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Magnetism was discovered inMagnesia, a place in Greece, around 800BCE and that is the origin of its name. The writing of

Thales, a Greek writer, shows that magnetite or loadstone was known to attract iron pieces. The Chinese made a magnetic

compass sometime around 200BCE.Today,we can observe thatmost of the elements in the periodic table exhibitmagnetism

of varying strength. The type of magnetization that occurs when an external magnetic field is applied to an element varies:

1. In some elements of the periodic table, magnetization is induced in a direction opposite to the applied magnetic field.

The induced magnetization lasts only for the time the applied magnetic field exists. Such elements are called diamag-

netic elements and are repelled by the magnetic field.

2. In many elements, weak magnetization is produced in the direction of the applied magnetic field. Moreover, the mag-

netization lasts so long as the applied field is finite. Such elements are called paramagnetic elements and are weakly

attracted by the magnetic field.

3. In some elements, remarkably strong magnetization is produced in the direction of the applied magnetic field. Further,

the magnetization exists even in the absence of the applied field. Such elements are called ferromagnetic elements and

are strongly attracted by the magnetic field.

In addition, there exist antiferromagnetic and ferrimagnetic elements, which will be discussed in reasonable detail in the

coming chapters. The atomic magnetic dipole moment, induced or intrinsic, is basically responsible for the existence of

magnetism in the various elements.
18.1 ATOMIC MAGNETIC DIPOLE MOMENT

In an atom, electrons revolve around the nucleus and the nucleus contains protons and neutrons. An atom as a whole is

electrically neutral, but it consists of moving charged particles that may behave as magnetic dipoles. An electron in an

atom has two motions: orbital and spin. Similarly, protons and neutrons also possess orbital and spin motions inside

the nucleus. Therefore, the magnetic moment of an electron has two principal contributions, which are the orbital and spin

magnetic moments. There is also a third contribution to the magnetic moment arising from the spin-orbit interaction. If the

spin and orbital motions are assumed to be independent of each other, then the spin-orbit contribution vanishes and the total

magnetic moment of the ith electron m!ei is the vector sum of its orbital and spin contributions, i.e.,

m!ei ¼ m!eil + m!eis (18.1)
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384 Solid State Physics
where m!eil and m!eis are the orbital and spin contributions to the magnetic moment of the ith electron. The total electronic

contribution to the magnetic moment of an atom m!e, therefore, is the vector sum of the magnetic moments of all the elec-

trons, i.e.,

m!e ¼
X
i

m!ei (18.2)

The protons in a nucleus, being charged particles, possess both orbital and spin magnetic moments, just like electrons. The
neutrons, being neutral particles, do not possess an orbital magnetic moment in spite of their orbital motion, but they do

possess an intrinsic spin magnetic moment. The total magnetic moment of a nucleus m!N is the vector sum of the magnetic

moments of the neutrons and protons and is given by

mN ¼
X
j

mpj +
X
k

mnk (18.3)

where mpj and m
!
nk are the total magnetic moment of the jth proton and kth neutron. From Eqs. (18.2) and (18.3) the magnetic
moment of an atom is given by

m!¼ m!e + m!N (18.4)

We shall see later that the magnetic moment of a nucleus is negligible compared with the electronic contribution (about
2000 times smaller); therefore, the magnetic moment of an atom is determined mainly by the electrons. In the coming

discussion the magnetic moment of an atom m! is assumed to include only the electronic contribution.
18.1.1 Orbital Magnetic Moment

Consider an atom in which an electron is moving in an elliptical orbit with a nucleus at one of its foci, say O (Fig. 18.1). Let

T be the time period of revolution of the electron around the nucleus. The revolving electron constitutes an electric current

IL given by

IL ¼� e

T
(18.5)

The total area of the elliptical orbit swept by the electron in time T is given by
A¼ 1

2

ð2p
0

r2d’ (18.6)

where ’ is the angle formed by the major axis of the ellipse with the radius vector r (from the focus) of the electron at any
time t. From elementary electricity, the orbital magnetic moment arising from the current IL is given by

mL ¼
ILA

c
(18.7)

where c is the velocity of light. The angular momentum of the electron is given by
FIG. 18.1 Motion of an atomic electron in an elliptical orbit with a nucleus at

one of its foci O. The electron with position vector r is moving with velocity v

in the orbit.
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p’ ¼mer
2o’ ¼mer

2 d’

dt
(18.8)

where me is the mass and o’ is the angular velocity of the electron. Substituting the value of r2 from Eq. (18.8) into
Eq. (18.6), we write

A¼ 1

2

ð2p
0

p’

me

1
d’
�
dt

d’¼ 1

2

p’

me

ðT
0

dt¼ 1

2

p’T

me

(18.9)

Substituting Eqs. (18.5) and (18.9) into Eq. (18.7), we get
mL ¼� e

2mec
p’ (18.10)

From Bohr’s quantization rule for orbits, the angular momentum p’ can be written as
p’ ¼ ħL (18.11)

Here L is called the orbital quantum number and has integral values 1, 2, 3,… Sometimes L is also called the orbital angular
momentum in units of ħ ¼h/2p where h is the Planck constant. From Eqs. (18.10) and (18.11) one can write

mL ¼�mBL (18.12)

where mB is called the Bohr magnetron defined as
mB ¼
eħ

2mec
(18.13)

In vector notation Eq. (18.12) can be written as
m!L ¼�mBL (18.14)

The negative sign indicates that the orbital magnetic moment is in a direction opposite to the orbital angular momentum and
is basically due to the negative charge of the electron. The above expression is valid only for orbital motion. An alternate

method for calculating mL for an electron moving in a circular orbit is given in Appendix L.
18.1.2 Spin Magnetic Moment

The orbital theory does not explain the multiplicity of atomic spectra, e.g., the doublet of d-states. In addition, it also does

not explain the Zeeman levels in some of the elements. These difficulties were resolved by assuming that an electron pos-

sesses intrinsic spin angular momentum S, which has eigenvalues�(1/2) in units of ħ. Note that spin is purely a relativistic
property of an electron and arises from quantum effects. The magnetic moment arising from the spin angular momentum is

given by

m!S ¼�2mBS (18.15)

