, Hf4+, V5+, Nb5+, Ta5+, Cr6+, Mo6+,
W6+, Sc3+, and Y3+) are targeted in ICSD. To solve the problems of
insufficient oxynitrides materials available in the ICSD, some new
candidates are proposed to be proper photocatalysts, including three
binary nitrides, two ternary oxynitrides and eleven quaternary oxyni-
trides [229]. The detailed procedure starting from the ICSD structure
search and the follow-up electronic property calculations, including the
energy level position match and the band gap screen, are summarized
in Fig. 3.

In order to identify potential water splitting materials, calculations
have been performed using the Open Quantum Materials Database
(OQMD) [204]. 139 materials are identified as potential new candi-
dates for thermochemical water splitting (TWS) application, including
CeCoO3 and BiVO3 which are not observed previously, using the large
data set of compounds containing stabilities, oxidation states, and ionic
sizes [204]. High-throughput screening of materials based on the
electronic band gap calculations have been performed, which leads to
the discovery of five candidates as the promising new water splitting
material [231]. The oxygen evolving reaction (OER) activities of
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perovskites are explored according to the descriptors of the meta-
l–oxygen bond strength using factor analysis and linear regression
models. Electron occupancy and metal–oxygen covalency are identified
as the dominant influences on the OER activity, and multiple de-
scriptors required for better prediction [232]. The associations between
composition and catalytic activity are examined for OER for 5429
catalyst compositions in a (Ni–Fe–Co–Ce)Ox library, based on infor-
matics-based clustering of composition property functional relation-
ships [233].

4.5. Data mining organic light emitting diode materials

The data mining process of the OLED molecules based on the
structural descriptors are not well-developed compared with the
quantum descriptors. Nevertheless, considering the structural similarity
in terms of the D-π-A backbone between the OLED materials based on
molecules and the DSSC dyes, a similar data mining process borrowing
from the DSSC concept could be employed in the future to identify new
OLED functional molecules. Compared with the DSSC materials, the
OLED materials have larger molecular weight and do not require an-
choring groups. The search of OLED molecules could also be based on

Fig. 2. Perovskite structure with different valence and elements (top) and rational design flowchart starting with the ICSD database and subsequent computational
screening and experimental validation (bottom) [203]. Reproduced with permission from Ref. [203]. Copyright ACS (2017).
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completely new fragments. According to the HOMO and LUMO posi-
tions and the optical properties, a new set of fragments have been
screened [62].

4.6. Data mining thermoelectric materials

The thermoelectric materials generate electricity from thermal en-
ergies. Various descriptors have been tried to search the potential
thermoelectric materials. Thermoelectric power factors of> 3000 in-
puts in ICSD are compared [69,234], while a metric to provide a con-
sistent evaluation of the inherent physical properties that dictate the
thermoelectric figure of merit zT is proposed [235,236]. After searching
for new thermoelectric materials in the ICSD based on the 570 Sb-
containing compounds, Zintl compound LiZnSb are suggested as po-
tentially interesting n-type thermoelectric materials [237]. Other de-
scriptors include Lorenz number that lead to different zT enhancement,
and the computational search for materials with exceptionally low
Lorenz number and high thermoelectric quality factor has been carried
out [24]. Based on over 100 publications, databases storing thermo-
electric materials have been created [238], which includes 18,000 data
points with associated properties measured at several temperatures.
The interplay between data mining, informatics, and machine learning
approaches allow for a new paradigm in thermoelectric materials de-
velopment [63,239,240]. A data-driven approach is accomplished by
understanding discrete scalar descriptors regarding the crystal and
electronic structure and the Curie temperature, and quantitatively ex-
ploring the different materials descriptors.

4.7. Data mining lithium battery materials

The Materials Genome Project coupled to ICSD has been data mined
to design lithium battery materials where the electrodes consist of in-
organic compounds [15,238]. The data-driven approach has proved to
be successful to the rational design of Li-ion battery materials [241],
since the energy density, power density, discharge capacity, lithiation
potential, capacity retention upon cycling and many others could be
accurately calculated for the compounds in ICSD [220]. The organic
part in the lithium battery such as the electrolyte solvent has also been
screened; the preferred electrochemical stability, melting and boiling
temperatures, viscosity, dielectric constant, Li-ion conductivity, Li+

diffusion, electronic conductivity ranges and activation barriers have
been calculated in the presence of the organic molecules [62,242,243].

