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H I G H L I G H T S

• Demand-pull policies through feed-in tariff (FIT) policy promote innovation.

• Higher feed-in tariffs induce greater patent stock of wind power technologies.

• Technology-push policies through R&D spending support patent.

• Interaction effect exits in R&D spending for industrial enterprises and FIT policy.
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A B S T R A C T

The international community generally agrees that renewable energy, such as wind power, is conducive for
achieving CO2 mitigation, environmental protection, energy savings, and energy security. The innovation in
wind power technologies is vital to achieving a transformation of energy structure. The study sought to in-
vestigate the effects of policies (feed-in tariffs and research and development spending), their interaction, wind
power deployment and electricity prices on wind power technology innovation at the provincial level in China,
based on negative binomial fixed effect regression model and provincial panel data from 2006 to 2016. The
following conclusions are drawn from the findings: (1) demand-pull policies through feed-in tariff policy pro-
mote innovation in wind power technologies; (2) higher feed-in tariffs of wind power induce greater stock of
patents in wind technologies; (3) technology-push policies through research and development spending support
wind power technological innovation; (4) only research and development funding investment in industrial en-
terprises under the implementation of feed-in tariff policy can stimulate greater patent stock due to the fact that
the wind power industry enterprises are gainers for feed-in tariff policy, indicating that there is an interaction
effect; (5) improving the wind power deployment drives wind power technology patents; (6) increasing elec-
tricity prices will incentivize innovation of wind power manufacturers in order to reduce cost and obtain more
profit.

1. Introduction

Promoting wind power is regarded as an important strategy for
achieving CO2 mitigation, environmental protection, energy savings
and energy security [1]. Technological progress is the key to realizing
energy conservation [2]. The innovation in wind power technologies is
vital to achieving a transformation of energy structure and sustainable
economy transition. The share of wind power in the total electricity
generation increased from 0.1% in 2006 to 4.54% in 2017, which il-
lustrates that though the share of wind power has increased sig-
nificantly, the share is still low. It is undeniable that the booming de-
velopment of wind power is conducive to the cost reduction under wind
power technological innovation. However, innovation in wind power

technologies relies on policy supports. In order to achieve wind power
technological innovation to promote a substantial increase in wind
power generation, effective policy supports need to be implemented.

The policy supports for innovation in wind power technologies in-
clude feed-in tariffs, tax incentives, tradable renewable energy certifi-
cates, investment on research and development (R&D) activities, stan-
dardization of products, domestic content protection policy and so on,
which stimulate learning-by-doing and learning-by-using processes to
reduce costs for wind power [3–4]. These various policies can be
classified as either demand-pull policies (e.g. feed-in tariffs) or tech-
nology-push policies (e.g. R&D spending). Theoretically, the im-
plementation of demand-pull policies and technology-push policies is
conducive to promoting technological innovation which is often
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described by patent counts or patent stock [5–7].
In recent years, there have been heated discussions about the effects

of policies on innovation in renewable energy technologies.
On the demand-pull policies side, Finon and Menanteau [8] and

Costantini et al. [9] found that in stimulating innovation activities,
price-based instruments are more effective than quantity-based instru-
ments, such as feed-in tariffs which can produce greater incentives for
innovation. Hence, many researchers began to pay attention to the in-
novation effect of feed-in tariffs for renewable energy technologies.
Reichardt et al. [10] thought that feed-in tariffs with a sufficient level
will stimulate renewable energy technology innovation. Moreover,
Bergek and Berggren [11] suggested that feed-in tariffs provide pre-
dictable incentives for investors and are more conducive to innovation.
In order to verify the innovation effect of feed-in tariffs, Johnstone et al.
[12] used patent data on a panel of 25 countries during 1978–2003 and
Nicolli and Vona [13] built a dataset for the EU countries over the
period 1980 to 2007. They found that feed-in tariff levels have a sig-
nificantly negative impact on innovation in wind power technologies,
but have a significantly positive effect on patenting in solar power
technologies. In other words, the innovation effects of feed-in tariff vary
under different renewable energy technologies. In addition, Grafström
and Lindman [14] showed that feed-in tariffs are not determinants of
innovation using data on wind power of developed countries in Europe
from 1991 to 2008. Schleich et al. [15] introduced a dummy variable to
measure feed-in tariff policy and illustrate that feed-in tariff policy has a
negative sign but not statistically significant. However, other re-
searchers have different conclusions about the innovation effect of feed-
in tariffs. For example, Lindman and Söderholm [16] provided em-
pirical evidence of higher feed-in tariffs promoting innovation in wind
power technologies based on data of 4 European countries between
1977 and 2009. Besides, Böhringer et al. [17] found that the innovation
effect of feed-in tariffs for renewable energy technologies in Germany is
positive. In fact, this result is in line with the expectation of setting feed-
in tariff policy because feed-in tariffs bring more predictable price in-
centives for investors. The above previous studies have different con-
clusions on the effect of feed-in tariffs on wind power technological
innovation due to the fact that they are based on different samples and
the different stages of renewable energy technologies. Hence, this issue
is worth to be further discussed.