From Eq. (18.15) the value of the spin magnetic moment is numerically equal to the Bohr magnetron. Hence the total mag-
netic moment of an electron becomes

m!J ¼ m!L + m!S

¼�mB J+ Sð Þ (18.16)

where the total angular momentum J of an electron is given by
J¼L + S (18.17)

The vector S is spinning around the direction of J (see Fig. 18.2). So, the average value of the magnetic moment m!J is
obtained by substituting the average value of S along the direction of J, that is, hSi in Eq. (18.16), allowing us to write

m!J ¼�mB J + Sh i½ � (18.18)



FIG. 18.2 The spinning of an electron spin S around the total angular momentum J of the electron. The vector hSi gives the average value of spin S along
the J vector.
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Here J+ hSi gives the diagonal element of J+S. The average value of hSi is given by

Sh i¼ J � S
Jj j Ĵ¼ J � S

Jj j2 J (18.19)

where Ĵ is a unit vector in the direction of J. From Eq. (18.17) we write
J�S¼L (18.20)

Squaring both sides, we find
J � S¼ 1

2
J2 + S2�L2
� �

(18.21)

From Eqs. (18.19) and (18.21) the average value of the spin becomes
Sh i¼ J2 + S2�L2

2J2
J (18.22)

The eigenvalues of L2, S2, and J2 are L(L+1), S(S+1) and J (J+1). Therefore, the average value of spin along the direction
of J is given by

Sh i¼ J J + 1ð Þ +S S+ 1ð Þ�L L+ 1ð Þ
2J J + 1ð Þ J (18.23)

Substituting the value of hSi from Eq. (18.23) into Eq. (18.18), we get the average value of the magnetic moment as
m!J ¼�gJmBJ (18.24)

where
gJ ¼ 1 +
J J + 1ð Þ+ S S + 1ð Þ�L L+ 1ð Þ

2J J + 1ð Þ (18.25)
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The factor gJ is usually called Lande’s splitting factor. The above expression gives the magnetic moment of an electron due

to its total angular momentum J. It can be easily proved from Eq. (18.25) that gJ¼2 if there is only the spin motion and that

it is equal to 1 if there is only the orbital motion. From experiments, the actual value of gJ for electron spin is found to be

2.0023.

18.1.3 Nuclear Magnetic Moment

One can also calculate the magnetic moment of a proton m!p and neutron m!n in exactly the same way as for an electron. The

expressions for the magnetic moments are

m!p ¼ mBp Ip (18.26)

and
m!n ¼ mBn In (18.27)

where
mBp ¼
eħ

2Mpc
, mBn ¼

eħ
2Mnc

(18.28)

Ip and In are the total angular momenta for the proton and neutron, respectively. Ip arises from both the orbital and spin
motions, while In arises from the spin motion only. From Eq. (18.26) it is evident that the angular momentum and magnetic

moment of a proton are in the same direction, in contrast with an electron, and this is because of the positive charge on the

proton. In the case of a neutron, the angular momentum and magnetic moment are also in the same direction, although the

neutron is a neutral particle. Further, due to the large mass of the proton, the Bohr magnetron of a proton mBp is about 2000
times smaller than the Bohr magnetron of an electron mB. The same applies to the neutron Bohr magnetron mBn. Therefore,
the nuclear magnetic moment is very small compared with the electronic magnetic moment in an atom. In other words, the

atomic magnetic moment arises mainly from the electron contribution.
18.2 MAGNETIZATION

When a solid is placed in a magnetic field, it gets magnetized. Therefore, one can talk about the strength of magnetism

produced inside the solid, which is determined by a physical quantity called magnetization. Magnetization is defined
as the atomic/molecular magnetic moment per unit volume. For weak magnetic fields, magnetizationM(r) is linearly pro-

portional to the applied magnetic field H(r). For inhomogeneous and anisotropic solids.

M rð Þ¼
X
r0

wM r, r0ð ÞH r0ð Þ (18.29)

M(r) is the magnetization produced in the r direction, while the magnetic field H(r
0
) is applied in the r

0
direction. Here

0 0

wM(r,r ) is the proportionality constant and is, in general, a tensor for an inhomogeneous and anisotropic solid. wM(r,r ) is
usually called the magnetic susceptibility tensor. According to the above expression, the magnetic field applied in all pos-

sible directions of r
0
, contributes to magnetization along the r direction. If the solid is homogeneous and isotropic, then both

the magnetic field and magnetization are in the same direction and one can write

M rð Þ¼ wM rð ÞH rð Þ (18.30)

For such solids the magnetic susceptibility wM(r) becomes a scalar quantity. A uniform magnetic field produces a constant
magnetization and, therefore, the magnetic susceptibility wM becomes a constant. It can easily be shown from the above

expression that the magnetic susceptibility is dimensionless.
18.3 MAGNETIC INDUCTION

In the presence of an externally applied magnetic field, a solid is magnetized. Therefore, the magnetic field inside the solid

B(r), usually called the magnetic induction, is different than the applied field and is given by

B rð Þ¼H rð Þ+ 4pM rð Þ (18.31)
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Substituting the value of M(r) from Eq. (18.29) into Eq. (18.31), one gets

B rð Þ¼H rð Þ+ 4p
X
r0

wM r, r0ð ÞH r0ð Þ (18.32)

The above expression can be written as
B rð Þ¼
X
r0

m r, r0ð ÞH r0ð Þ (18.33)

where
m r, r0ð Þ ¼ dr,r0 + 4pwM r, r0ð Þ (18.34)

Here m(r,r
0
) is called the magnetic permeability tensor of the material. As already discussed, for a homogeneous and iso-
tropic material the magnetic susceptibility is a scalar, therefore, from Eq. (18.34) the magnetic permeability also becomes a

scalar and is given as

m rð Þ¼ 1 + 4pwM rð Þ (18.35)