4.8. Data mining gas capture and storage materials

Data mining techniques have been employed to search the gas
capture and storage materials, which are predominantly based on

metal-organic frameworks (MOF) owing to their structural integrity and
porosity for molecular adsorption [97,244–248]. These MOFs are
mainly for carbon capture and storage, gas separation, as well as hy-
drogen fuel storage [12,73,74]. The MOFs are essential hybrid systems
that are built from the blocks and frameworks consisting of either or-
ganic or inorganic moieties. Since CSD stores various synthesis-ready
MOF crystal structures and the synthesis of MOF is not straightforward,
screening MOFs from the synthesis-ready CSD databases has been found
efficient in the design process [11,12,249]. In CSD, the MOF entries
have risen up to 6000 in CSD in 2011, and risen to 70,000 in CSD in
2016 (Fig. 4), which means the CSD database is a natural database
selection for the carbon capture and storage as well as the hydrogen
storage [250].

In order to identify available MOF structures in CSD, researchers
have searched for structures with bonds between metallic elements and
organic elements, while additional structural screening procedure in-
clude the solvent molecules, varying degrees of disorder, missing H
atoms and overlapping atoms [22,73,74]. Databases with MOFs free
from solvents/disorders and with a pore limiting diameter (PLD) larger
than 2.4 Å structures have been provided; the optimal pore size that
maximizes net capacity such as 6–10 Å and void fractions of 0.1–0.5,
have been set to the optimal criterion for the MOF search [12].

Potential substitutes with possible ligands has been selected ac-
cording to the chemical substructure searching and ligand conforma-
tional analysis [97]. Pores larger than 3.25 Å for CO2 adsorption are
selected based on the possible zeolite-like SiO2 structures starting from
230 space groups, various unit cell dimensions and densities [251].
Regarding the oxygen uptake, the relationships between structural
properties and oxygen adsorption performance at dissimilar pressures
have been studied in five dimensions, and UMCM-152 that delivers
22.5% more oxygen has been obtained [249]. NU-12528 is identified
from 10,000 hypothetical MOFs and confirmed by experimental
synthesis and adsorption measurements [252]. An efficient approach
automated assembly of secondary building units (AASBU) has been
developed [253], with the building blocks randomly distributed at
points, and provides insights for the topological preferences [22]. The
methane uptake in over 650,000 materials has been investigated
starting from both existing and predicted nanoporous materials [123].
The propylene/propane adsorptive separation have been investigated
regarding their selectivity and working capacity, via structural de-
scriptors such as the N2 surface area, accessible surface area of propane,
and PLD. Porous materials that includes elements such as In, Te, Al, and

Fig. 3. The searching procedure of water-splitting photocatalysts starting from
ICSD [229]. Reproduced with permission from Ref. [229]. Copyright RSC
(2013).

Fig. 4. The increase of MOF entries since 1972 in comparison with the CSD
entry. The inset shows the structures of the MOF that is self-assembled by the
following moieties: metals (red) and organics (blue) [250]. Reproduced with
permission from Ref. [250]. Copyright ACS (2017). (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article).
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I, along with the low LCD stipulation has been proposed owing to high
crossover distance [254]. In addition, neural networks and grand-ca-
nonical Monte Carlo simulations, coupled with Lorentz-Berthelot
mixing rules and Lennard-Jones parameters have been employed for the
H2 storage and methane adsorption [12,123]. Apart from CSD, a
number of databases for MOFs are available such as Hypothetical MOF
Database, MOF-5 Analogues, Reticular Chemistry Structure Resource
and porous materials databases including Zeo++, Poreblazer, MO-
Fomics, TOPOS, CoRE MOF and MOFIA [11,22,251].