On the technology-push policies side, Popp et al. [18] and Johan-
stone et al. [19] have proved that the quality and level of technologies
determined by R&D investment are very crucial for innovation at the
micro and macro levels. Based on the country-level dataset, many re-
searchers found that specific R&D expenditures can induce additional
innovation in wind power technologies [12–13,15–16,20]. However,
other studies [14,17] indicated that public R&D spending is not a sig-
nificant determinant of wind power technology invention, especially in
the mature stage. At the early and large-scale development phase for
renewable energy, perhaps the investment in R&D activities plays a
positive role in innovation. The above previous studies also have dif-
ferent conclusions on the effect of the investment in R&D activities on
wind power technological innovation. Based on firm-level dataset,
Rong et al. [21] investigated Chinese listed firms during the period
2002 to 2011 and showed that R&D stocks and patent counts have a
significant positive relationship. At the national and firm levels, Hu
et al. [22] compared the wind energy in China, Denmark, Germany, and
the USA and found that China’s R&D spending is ranked top but patent
counts lagged behind other countries. The results suggest that the
government should pay attention to efficiently utilize R&D expenditure
to drive wind power technological innovation activities. In other words,
investment in R&D activities plays an important role in promoting
technological innovation.

Additionally, the innovation process is complex and R&D support
will impact on patenting through different processes, including the
basic knowledge generated by R&D expenditures and the tacit knowl-
edge induced by feed-in tariff policy [4,23]. Lindman and Söderholm

[16] pointed out that the marginal effect of R&D funding on innovation
in wind power technologies will depend on the implementation of feed-
in tariff policy for wind power. Therefore, the interaction effect be-
tween feed-in tariff policy and R&D spending will be discussed in this
paper.

This paper attempts to fill the gaps in the previous literature.
First, it is noted that few studies have considered the effects of feed-

in tariff policy, R&D spending, their interaction term, deployment of
wind power and incentive from electricity prices on innovation in wind
power technologies together. In addition, the existing literature only
pays attention to one of the perspectives of feed-in tariff policy or feed-
in tariffs of wind power. This paper would consider both of them.
Though feed-in tariffs and R&D expenditure have positive effects on
innovation on wind power technology innovation, which is consistent
with the expectation of feed-in tariff policy and R&D expenditure, based
on different samples and different stages of renewable energy tech-
nologies, the impacts of feed-in tariffs and R&D expenditure on wind
power technological innovation are different. There is a controversy
about the impacts of feed-in tariffs and R&D spending on wind power
technology innovation. Hence, this is of great significance to call for
further discussion to enhance better understanding.

Second, in terms of methodology, due to the abnormal distribution
of the count data model, the previous literature in empirical analysis
mostly used the Poisson regression model and negative binomial fixed
effect regression model. This paper follows previous literature to in-
vestigate the effects of policies (feed-in tariffs and R&D spending) and
their interaction on wind power technological innovation. In addition,
most literature used patent counts to proxy innovation. However, the
latest literature also indicated patent stock contains the information of
current patent counts and past patent counts under the knowledge
depreciates and reflects the sector-specific effect, knowledge stock, and
knowledge infrastructure level. Hence, the patent stock is a more sui-
table proxy for innovation.