As the magnetic susceptibility is dimensionless, the magnetic permeability is also dimensionless.
18.4 POTENTIAL ENERGY OF MAGNETIC DIPOLE MOMENT

Consider an electron moving in an elliptical orbit with its magnetic dipole moment always perpendicular to it. Let a uniform

magnetic fieldH be applied in the z-direction, as shown in Fig. 18.3. In the presence ofH, torque will act on the current loop

or the magnetic dipole moment, which is given by

τ
!¼m!�H (18.36)

The magnitude of the torque is given by
τ¼ mH sin y (18.37)

Work will be done by the torque on the magnetic moment, which will change the orientation of the dipole moment. The
work done will be stored as the potential energy of the magnetic dipole moment. The zero of the potential energy (reference

level) may be taken in any direction of the dipole moment. To be consistent with Eq. (18.37) we usually assume potential

energy to be zero when m! andH are perpendicular to each other. The potential energy of the magnetic dipole moment in the
FIG. 18.3 The torque τ
!

acting on the magnetic moment m!, arising from a current loop, in the presence of applied magnetic field H.
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presence of a magnetic field is the work required to rotate the magnetic dipole from the zero energy position (y¼ 90°) to an
angle y, i.e.,

E¼
ðy
90

τdy¼ mH
ðy
90

sinydy (18.38)

The above integral can easily be solved to get
E¼� m! �H (18.39)

It should be noted that the choice of the zero energy configuration for E is arbitrary as one is usually interested in the
changes in potential energy that occur when a dipole moment is rotated.
18.5 LARMOR PRECESSION

Consider an orbital magnetic moment m!L, associated with an electron, in a uniformmagnetic fieldH, as shown in Fig. 18.4.

The torque acting on the magnetic moment, from Eqs. (18.14) and (18.36), is given by

τ
!
L ¼ m!L�H¼�mBL�H (18.40)

So, the magnitude of the torque is given by
τL ¼ mBHL siny (18.41)

Depending on the direction of motion, the torque will either accelerate or retard the electron in motion, thereby inducing
additional current in the current loop. According to Newton’s second law of motion the torque produces a change in the

orbital angular momentum L, which is at a right angle to itself. Torque can also be defined as the rate of change of angular

momentum and is given by

τ
!
L ¼

dp’

dt
¼ ħ

dL

dt
(18.42)

So, the torque causes L to precess about the direction of H with an angular frequency oL. The precession of the orbital
angular momentum about the direction of a magnetic field is called the Larmor precession and oL is called the Larmor

frequency. An alternate simple method for calculatingoL is presented in AppendixM. From Fig. 18.4, the change in orbital

angular momentum L in time dt is given by

dL¼L siny oLdtð Þ
The above equation gives the torque τL as
τL ¼ ħ
dL

dt
¼ ħoLL sin y (18.43)

From Eqs. (18.41) and (18.43) one can immediately write
ħoL ¼ mBH (18.44)

From this equation the Larmor precession frequency becomes
oL ¼
eH

2mec
(18.45)

Diamagnetism is related to the Larmor precession of the electrons. Diamagnetism is the tendency of electrical charges to
partially shield the interior of the solid from the applied magnetic field. The basic principle of diamagnetic behavior can be

illustrated with the Lenz law of electricity. Consider an atom with Z electrons revolving around its nucleus in different

orbits. When an external magnetic field H is applied, the magnetic force acts on every electron. The magnetic force accel-

erates some of the electrons, while others are retarded depending on the direction of their motion. The change in velocity of



FIG. 18.4 The torque τ
!
L acting on an orbital magnetic moment m!L in the presence of an applied magnetic field H in the z-direction. The figure also

depicts the change in orbital angular momentum dL due to the torque.
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the electrons gives rise to an induced current that opposes the applied magnetic field (Lenz law). The induced current is

responsible for inducing an orbital magnetic moment m!L on the atom. If TL is the time period for Larmor precession of the

electrons around the magnetic field, the induced current IL is given by

IL ¼� Ze

TL

(18.46)

But the Larmor frequency is given by
oL ¼
2p
TL

¼ eH

2mec
(18.47)

Substituting the value of TL from Eq. (18.47) into Eq. (18.46), we find
IL ¼� Ze2H

4pmec
(18.48)
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Let hr?2 i be the average of the square of the radius of the electron from the nucleus perpendicular to the direction of the

magnetic field. Then the average area of the electron orbit perpendicular to the magnetic field becomes

A ¼ p r2?
� �

(18.49)

As the magnetic field is in the z-direction, hr?2 i is in the xy-plane. One can write
r2?
� �¼ x2

� �
+ y2
� �

(18.50)

In general, the mean square distance hr2i of the electrons from the nucleus in three dimensions is given by
r2
� �¼ x2

� �
+ y2
� �

+ z2
� �

(18.51)

In order to estimate the induced magnetic moment, we consider a simple case in which the charge distribution is spherically
symmetric, that is,

x2
� �¼ y2

� �¼ z2
� �

(18.52)

From Eqs. (18.50), (18.51), and (18.52) one can easily write
r2?
� �¼¼ 2

3
r2
� �

(18.53)

Substituting Eqs. (18.48), (18.49), and (18.53) into Eq. (18.7), the induced magnetic moment due to the Larmor precession
is given by

mL ¼� Ze2H

6mec
2

r2
� �

(18.54)

If there are ra atoms per unit volume, the diamagnetic susceptibility is given by
wd ¼
M

H
¼ ramL

H
¼�Ze2ra

6mec
2

r2
� �

(18.55)

This is called the Langevin result. From Eq. (18.55) it is evident that the problem of calculating the diamagnetic suscep-
tibility is reduced to the calculation of hr2i for the atomic electron distribution in an atom, which can be estimated using a

quantum mechanical approach.

The units of wd can be calculated from Eq. (18.55). Z is a number but ra, as the density of atoms, has dimensions of 1/L3

and so, from Eq. (18.55), one can write

wd ¼
1

L3

e2

M LT�1
� �2 L2 ¼ e2

L

1

ML2T�2
(18.56)

Now e2/L have the units of energy (work) with dimensions
e2

L
¼maS¼M LT�2

� �
L¼ML2T�2 (18.57)

FromEqs. (18.56) and (18.57), wd is found to be dimensionless. The value of wd is specified in the same way as the density ra
is defined. If the density ra is defined per unit volume, then the values of wd are listed per unit volume, but if ra is taken per
gram mole, then wd is specified per gram mole.