4.9. Data mining other materials

The data mining technique has generated new insights in various
new materials [78,255]. Piezoelectric materials convert mechanical
energy into electricity, and the ICSD database has been examined to
find previously unrecognized piezoelectric systems from half-Heusler
semiconductor compounds, with 987 candidates scanned in terms of
the structural, dielectric, insulating and piezoelectric properties [256].
Previously unknown two-dimensional materials have been identified
starting from CSD and the first principles calculations [69,257]. A novel
data mining algorithm involving the dimensionality of weakly bonded
subcomponents has been employed in the Materials Project database,
and 325 materials are predicted to exhibit piezoelectric properties [78].
Topological insulators have been data mined by examining the changes
in band inversion in the presence or absence of spin-orbit coupling
[258]. Stable Dirac-point node are predicted via the combined group
theory and data mining approach using the Organic Materials Database,
and particular space groups such as P212121 is established to be po-
sitive to the Dirac nodes construction [259]. Data mining using density
of states similarity search in OMDB is performed to identify novel or-
ganic High-Tc Superconductors [260]. The relative stability and the
relative solubility of cocrystals has been investigated by a data mining
force field in CSD [104]. Soft-matter materials is also assisted by the
data-driven approaches [261,262].

5. Suggestions and outlook

Although the structure descriptors are sometimes considered to be
lower-level quantities than the quantum descriptors, they offer a more
direct and faster data mining process than the quantum descriptors to
identify new energy materials, while the quantum descriptors often
requires more expensive computational resources. The data mining
procedures rely heavily on the structural details of energy materials.

Finding a proper algorithm and structural descriptor is critical for
the efficient screening. Data mining new energy materials from the CSD
and ICSD databases can be accelerated using proper structural de-
scriptors, which describe the crystal structures that could be solved by
the well-developed crystallographic methods. The structural para-
meters such as bond length, bond angle, conjugation, π…π stacking
[36,78–82], intramolecular/intermolecular hydrogen bond, molecular
weight [62], packing mode and symmetry [83] are closely related to
the targeting applications. There can be hundreds of structure de-
scriptors representing certain properties of the materials, and the in-
dividual structure descriptors could be artificially combined to form
new structure descriptors, owing to the newly developed machine
learning techniques. Many experimental researches have given insights
on the chemical motifs that could be particularly popular in certain type
of devices. For example, the chemical substructure searching, the
donor-π-acceptor motif probing, and the ligand conformational analysis
are effective to select potential materials. Particular chemical moieties
such as amine, triphenyl amine and cyanoacrylic acid group are well-
correlated with certain applications. The bond length and angles, the
intermolecular interactions, stoichiometry, hydrogen bonds (HBs), in-
termolecular distance, BLA pattern, quinoidal structures, packing
modes, halogen bond and space group should be explored further in
relation to particular applications. Many crystal structures of proteins

are stored in databases such as the Protein Data Bank (PDB) [44–48]
and PDB-derived databases, which might provide additional structure
information on the new biological materials, such as the DNA- and
protein-based energy devices. It will not be surprising that with the
development of the new devices that requires integration of the energy
materials into the biological systems such as the skin, the protein-based
structure database might be very useful for the development of new
energy materials in the future.

Some of the design procedures of energy materials follow an in-
teresting “Lego” type style where suitable chemical subgroups with
desired quantities such as the Hammett values are combined in a par-
ticular way [263,264]. However, the Hammett values alone only va-
guely estimate the electron donating/withdrawing abilities of the ma-
terials and many Hammett values of new functional groups are
unavailable [86,265]; therefore improvements in the Hammett value
determination and more advanced descriptions other than the Hammett
values are called for. It would be desirable to develop parameters to
better quantify the electron/withdrawing abilities for particular appli-
cations.

While most of the structural details have been revealed from the
structure-property relationships investigation in the literature, some
structural impacts still remain elusive at the moment; for example, the
disorder (happening in halide perovskite solar cells) and cocrystals that
are different from the crystals of pure components that are considered
to be useless previously might be re-investigated [104].