Finally, most literature considers the impacts of policies on wind
power technological innovation focusing on the cross-country level or
firm level, rather than at the provincial level in an individual country,
especially neglecting sample of China. China has the largest cumulative
installed capacity of wind power globally. This paper would provide a
more different and important perspective.

Following the aforementioned background and literature review,
this paper will investigate the effects of policies (feed-in tariffs and R&D
spending), their interaction term, deployment of wind power and in-
centive from electricity prices on wind power technological innovation
at the provincial level in China. The introduction to the support policies
and innovation in wind power technologies in China is provided in
Section 2. Section 3 describes the variables, data, and negative binomial
fixed effect regression model. Section 4 discusses the results of eco-
nomic analysis and robustness checks. Section 5 draws the conclusions
and offers some targeted policy suggestions.

2. Innovation and policies: China’s case of wind power
technologies

As a renewable energy technology, the development of wind power
in China began in 1985. The development of the wind power industry
has experienced three stages: the first and second stages are a pilot
phase (1985–1993) and an industrialization phase (1993–2003), re-
spectively, and the third stage is a large-scale commercialization stage
(2003-Nowadays) [24]. As wind energy development has greater eco-
nomic value, social value and environmental value, wind energy in
China has become the largest share in the renewable energy source. The
share of wind power in the total electricity generation was 4.54% in
2017, while the share of renewable energy in the total electricity gen-
eration was 6.07% in 2017. Driven by national policies and develop-
ment of the global wind power market, China's wind power has also
shown strong development momentum in a recent decade. Especially in
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2010, China’s cumulative installed capacity of wind power exceeded
that of the United States of America and became the leader globally
[25]. The cumulative installed capacity of wind power reached 188.23
GW in 2017, accounting for over one-third of the global cumulative
installed capacity of wind power, while the new installed capacity of
wind power was 19.5 GW, accounting for 37% of global new installed
capacity of wind power.

However, China’s wind power industry shows the characteristics of
innovation behind deployment [26]. In general, many studies con-
sidered patent counts which are applied to measure the outcome of the
technological development process as an important indicator to proxy
innovation. Before 1996, the wind farm was mainly used for scientific
research or as a demonstration project. In other words, wind power
development during that period has not entered the phase of large-scale
commercialization and lacked the core technologies. Therefore, patent
counts of wind power were less before the wind power industry under
the phase of large-scale commercialization. Until 1996, the Chinese
government published the “Riding the Wind Program” to encourage
innovation in wind power technologies [27]. The National Develop-
ment and Reform Committee (NDRC) provided guidance and plan for
the development of renewable energy in 2005, and Ministry of Science
and Technology included wind power project technology into the “863
Plan”, to a certain extent, which stimulated wind power technological
innovation.

In general, the International Patent Classification (IPC) code of pa-
tents for wind power technologies is F03D in some literature
[15,18,28]. Therefore, based on this definition, patents under the F03D
are used in this paper to measure innovation in wind power technolo-
gies. Patents in China’s wind power technologies are presented in Fig. 1.
As shown in Fig. 1, the number of patents for wind power technologies
in China has increased over the period 2006–2012, in line with the
continuous expansion of wind power development. Nevertheless, due to
the impact of the economic environment, the development of wind
power market has slowed down after 2012, which led to a decrease in
research and development (R&D) spending and decline in patent counts
for wind power technologies. However, the annual patent counts have
increased after 2014, because of high enthusiasm in investment in wind
power under increasing support policies [29].

In fact, in China, enterprises are the main bodies of the R&D ac-
tivities and innovation. As shown in Fig. 2(a) and (b), though the share
of innovation contribution from universities in 2017 has increased
compared with that in 2006, the share of innovation contribution from
enterprises is still taking the dominant position.

Fig. 3 shows the patent quantity of wind power technologies in
various provinces in China. China’s wind power resources are mainly
distributed in the northern and northeastern areas [30] and coastal
areas. However, areas with rich wind energy resource are also far from
power grids and lack huge power consumption capacity. Hence, the
government encourages investment in wind power in the southeastern

Fig. 1. Patent counts in wind power technologies and new installed capacity of
wind power in China from 2006 to 2017.