Problem 18.1

Calculate the diamagnetic susceptibility for a He atom in the ground state, i.e., the 1s state, taking its radius as the Bohr radius a0.

The density of He atoms is given by ra¼2.7�1024cm�3.
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18.6 QUANTUM THEORY OF DIAMAGNETISM

The Hamiltonian of an electron in an atom (say the Bohr atom) is given by

H
_

0 ¼
p2

2me

+V (18.58)

where p and me are the momentum and mass of the electron, respectively. If the atom is placed in electric and magnetic
fields represented by E and H, respectively, then the Lorentz force acting on the electron is given by

F¼�eE� e

c
v�H (18.59)

The magnetic field in terms of the vector potential A is given by
H¼r�A (18.60)

The momentum of an electron in the presence of an electromagnetic field changes as follows:
p! p� e

c
A (18.61)

Therefore, the Hamiltonian of an electron in the presence of a magnetic field becomes
H
_¼ 1

2me

p� e

c
A

� �2
+V (18.62)

H
_

can be split up into two parts as
H
_¼H

_

0 +H
_

1 (18.63)

where
H
_

0 ¼
p2

2me

+V (18.64)

H
_

1 ¼� e

2mec
p �A +A � pð Þ+ e2

2mec
2
A2 (18.65)

Here H
_

0 is the unperturbed Hamiltonian andH
_

1 is the perturbation. Suppose H is uniform and is applied in the z-direction,
then the components of the magnetic field from Eq. (18.60) are given as

Hx ¼
∂Az

∂y
�∂Ay

∂z
¼ 0 (18.66)

Hy ¼
∂Ax

∂z
�∂Az

∂x
¼ 0 (18.67)

Hz ¼
∂Ay

∂x
�∂Ax

∂y
¼H (18.68)

The above equations are satisfied if the components of the vector potential are given by
Ax ¼�1

2
yH,Ay ¼

1

2
xH,Az ¼ 0 (18.69)

This can be written in vector form as
A¼ 1

2
H� r (18.70)

Substituting p¼ � iħr into Eq. (18.65), H
_

1 can be written as
H
_

1 ¼
iħe
2mec

r �A +A � rð Þ+ e2

2mec
2
A2 (18.71)
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In terms of Cartesian components H
_

1, from Eq. (18.65), can be written as

H
_

1 ¼� e

2mec
pxAx + pyAy +Axpx +Aypy

� �
+

e2

2mec
2

A2
x +A

2
y

� �
(18.72)

From Eqs. (18.69) and (18.72) it is straightforward to write
H
_

1 ¼� eH

2mec
xpy�ypx

� �
+

e2H2

8mec
2

x2 + y2
� �

(18.73)

The orbital angular momentum, defined as L¼r�p, can be used to write
H
_

1 ¼� eH

2mec
Lz +

e2H2

8mec
2

x2 + y2
� �

or
H
_

1 ¼�mzH +
e2H2

8mec
2

x2 + y2
� �

or
H
_

1 ¼� m! �H +
e2H2

8mec
2

x2 + y2
� �

(18.74)

The expectation value of H
_

1 gives us the change in energy due to the application of the magnetic field. The lowest order
change in energy is given by the first-order correction in perturbation theory. Let jc0i¼j0i represent the ground state of the
system. For diamagnetic substances the atomic or molecular magnetic moment is zero in the ground state, therefore,

0h jmz 0j i ¼ 0 (18.75)

Hence the first-order correction to energy in a diamagnetic substance comes from the expectation value of the second term
in Eq. (18.74), i.e.,

E1 ¼
e2H2

8mec
2

0h jx2 + y2 0j i (18.76)

h0 j x2+y2 j0i is the average value of the area of the electron loop perpendicular to the direction of the magnetic field and is
given by

0h jx2 + y2 0j i ¼ r2?
� �¼ 2

3
r2
� �

(18.77)

Substituting Eq. (18.77) into Eq. (18.76), we obtain
E1 ¼
e2H2

12mec
2

r2
� �

(18.78)

We know that the magnetic energy is given by
E¼� m! �H¼�mzH (18.79)

Therefore, the magnetic moment is given by
mz ¼� ∂E
∂H

(18.80)

Substituting Eq. (18.78) into Eq. (18.80), one gets
mz ¼� e2H

6mec
2

r2
� �

(18.81)

This is the same result for the magnetic moment as that obtained classically.
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Let us find the expectation value of the Hamiltonian of the perturbed ground state. Suppose jni represents the nth state of
the unperturbed system with energy En. The matrix element of the magnetic moment between the ground state j0i and the
nth state jni is hn j mz j0i. When a magnetic field H is applied, the perturbed ground state of the system is written as

00j i ¼ 0j i +
X
n6¼0

nh jmzH 0j i
En�E0

nj i (18.82)

The first-order correction to the magnetic moment with respect to the perturbed ground state of the system, neglecting terms
of second and higher order in H, is given by

Dm¼ 00h jmz 00j i ¼ 0h jmz 0j i+H
X
n 6¼0

0h jmz nj i nh jmz 0j i
En�E0

+H
X
n0 6¼0

0h jmz n0j i n0h jmz 0j i
En0 �E0

(18.83)

The first term on the right side of Eq. (18.83) is zero. Further, the second and third terms are equal, yielding
Dm¼ 2H
X
n 6¼0

nh jmz 0j ij j2
En�E0

(18.84)

If there are ra atoms or molecules per unit volume of the solid, then the magnetization produced is given by
△M¼ raDm¼ 2raH
X
n6¼0

njmz 0j ij j2
En�E0

(18.85)

Therefore, the magnetic susceptibility contribution is given by
DwM ¼DM
H

¼ 2ra
X
n 6¼0

nh jmz 0j ij j2
En�E0

(18.86)