The ever-increasing data mining studies from the structure data-
bases require more crystallographic contributions that are dedicated to
obtain the accurate structure information. X-ray crystallography con-
tinues to be the undisputed primary technique [266] for picturing
molecules and assemblies with the utmost accuracy compared with the
in-silico crystal structure prediction, because the structure prediction of
even the simplest crystalline solids only starting from the composition is
still fundamentally questionable. For example, in many case a possible
space group should be set in advance for the structure prediction, which
might not be correct and brings out inaccuracies and inconsistencies
[69,267,268]. Databases storing materials properties from the Schrö-
dinger equations still depends on the accurately crystal structures in-
puts in databases, and the crystal structure determination and the
structure-property relationships formulation are considered be of
paramount importance to realize better design of energy materials in
the future.

Since the excited states and the time-resolved dynamics are parti-
cularly important for many energy conversion applications, it could be
very useful to obtain the time-resolved structure of energy materials
with both atomic and electronic structures determined in the time-do-
main, such that new mechanisms could be revealed and new materials
could be mined from the more accurate structure-properties relation-
ships based on the time-resolved structures. To this end, there are
evidences showing that the time-resolved structures of energy materials
are achievable via the time-resolved crystallography techniques, which
provides the ultra-strong X-rays produced by the synchrotron to de-
termine the crystal structures of new materials with weak signal that
are previously unattainable [148–152,269–282]. For example, the
time-resolved structures (in nanosecond or picosecond) of several
silver- and copper-based organometallic compounds have been re-
ported are reported to be closely related to the optoelectronic proper-
ties of the materials especially the UV–vis absorption and the light
emission [149], which are critical factors for the solar cells and OLEDs.
The extent of the displacement in angstrom of the atoms and the
electrons upon the excitation are suggested to be directly associated
with the electronic and optical properties, with the larger displacement
leading to stronger emission [150,151,270,277,283]. Nevertheless,
how the time-resolved structures are related to the energy-related de-
vice performance quantitatively remain elusive at the moment, con-
sidering the fact that many processes related to the electron transfer
and light absorption happen in different time-scales [102,284–287]. In
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addition, the energy gap, defects, and the energy level alignment sig-
nificantly affect the time-domain activities of the energy materials. A
formulation of the time resolved structure-property relationship would
be thus highly desirable (for instance the differences of the structural
changes in femto-, pico-, nano-, micro and milli-second on the optoe-
lectronic properties) to guide the materials design, which emphasize the
importance of the accurate determination of materials structures in
various timescales using the ultra-strong X-rays or neutron pulses.

6. Conclusions

Data mining energy materials from the structure databases such as
CSD and ICSD have been facilitated by the formulation of proper
structure-property relationships, and successful algorithms coded with
the structural descriptors that consider the structure-property re-
lationship have been rapidly developed to facilitate the data mining
process. The structural descriptors could be the chemical moiety, bond
length and angles, intermolecular interactions, stoichiometry, valency,
elements, ionic substitutions, surface area, pore diameter, HBs, halogen
bonds intermolecular distance, BLA pattern, quinoidal structures, stoi-
chiometry, packing modes and space groups, etc. There can be hun-
dreds of structure descriptors representing certain properties of the
materials, and the new structure descriptors could be designed via the
machine learning techniques to obtain more proper structure de-
scriptors. The data mining study of new energy materials from the
crystal structure databases such as CSD and ICSD has been found to be
applicable in solar cells, water splitting systems, lithium batteries,
thermoelectric devices, piezoelectric materials and gas adsorbent ma-
terials. Continuous efforts should be spent on the basic understanding of
structure-property relationships of new energy materials, since a bonus
of the structure-property relationship study is that new energy mate-
rials with targeting properties could be identified quickly and accu-
rately from the structure database by algorithms that include the
structure-property relationships. It is believed that with more crystal
structures obtained from the X-ray and neutron crystallographic tech-
niques, and a more unified theory of structure-property relationship of
energy materials toward particular applications, a Google-like approach
based on the data mining process could be realized in the future to
design energy materials.
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