(a) 2006

(b) 2017
Fig. 2. Innovation contribution of wind power technologies from different
bodies in 2006 and 2017.

Fig. 3. Cumulative total patent counts of wind power technologies across 29
provinces in China during 2006–2017 (excluding Hainan, Tibet, Hong Kong,
Macao and Taiwan).

B. Lin and Y. Chen Applied Energy 247 (2019) 682–691

684



areas closed to power load centers. In addition, southeastern areas have
more universities, large-scale enterprises, and R&D person, which can
provide the knowledge and talent resource foundation. As illustrated in
Fig. 3, the patent counts in many southeastern areas have exceeded
those in the northern and northeastern areas. Hence, the patent counts
of Jiangsu, Beijing, Guangdong, Zhejiang, and Shanghai are relatively
high.

In China, the demand-pull policies (e.g. feed-in tariffs) and tech-
nology-push policies (e.g. R&D spending) are implemented. On the
feed-in tariff policy side, the National Development and Reform
Committee (NDRC) issued the Notice on Improving Wind Power Pricing
(Price [2009] NO.1906) in 2009 and benchmark prices of four cate-
gories was 0.49 CNY/kwh, 0.52 CNY/kwh, 0.56 CNY/kwh and 0.61
CNY/kwh, respectively. Whereafter, the NDRC released notices to re-
duce the benchmark prices of four categories for wind power in 2014,
2015 and 2016, respectively [31]. On the R&D spending side, there are
38 national energy R&D centers approved by the National Energy Ad-
ministration (NEA) of China [27]. Six of the national R&D centers
concentrate on all aspects of wind power technologies involving blades,
wind turbines and so on [32]. Additionally, many manufacturing firms
of wind power have their own R&D centers. For instance, Goldwind
with rapidly increasing R&D expenditure is heading towards being a top
R&D spender [22].

3. Data and methods

3.1. Variables

In this paper, the effects of policies (feed-in tariffs and R&D
spending) on innovation in wind power technologies are investigated.

Explained variable: Some empirical literature takes patent counts
and patent stock to proxy innovation [14–17,22,26,33–37]. Though not
all invention is patented, there are three strengths over patents and
patent stock compared to other indicators that represent wind power
technology innovations. One is that most of the related invention is
counted into the patent counts and patent stock, and second is that
classification and standard of patent gain much consensus, which is
beneficial to make comparative analysis [38]. The third is that the data
on the patent counts are publicly available for a long time series, and
the indicator of patent stock is easily obtained from the patent count,
which can provide specific and detailed technical information [16,36].
In addition, the classification code of wind power technologies is F03D,
including motors, masts and rotors, and related technology of wind
turbine generator, but do not cover other auxiliary technologies. There
are application date and public date shown in the Chinese Patent Online
Databases. Unless a patent is published, it cannot be called a true patent
[39]. Therefore, this paper collected the data on patent counts based on
public date. In addition, due to the strict review process, a patent based
on public date is a more appropriate indicator. In China, a patent ap-
plication will be submitted to China’s State Intellectual Property Office
(SIPO). At that time, it will obtain an application date. Subsequently,
the patent application will undergo a strict review process. The ex-
amination procedures of different types need to take different time.
There are three types of patents in China: invention patents, utility
model patents, and design patents [29]. In general, the review process
of the invention patents is approximately 18months, while the corre-
sponding time for utility model patents and design patents takes about
6–8months [40]. Hence, the average of examination procedures is
nearly 12months. A patent would be published after passing the re-
view, and the public date would be also obtained. For utility model
patents and design patents, authorization can be obtained after passing
the preliminary examination. However, invention patents require both
preliminary review and substantive review before they can be author-
ized, so more review time is required. In recent years, the Chinese
government has continuously improved the quality and efficiency of
examination procedures for patents. Therefore, the time required for

the examination process has been continuously shortened. In order to
avoid the problem of biased empirical results caused by the long period
of the review process, this paper will consider time lag for explanatory
variables and control variables. Schleich et al. [15] indicated that
compared with patent counts, the patent stock may have a more fully
reflection for sector-specific effect. For instance, technology suppliers’
learning-by-inventing can be shown in patent stock. Moreover, the
patent stock not only contains the information of current patent counts
but also includes the information of past patent counts under the
knowledge depreciates, which reflects the knowledge stock and
knowledge infrastructure level. Hence, the patent stock covers a
broader range of innovation information. This paper makes use of pa-
tent stock (PS) as the explained variable and also applies the number of
patent counts (PC) as a proxy for innovation in the section of robustness
checks. According to the calculation method of Kim et al. [37], the
patent stock of wind power technologies can be represented as follows:

= + − −PS PC δ PS(1 )t t t 1 (1)

In China, the patent data (F03D) are published from 1985. Hence,
PS0 is the initial value of patent counts in 1985. PCt is the patent counts
in time t. The depreciation rate (δ) is 15%, which is in line with
Grafström and Lindman [14], Park and Park [36] and Kim et al. [37].

−PSt 1 is the patent stock in time t-1. PSt is the patent stock in time t.
Explanatory variable: The demand-pull policies (e.g., feed-in tar-

iffs), technology-push policies (e.g., R&D spending) and their interac-
tion term can stimulate innovation in wind power technologies [16].
First, the notice for setting benchmark feed-in tariffs of wind power was
published by the NDRC in 2009, which is the first policy about feed-in
tariffs of wind power in China. The feed-in tariff policy provides a
greater driving force for innovation in wind power technologies than
other demand-pull policies [17]. Hence, the dummy variable (FIT) is
introduced as an explanatory variable representing the indicator of
demand-pull policies. FIT would be defined as follows:

=FIT 1 for the period of 2009 to 2016, and 0 otherwise.
Additionally, it is difficult to get data on R&D funding of wind

power at the provincial level in China [27]. The R&D spending is a
relatively representative driving force for stimulating technological
innovation [41–42]. The universities and public research institutes
make a limited contribution to innovation in wind power technologies
[27], but the patent counts from wind power industry enterprise ac-
count for a large share of innovation in wind power technologies. The
wind power industry enterprises not only are the main bodies for re-
search and development but also are the gainers for feed-in tariff policy.
The data on the R&D funding investment of industrial enterprises above
designated size are available, as a whole, which also has the same trend
with the data on R&D investment in wind power. Moreover, the R&D
efforts from industry and government should be not neglected [43],
while the R&D funding investment of industrial enterprises above de-
signated size contains the enterprises’ R&D expenditure and govern-
ment’s R&D spending. To a certain extent, the R&D funding investment
of industrial enterprises above designated size (RD) can proxy for
technology-push policies (e.g., R&D spending). It has been deflated by
CPI (2006= 1).

Because the innovation process is complex and R&D support will
impact on patenting through different processes, Lindman and
Söderholm [16] point out that the marginal effect of R&D funding on
the innovation of wind power technologies will depend on the im-
plementation of the FIT policy of wind power. In order to investigate
the interaction effect between R&D expenditure and FIT policy of wind
power, the R&D funding (RD) multiplies by FIT policy (FIT) to obtain a
new variable.

Control variables: Since 2006, the market size of China’s wind
power has gradually increased, and the cumulative installed capacity
ranked first in the world in 2010. Wind power is built and operated,
which drives innovation in order to realize cost reduction [44]. The
boom of wind power will promote patenting activities [17,45]. Hence,

B. Lin and Y. Chen Applied Energy 247 (2019) 682–691

685



China’s cumulative installed capacity of wind power (CIC) is introduced
as a control variable. Additionally, increasing electricity prices will not
only make wind power more competitive but also signal a higher profit
in the future, which will stimulate renewable energy technological in-
novation activities [46–47]. Thus, electricity prices for households (EP)
would be adopted as a proxy for electricity prices, following some
studies [12–13,15].

3.2. Data sources and description

Provinces such as Hainan and Tibet are excluded from the sample in
this paper due to the fact that their shares of installed capacity and
patent counts of wind power are extremely small which can be ignored.
Moreover, data on the installed capacity of wind power for Hong Kong,
Macao, and Taiwan are not reported. The data on electricity prices for
households are only available during the period from 2006 to 2016.
Therefore, our provincial data was obtained from 29 provinces (ex-
cluding Hainan, Tibet, Hong Kong, Macao, and Taiwan) over the period
2006 to 2016.