Here En>E0, therefore, Dm and hence DwM is positive. With respect to En�E0 two cases arise:
1. If En�E0≫kBT, i.e., the excited state has energy much greater than the thermal energy, then most of the electrons will

be in the ground state. In this case, DwM is positive and independent of temperature. This type of contribution to the

magnetic susceptibility of a diamagnetic substance is known as Van Vleck paramagnetism.
2. If En�E0≪kBT, the excited state has an energy much less than the thermal energy. In this situation, both the ground

and excited states are occupied with electrons, but the ground state has a higher population compared with the excited

state. The excess population in the ground state is ra (En�E0)/2kBT. Hence the resultant magnetization in the ground

state of the system is given by

DM¼ raDm En�E0ð Þ=2kBT

Substituting the value of Dm from Eq. (18.84) into the above equation, we find

DM¼ raH
kBT

X
n6¼0

nh jmz 0j ij j2 (18.87)

Hence the magnetic susceptibility becomes
DwM ¼ ra

kBT

X
n 6¼0

nh jmz 0j ij j2 (18.88)

DwM has a behavior similar to that of the Curie susceptibility, but the origin of this contribution is entirely different: DwM

arises due to the polarization of the states of the system. It should be noted that the energy separation En�E0 does not enter

in Eq. (18.88). We should also note that if En!E0, then the electrons become free and the solid becomes a metal; in this

case, Eq. (18.88) is not valid.
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The above treatment can be generalized for the nth perturbed excited state given by

n0j i ¼ nj i�
X
n6¼0

0h jmzH nj i
En�E0

0j i

The expectation value of the magnetic moment in the perturbed state is given by
Dm0 ¼ n0h jmz n0j i ¼�2H
X
n6¼0

nh jmz 0j ij j2
En�E0

18.7 PARAMAGNETISM

In a paramagnetic substance each atom or molecule possesses an intrinsic magnetic dipole moment m!. At finite temperature,

all of the magnetic dipole moments are oriented randomly in the form of closed chains yielding zero magnetization. In the

presence of an applied magnetic field, two opposing forces act on each atomic dipole moment in a paramagnetic substance:

1. The magnetic field tries to align the dipole moments in the direction of the field, thereby producing finite magnetization

along the magnetic field.

2. At finite temperature, the thermal energy tries to randomize the magnetic moments to form closed chains and hence

tends to decrease magnetization.
18.7.1 Classical Theory of Paramagnetism

In the classical description, the magnetic dipole moment m! is taken to be a constant physical quantity independent of the

quantum numbers. Under the action of the competing forces mentioned above, some dipole moments align in the direction

of the applied magnetic field, while others make some angle y, which is different for different dipole moments. Therefore, a

solid shows finite magnetic dipole moment and hence finite magnetization in the direction of the magnetic field. The

maximum magnetization is produced when all of the dipole moments align along the direction of the applied field. In

the presence of a magnetic field, the potential energy of the magnetic dipole moment is given by

E¼� m! �H¼�mHcosy (18.89)

According to classical statistics, the probability P of a dipole moment making an angle ywith the magnetic field is given by
P∝ exp � E

kBT

	 

∝ exp

mH
kBT

cosy
	 


(18.90)

The component of the magnetic moment along the direction of the magnetic field is m! � Ĥ¼ m cosywhere Ĥ is a unit vector
in the direction of the field. Hence the average component of magnetic moment in the direction of the magnetic field is

given by

mavg ¼

ð
m! � Ĥ
� �

exp
mH
kBT

cosy
	 


dOsð
exp

mH
kBT

cosy
	 


dOs

(18.91)

Here dOs is the elemental solid angle. Solving the above integral, one gets
mavg ¼ mL
mH
kBT

	 

(18.92)

where
L yð Þ¼ cothy�1

y
(18.93)
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L(y) is the Langevin function (see Section 15.15). If ra is the number of atoms per unit volume, then the magnetization is

given by

M ¼ ramL
mH
kBT

	 

(18.94)

The magnetic susceptibility wM becomes
wM ¼ ram
H

L
mH
kBT

	 

(18.95)

It is interesting to study M and wM in limiting cases. If the magnetic field is very high and the temperature is very low then,
mH≫kBT (18.96)

In this limiting case the Langevin function goes to unity, i.e., L(mH/kBT) ¼ 1 and therefore
M¼ ram (18.97)

which is the saturation magnetization when all the magnetic dipole moments are aligned in the direction of the magnetic
field. Hence saturation magnetization is obtained either at very low temperatures or at very high magnetic field values. The

other limiting case occurs when the magnetic field is low, but the temperature is high and, according to this.

mH≪kBT (18.98)

If y is small, L(y)�y/3 [see Eq. (15.84)] and hence the magnetization from Eq. (18.94) becomes
M Tð Þ¼ ram
mH
3kBT

¼ m2ra

3kBT
H (18.99)

The behavior of the magnetization M(y) as a function of y is shown in Fig. 18.5. M(y) acquires the saturated value ram at
very large values of y, but the slope of the M(y) curve at y¼ 0 is ram/3. From Eq. (18.99) the paramagnetic susceptibility is

given by

wM Tð Þ¼CM

T
(18.100)
FIG. 18.5 The magnetization M(y) in a para-

magnetic solid as a function of parameter

y¼mH/kBT in the classical theory. The slope

of the magnetization curve at the origin is

shown by the dashed line.
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where CM is the Curie constant and is given by

CM ¼ m2ra

3kB
(18.101)

Eq. (18.100) is the usual Curie law. The limitation of the classical theory is that the distribution of magnetic dipole moments
is assumed to be continuous, i.e., all values of y are allowed. But according to quantum mechanics, the distribution of mag-

netic dipoles must be discrete.

Problem 18.2

Let the paramagnetic susceptibility be given by

wM ¼ ram2B
3kBT

where mB is the Bohr magnetron. If the density of atoms is ra¼2�1022 atoms/cm3, find the paramagnetic susceptibility at room
temperature taken as T¼300K.