The patent counts were sourced from the Chinese Patent Online
Databases published by China’s SIPO. The data on R&D spending are
obtained from data of Xu and Lin [42] and WIND. The data on elec-
tricity prices for households are available in WIND. The data on cu-
mulative installed capacity of wind power for the period 2006 to 2016
were also obtained from the Report on China’s Wind Power Capacity
Statistics published by the Chinese Wind Energy Association (CWEA).
The detailed introduction of the variables is shown in Table 1.

This paper has a panel sample of 319 observations from 29 pro-
vinces in China from 2006 to 2016. Table 2 summarizes the statistics of
the variables. The standard deviation of PS is larger than the mean of
PS, which indicates that the count data model may have the problem of
over-dispersion.

3.3. Model specifications

Due to the abnormal distribution of the count data model, the
Poisson regression model and negative binomial fixed effect regression
model are generally used for estimation [48]. Because negative bino-
mial fixed effect regression model can deal with the problem of over-
dispersion in the count data model and has been illustrated to be more
efficient [16,49–50], this paper uses negative binomial fixed effect re-
gression model [15,51]. The correlations between policies and in-
novation in wind power technologies with the negative binomial fixed
effect regression model are estimated as follows:

= + + + + +

+

= + + + ∗

+ + + +

− − − −

− − − −

− −

E PS exp C β FIT β RD β CIC β EP α

ε

E PS exp C β FIT β RD β RD FIT

β CIC β EP α ε

[ ] [

]

[ ] [

]

i t i t i t i t i t i

i t

i t i t i t i t i t

i t i t i i t

, 1 , 1 2 , 1 3 , 1 4 , 1

,

, 1 , 1 2 , 1 5 , 1 , 1

3 , 1 4 , 1 ,

(2)

In Eq. (2), PS denotes patent stock of wind power technologies. The
FIT is a dummy variable for demand-pull policy, and RD represents R&
D funding investment of industrial enterprises above designated size as

a proxy for technology-push policy. The interaction term between FIT
and RD is RD*FIT. CIC and EP are control variables, i.e. the cumulative
installed capacity of wind power and electricity prices for households,
respectively. In Eq. (2), i=1,……,29 indexes the 29 provinces in
China, and t=2006, ……,2016 indexes time. The unobserved pro-
vince-fixed effect (αi) is introduced in the model. The error term (εi t, )
are clustered. In our estimations, in order to make the data stable, all
the variables except for dummy variable (FIT) and patent stock are in
natural logarithm. Hence, the coefficients for log-transformed variables
may be regarded as elasticities, while the coefficient for the dummy
variable may be semi-elasticity. In order to avoid the issue of multi-
collinearity, our study processes the data on their interaction through
centering. Moreover, because the process of patent application and
authorization takes some time, there may be a lag effect of policies
(feed-in tariffs and R&D spending), their interaction, wind power de-
ployment, and electricity price on innovation. In addition, lagging
variables is a common choice in many studies, such as Costantini et al.
[9], Schleich et al. [15] and so on, which can reduce potential en-
dogeneity problems. Therefore, this paper considers all explanatory
variables under the lag= 1.

4. Empirical results and discussion

4.1. Results of economic analysis

Table 4 reports the innovation impacts of feed-in tariff policy of
wind power and R&D spending in Eq. (2) using negative binomial fixed
effect regression model. Table 3 shows that all coefficients among
variables in Eq. (2) are lower than 0.6. Hence, according to the results
of Pearson’s correlation coefficient, the models would include all the
variables. Additionally, this paper also investigates the interaction ef-
fect between R&D expenditure and FIT policy of wind power on in-
novation in wind power technologies. The coefficient between FIT
dummy variable and the interaction effect between R&D funding and
FIT policy of wind power is almost lower than 0.6 (see from Table 3).
According to the Variance Inflation Factor (VIF) test, the values of VIF
for all variables are far lower than 10 and mean value of VIF is 1.72,
which indicate that the problem of multicollinearity does not really
exist. Therefore, the interaction term would be added into Table 4
Model 2, which can reflect the marginal impact of R&D spending on
innovation depending on the feed -in tariff policy of wind power.