Problem 18.3

If one retains the first two terms in the series expansion of the Langevin theory of paramagnetism, prove that the susceptibility is

given by

wM ¼ M

H
¼ ram2

3kBT
1� 1

15

mH
kBT

	 
2
" #
18.7.2 Quantum Theory of Paramagnetism

Eq. (18.14) yields discrete values for the orbital magnetic moment m!L, which means that it is quantized. Similarly, the spin

magnetic moment m!S is also discrete, having two values [Eq. (18.15)]: mB and �mB. Therefore, the total magnetic moment

m!J has discrete values. The general expression for the magnetic moment of an atom or an ion in free space is given by

m!J ¼ gJħJ (18.102)

where J is the total angular momentum. The constant gJ is the ratio of the magnetic moment to the angular momentum and is
called the magneto-mechanical or gyromagnetic ratio. Comparing Eq. (18.102) with Eq. (18.24), one can write

gJmB ¼�gJħ (18.103)

Lande’s spectroscopic splitting factor gJ represents the ratio of the number of Bohr magnetrons to the angular momentum in
units of ħ.
Suppose a magnetic fieldH is applied to a paramagnetic substance along the z-direction. The Hamiltonian of the system

is given by

H
_¼�m!J �H¼ gJmBJzH (18.104)

Jz is the z-component of the angular momentum J. If MJ is the eigenvalue of Jz, the interaction energy is given by
E¼ gJmBHMJ (18.105)

MJ is the azimuthal quantum number having the values�J,� (J�1), ………�1, 0, 1, ……(J�1), J, which are 2J+1 in
number. In a paramagnetic substance the occupation probability is given by the Boltzmann distribution as

P∝ exp � E

kBT

	 

∝ exp �b0gJmBHMJð Þ (18.106)
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The constant b0 is given by Eq. (8.22). The component of the magnetic moment in the direction of the magnetic field is

mz ¼ m!J � ẑ¼�gJmBMJ (18.107)

Hence the average magnetic moment in the direction of the magnetic field is given by
mavg ¼

X
J

�gJmBMJð Þ exp �b0gJmBHMJð ÞX
J

exp �b0gJmBHMJð Þ (18.108)

Substituting
y¼ b0gJmBH (18.109)

Eq. (18.108) can be written as
mavg ¼
�gJmB

X
J

MJ exp �yMJð ÞX
J

exp �yMJð Þ

¼ gJmB
d

dy
ln

X
J

exp �yMJð Þ
 ! (18.110)

It can easily be shown that
X
J

exp �yMJð Þ¼
exp

2J + 1

2
y

	 

� exp �2J + 1

2
y

	 


exp
y

2

� �
� exp �y

2

� � (18.111)

Substituting Eq. (18.111) into Eq. (18.110) and simplifying, we obtain
mavg ¼ gJmBJBJ xð Þ (18.112)

where
BJ xð Þ¼ 2J + 1

2J
coth

2J + 1

2J
x

	 

� 1

2J
coth

1

2J
x

	 

(18.113)

and
x¼ yJ¼ b0gJmBHJ (18.114)

The function BJ(x) is called the Brillouin function. If ra is the number of dipole moments per unit volume, the magneti-
zation is given by

MJ xð Þ ¼ ragJmBJBJ xð Þ (18.115)

One can study the particular case in which there is only spin (L¼0). In the case of spin J¼S¼1/2 and gJ¼ gS¼2, we find
x¼ mBH
kBT

(18.116)

Substituting the above mentioned values, the Brillouin function for spin becomes
B1=2

mBH
kBT

	 

¼ 2 coth 2

mBH
kBT

	 

� coth

mBH
kBT

	 

(18.117)

which can be simplified to get
B1=2

mBH
kBT

	 

¼ tanh

mBH
kBT

	 

(18.118)
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Substituting Eq. (18.118) into Eq. (18.115) one can write

M1=2 ¼ ramB tanh
mBH
kBT

	 

(18.119)

The value of the magnetization and magnetic susceptibility can be obtained in a simpler form in the limiting cases. From
Eq. (18.114) one can write

x¼ gJmBHJ

kBT
(18.120)

In the limit x!0, i.e., when the magnetic field is very small or the temperature is very large, one can expand coth x as in
Eq. (15.83) and use this in Eq. (18.113) to get

BJ xð Þ¼ J + 1

J

x

3
(18.121)

Therefore, in the limit x!0, the magnetization from Eq. (18.115) is given by
MJ xð Þ¼ rag2Jm
2
B J J + 1ð Þ

3kBT
H ¼ ragJmB

J + 1

3
x (18.122)

Hence the magnetic susceptibility becomes
wM ¼CJ

T
(18.123)

where
CJ ¼
rag2Jm

2
B J J + 1ð Þ
3kB

(18.124)

Eq. (18.123) is just the Curie law with Curie constant CJ, which depends on the total quantum number J. If we compare
Eq. (18.124) with Eq. (18.101), we can say that the magnetic moment mJ associated with an atom having quantum number J

is

mJ ¼ mBpJ (18.125)

where
pJ ¼ gJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J J + 1ð Þ

p
(18.126)

Here pJ gives the effective number of Bohr magnetrons in an atom. The Curie constant in terms of mJ is given by
CJ ¼
ram2J
3kB

(18.127)

In the limiting case of x!∞, either the magnetic field is very high or the temperature is very low. In this limit the Brillouin
function (Eq. 18.113) goes to unity and, therefore, the magnetization from Eq. (18.115) is given by

MJ ¼ ra gJmBJ (18.128)

which gives the saturation magnetization of the substance. The variation of MJ(x), given by Eq. (18.115) as a function of x,
is shown in Fig. 18.6, which is similar to the magnetization curve obtained in the classical case. MJ(x) increases with an

increase in x and approaches the saturation value for large values of magnetic fields.

One can obtain the classical result of paramagnetism from the quantum theory in the limiting case. Let us suppose that

the angular momentum J makes an angle y with the direction of H (Fig. 18.7). The eigenvalue of J is [J(J+1)]1/2 and,

therefore, the value of the z-component of J, i.e., Jz, is given by

Jz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J J + 1ð Þ

p
cosy (18.129)



FIG. 18.6 The magnetization MJ(x) for a

paramagnetic solid as a function of parameter

x¼b0gmBJH. The magnetization curve is

similar to that shown in Fig. 18.5 except that

the saturation magnetization and slope of the

curve at the origin are different.

FIG. 18.7 Orientation of total angular momentum J with respect to the applied magnetic field H in the z-direction.
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From quantum mechanics Jz has 2J+1 eigenvalues ranging from �J to J through zero. Therefore, the values of cosy are

given by

cosy¼� Jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J J + 1ð Þp ¼� 1

1 +
1

J

	 
1=2
(18.130)

As the values of J are discrete, so are the values of y. If J has an infinite number of values, then J becomes very large. Hence
from Eq. (18.130) cosy has an infinite number of values lying between �1 and+1. In other words, the value of y becomes
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continuous, that is, the distribution becomes continuous (classical case). In the limit of J!∞, it is easy to prove from

Eq. (18.113) that

LimJ!∞ BJ xð Þ¼ coth x�1

x
¼L xð Þ (18.131)

Hence the magnetization from Eq. (18.115) in the limit J!∞ is given by
MJ ¼ ramJL xð Þ (18.132)

where
mJ ¼ gJmBJ (18.133)

and
x¼ mJH
kBT

(18.134)

Eq. (18.132) gives the familiar Langevin paramagnetism.
Problem 18.4

Consider an ion with a partially filled shell of angular momentum J and Z additional electrons in filled shells. Show that the ratio of

paramagnetic susceptibility at high temperatures (Curie law) to the diamagnetic susceptibility is given by

wM
wd

¼ gJ
2

4

2J J + 1ð Þ
ZkBT

ħ2

me r2h i
18.8 HUND’S RULE

The magnetic moment of an atom can be predicted using the knowledge of quantum mechanics in combination with the

Pauli exclusion principle and Hund’s rule. The Pauli principle says that, in a paramagnetic substance, an electron state can

be occupied by two electrons with the same principal (n), orbital (‘), andmagnetic (m‘) quantum numbers, but with opposite

spins (s). In an atom the filled electron states do not contribute to the magnetic moment, but rather its finite value results

from the partially filled states.

Hund’s rule states that in the ground state of an atom

1. The electron spins add to give the maximum possible total spin S consistent with the Pauli exclusion principle. This rule

has its origin in the Coulomb repulsive interaction energy between two electrons.

2. The orbital angular momenta of electrons combine to give the maximum possible total angular momentum L that is

consistent with point 1. This rule is based on model calculations of spectral terms.

3. For a partially filled shell, the total angular momentum is given as follows:
J¼jL�S j for a shell less than half filled
¼L+S for a shell more than half filled: (18.135)

This rule is a consequence of the spin-orbit interaction.
18.8.1 Applications of Hund’s Rule

In the paramagnetic elements each atom or molecule has a finite intrinsic magnetic moment. In the periodic table most of

the paramagnetic elements are either d-shell or f-shell elements, which possess partially filled electron shells. For example,

elements of the iron group, with atomic number Z ranging from 21 to 28, possess incomplete 3d-shells. The elements of the

palladium group, with Z ranging from 39 to 46, possess incomplete 4d- shells, while the platinum group elements, with Z

ranging from 71 to 78, possess incomplete 5d-shells. The rare-earth elements, with Z ranging from 57 to 72, possess incom-

plete 4f-shells. The uranium group elements, with Z ranging from 89 to 103, possess incomplete 5f and 6d-shells. To illus-

trate the method of calculating the atomic magnetic moment, we consider a few different elements.



402 Solid State Physics
18.8.1.1 Rare-Earth Group

The rare-earth element Ce58 is paramagnetic in nature and has the following electronic configuration.

Ce58 : 4f25s25p66s2

In the above representation the electronic configuration starting from the first partially filled shells is written. Here the 4f-
shell is partially filled and is responsible for the magnetic moment. The ion of Ce58 is trivalent and has the configuration.

Ce+3 : 4f15s25p6

The valence is contributed by one electron in the 4f-shell and two electrons in 6s-shell. The 4f-shell has 7 subshells with
orbital magnetic quantum number m‘ from �3 to 3, while the spin quantum number ms has two values 1/2 and �1/2. The

distribution of 4f-electrons in the subshells is given below:

m‘ : 3 2 1 0 �1 �2 �3

ms" :
1

2

The above distribution gives as a maximum value of the orbital quantum number L¼ 3 and a maximum value of spin S¼ 1/
2 consistent with Hund’s rule. As the 4f-shell is less than half filled, the total angular momentum J is given as

J¼ L�Sj j ¼ 3�½¼ 5=2

With these values of J, L, and S, the value of gJ can be calculated using Eq. (18.25) yielding
gJ ¼ 1 +

5

2
� 7
2
+
1

2
� 3
2
�3�4

2 � 5
2
� 7
2

¼ 6

7

Hence the effective number of Bohr magnetrons from Eq. (18.126) becomes
pJ ¼
3

7

ffiffiffiffiffi
35

p
ffi 2:5

The experimental value of the effective number of Bohr magnetrons is pexp ¼ 2.4, which is in good agreement with the
calculated value.

Another interesting example of the rare-earth elements is Pr59 with the following electronic configuration.

Pr59 : 4f25s25p66s26p1

Here the 4f-shell is partially filled and is responsible for the magnetic moment in paramagnetic Pr. The ion of Pr59 is tri-
valent and has the configuration.