As shown in Table 4, the coefficients of FIT, lnRD, lnRD*FIT, lnCIC(t-

1) and lnEP are all statistically significant. The values of alpha are both
significant indicating that there is the problem of over-dispersion.

Table 1
Introduction of variables.

Category Variable (Unite) Content Data sources

Innovation PS (count) Patent stock of wind power technologies Chinese Patent Online Databases
Demand-pull policy FIT (dummy) Feed-in tariff policy According to the Notice on Improving Wind Power Pricing (Price [2009]

NO.1906) published by NDRC
Technology-push policy RD (100 million) R&D funding investment of industrial enterprises above

designated size
Data of Xu and Lin [42] and WIND

Wind power capacity CIC (MW) Cumulative installed capacity of wind power Report on China’s Wind Power Capacity Statistics
Electricity prices EP (CNY/kkWh) Electricity prices for households WIND

Table 2
Summary statistics of the variables used in the estimations.

Variable Observation Mean Std.Dev. Min Max

PS 319 220.9687 332.2689 2 1958
FIT 319 0.7273 0.4461 0 1
RD 319 183.0152 241.3139 2.2214 1289.397
CIC 319 2347.3240 4121.755 0 28,064
EP 319 501.5256 60.7983 336.8 648.17
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Hence, the negative binomial fixed effect regression model used in this
paper is more appropriate.

Focusing first on the demand-pull policy, the coefficient of FIT is
positive and significant at 1% level in Model 1, which is in contrast to
the results of Johnston et al. [12] and Schmidt et al. [52]. But our result
is consistent with those of Lindman and Söderholm [16] and Böhringer
et al. [17]. Feed-in tariff policy leads to higher level of innovation due
to the fact that they provide more predictable price incentives for in-
vestors and have a stronger driving force on demand. From Model 1 and
Model 2, the existence of a feed-in tariff policy of wind power raises the
mean patent stock by about 58%-80%.

Regarding the technology-push policy, there is a significantly posi-
tive relationship between R&D expenditure and innovation in wind
power technologies in the two models above. Our finding is similar to
Costantini et al. [9], Nicolli and Vona [13] and Schleich et al. [15]. On
the technology-push policies side, R&D spending inspires wind power
technological innovation. From Model 1, a 1% increase in R&D ex-
penditure raises the mean patent stock by about 2.57%. The contribu-
tion of Enterprises to the R&D activities is the main body [53]. Hence,
using market stimulus and encouraging enterprises’ R&D support will
be good approaches to promote innovation.

With respect to the interaction effect between R&D funding and
feed-in tariff policy of wind power, the interaction term exerts a sig-
nificantly positive impact on the patent stock of wind power technol-
ogies. This result supports our hypothesis that there is the interaction
effect between R&D funding and feed-in tariff policy of wind power, in
line with Lindman and Söderholm [16]. Hence, a marginal increase in R
&D spending encourages more patenting in wind power technologies if
the feed-in tariff policy is implemented. From Model 2, a 1% increase in
R&D spending under the implementation of feed-in tariff policy will
induce a roughly 2.6% (2.55%+0.05%) increase in the mean patent
stock of wind power technologies. This result suggests that R&D
funding to wind power technologies can play a more important role in
innovation under the feed-in tariff policy. The innovation in power
technologies is spurred by both demand-pull policies and technology-

push policies.
Furthermore, the coefficient for a cumulative installed capacity of

wind power is positive and statistically significant. Recent studies by
Böhringer et al. [17] and Schleich et al. [15] concluded that there is a
significant positive effect of the market size, measured by installed
capacity, on innovation. Innovation takes time to respond to signals
from the deployment of wind power. Thus, this result is consistent with
the characteristics of leading in deployment and lagging in innovation
for the wind power industry. From Model 1 and Model 2, a 1% increase
in deployment of wind power is generally associated with a 0.64%-
0.82% increase in mean innovation capacity of wind power technolo-
gies.

Finally, the coefficient of electricity prices for households is positive
and significant at 1% level. As Johnston et al. [12] expected, the in-
creasing electricity prices make wind power more competitive and
signal a higher profit in the future. A reasonable increase in electricity
prices can incentivize innovation of wind power manufacturers in order
to reduce cost and obtain more profit. Unlike wind power in developed
countries, China’s wind power is a relatively higher cost technology
which needs incentives from electricity price. From Model 1 and Model
2, a 1% increase in electricity price suggests an 8.12%-8.94% increase
in mean innovation capacity of wind power technologies.