Pr+3 : 4f25s25p6

The distribution of electrons of Pr+3 in the 4f-subshells is given below:
m‘ : 3 2 1 0 �1 �2 �3

ms" :
1

2

1

2

According to Hund’s rule, L ¼ 3+2¼5 and S ¼ ½+½¼1. As the f-shell is less than half filled, therefore,
J¼ L�Sj j ¼ 4

The value of Lande’s splitting factor becomes
gJ ¼ 1�1

5
¼ 4

5

The effective number of Bohr magnetrons pJ can be found immediately and has the value
pJ ¼
4

5
�
ffiffiffiffiffi
20

p
¼ 3:58
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The experimental value is pexp ¼ 3.50, which is in reasonable agreement with theory. The agreement between theory

and experiment in the ionic magnetic moment of Ce and Pr is good, but there is a large discrepancy in the case of Eu+3 and

Sm+3 ions.
18.8.1.2 Iron Group

Mn is an important element of the iron group with its atom having the electronic configuration:

Mn : 3d54s2

Here the 3d-shell is incomplete and is expected to contribute to the magnetic moment. The electronic configuration of a
divalent Mn ion becomes

Mn+2 : 3d5

The distribution of electrons among the d-subshells is given below:
m‘ : 2 1 0 �1 �2

ms" :
1

2

1

2

1

2

1

2

1

2

Hund’s rule yields the following values for the quantum numbers L andS:
L¼ 0, S¼ 5=2

One should note that the 3d-shell is half filled and the value of J is the same using both formulas: one for a shell less than half
filled and the other for a shell more than half filled, that is,

J¼ L�Sj j ¼ L+Sj j ¼ 5=2:

The gJ factor has the value 2 because this is a case with spin only.With the above values one can easily find the value of pJ as
pJ ¼ gJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J J + 1ð Þ

p
¼ gS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S S + 1ð Þ

p
¼

ffiffiffiffiffi
35

p
¼ 5:9

The experimental value is also the same, that is, pexp¼ 5.9. Hence both the calculated and experimental values agree with
each other.

Another peculiar element of the iron group is Cr24 with the following electronic configuration:

Cr24 : 3d54s1

If the valence of Cr is taken to be three, then the electronic configuration of Cr+3 becomes
Cr+3 : 3d3

Here two d-electrons and one s-electron contribute to the valence. The three electrons in the d-subshells of Cr+3 contribute
to the magnetic moment and their arrangement is given below:

m‘ : 2 1 0 �1 �2

ms" :
1

2

1

2

1

2

The values of L, S, and J become 3, 3/2, and 3/2, which yield a value of gJ ¼ 2/5. The value of pJ becomes
pJ ¼
1

5

ffiffiffiffiffi
15

p
¼ 0:77

But pexp¼ 3.8, which clearly shows a disagreement between theory and experiment. The disagreement may possibly be due
to the valence as the Cr atom exhibits variable valence. Let us take the Cr atom as divalent with electronic configuration

Cr+2 : 3d4
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In this case the distribution of electrons is given below:

m‘ : 2 1 0 �1 �2

ms" :
1

2

1

2

1

2

1

2

The above distribution yields values of L¼2, S¼2 and J¼0 (d-shell is less than half filled). These values yield zero

magnetic moment (pJ¼0) for the Cr+2 ion, which is again in disagreement with the experimental value. This shows that

there is some other factor that may yield the correct value of the magnetic moment in Cr. Let us examine the case of Cr+3

assuming that only the spin contributes to the magnetic moment of the ion. Then

pS ¼ gS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S S + 1ð Þ

p
¼ 2

ffiffiffiffiffiffiffiffiffi
3

2
� 5
2

r
¼

ffiffiffiffiffi
15

p
¼ 3:87

The value of pS is in reasonable agreement with pexp¼ 3.8. Therefore, a Cr+3 ion behaves as if it had zero orbital angular
momentum. Similarly, it can be shown that in the Fe+3 ion, the magnetic moment turns out to be 5.9 if the orbital angular

momentum is assumed to be zero, which agrees with the experimental value. One should note that, in general, the ions from

the iron group behave as if there were no orbital angular momentum associated with them. In other words, one can say that

the orbital angular momentum is quenched in iron group elements.
18.9 CRYSTAL FIELD SPLITTING

Inside a crystal, every atom or molecule experiences a crystal field, which has a significant effect on the atomic/molecular

magnetic moment. The 4f-shell in the rare-earth elements is responsible for paramagnetism and lies deep inside the ion.

Therefore, the 4f-shell is well shielded from the crystal field by the 5s- and 5p-shells. On the other hand, in the iron group

elements, the 3d-shell is responsible for paramagnetism. The 3d-shell is the outermost shell in an ion and experiences an

intense local crystal field produced by the neighboring ions, which is generally inhomogeneous in nature. The interaction of

ions with the inhomogeneous crystal field has two major effects.

1. The coupling of the L and S vectors (L�S coupling) is largely broken, so the states can no longer be specified by the

total angular momentum J.

2. The 2L+1 sublevels (given by m‘) belonging to a given L value are degenerate in a free ion, but they get split up by the

inhomogeneous crystal field. The splitting diminishes the contribution of the orbital magnetic moment.
18.9.1 Quenching of Orbital Angular Momentum

In a central field directed toward the nucleus, the plane of the electron orbit is fixed in space, yielding constant components

of orbital angular momentum Lx, Ly, and Lz. According to quantum mechanics, in the central field approximation,

H
_
,Lz,andL

2 are constants of motion, which means that they commute with one another. On the other hand, in the presence

of a noncentral crystal field, the plane of the electron orbit is not fixed, but rather it is moving about its center in all possible

directions. As a result, the components of orbital angular momentum are continuously changing and they may average out

to zero. In such a situationH
_
andLz are no longer constants of motion, although L2 may continue to be a constant of motion.

In other words, H
_
andLz do not commute with each other, i.e.,

H
_
, Lz

h i
6¼ 0 (18.136)

In this case Lz may average out to zero, leading to quenching of the orbital angular momentum.
Themagnetic moment of an atom or molecule depends on the magnetic moment operator mB(L+2S). If a magnetic field

is applied in the z-direction, the orbital magnetic moment is proportional to the expectation value of Lz. If Lz is quenched,

the orbital magnetic moment is also quenched. In such elements, the magnetic moment arises from the spin angular

momentum only.

Problem 18.5

Derive the expression for the paramagnetic susceptibility in a metal with free electrons contributing to magnetization.
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