4.2. Robustness checks

The robustness checks of the results in Table 4 through a series of
different model specifications and an alternative classification of vari-
ables are presented in this section.

First, the Poisson fixed effect regression model with cluster-robust
standard errors [17] is used to estimate the variables in Table 4. The
results are similar to those of the negative binomial fixed effect re-
gression model. The relationship between all variables except for cu-
mulative installed capacity and patent stock of wind power technolo-
gies are positive and significant. However, the standard errors and p-
values are too low, which results in the problem of overestimation of
the significance of parameters. Therefore, negative binomial fixed effect
regression model used in this paper is more appropriate than the
Poisson fixed effect regression model.

Secondly, accounting for the different lag structures, the negative
binomial fixed effect regression model to verify again was used. As
shown in Table 5, the results after no lag and lagging all variables by
two years are in line with those in Table 4. The coefficients of feed-in
tariff policy, R&D spending, the interaction term (between R&D funding
and feed-in tariff policy of wind power), cumulative installed capacity
and electricity prices for households are all significantly positive. In
other words, all variables under lag= 0 and lag=2 have a significant
positive impact on patent stock in wind power technologies. Ad-
ditionally, according to the value of alpha, it means that negative bi-
nomial fixed effect regression model is suitable.

Third, in order to verify whether there exists policy endogeneity,
like Schleich et al. [15], this paper also uses future policies as ex-
planatory variables. The results for all parameter are in line with that of
Table 4, which indicates that there is no evidence that the results in this
paper suffer from endogeneity problem and reverse causality.

Forth, since FIT is a dummy variable, this variable can only reflect
whether the implementation of feed-in tariff policy impacts the in-
novation capacity for wind power technologies, which is similar to
verifying the innovation effect of feed-in tariff policy. Whereas, the
dummy variable used to estimate the effect of feed-in tariff policy on
patenting does not adequately capture policy features. Thus, the feed-in
tariffs of wind power reported by National Energy Administration
(NEA) [31] are used to substitute the dummy variable employed as a
proxy for feed-in tariff policy. However, the feed-in tariffs (FITs) of
wind power are published from 2013 to 2016, and the data for Beijing,
Tianjin, Zhejiang, Guangdong, and Guangxi in individual years are not
reported. Hence, the unreported data are estimated using the method of

Table 3
Correlation of the variables used in the regression.

FIT lnRD lnRD*FIT lnCIC lnEP

FIT 1
lnRD 0.1450 1
lnRD*FIT −0.6502 0.0062 1
lnCIC 0.3906 0.0737 −0.1084 1
lnEP 0.3219 0.5537 −0.0965 0.0785 1

Table 4
Results of innovation impacts of demand-pull policy and technology-push
policy.

Model 1 Model 2

FIT(t-1) 0.5777***

(0.0825)
0.8031***

(0.1141)
lnRD(t-1) 0.5410***

(0.0936)
0.5378***

(0.0960)
lnRD*FIT(t-1) 0.4403**

(0.1901)
lnCIC(t-1) 0.1269***

(0.0354)
0.0999***

(0.0377)
lnEP(t-1) 1.4367***

(0.4668)
1.3050***

(0.4903)
Constant −7.8964***

(3.0249)
−7.0822***

(3.1854)
Log likelihood −1216.4614 −1210.1013
alpha 0.0375*** 0.0353***

Sample size 250 250

Note: ***, ** and * indicate the significance at the 1% level, 5% level and 10%
level, respectively. The standard error is reported in the parentheses.
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Lin and Chen [31], which refers to the method of Lin and Li [54]. The
values estimated by the levelized cost of electricity (LCOE) of renew-
able energy with a reasonable profit rate lay the foundation for rea-
sonable feed-in tariffs and are close to the real feed-in tariffs [54–55].
The Eq. (3) is described as follows:

=
=

= −

+ + +

−

C r r
r

ω τ μ C
αT λ

(1 )
(1 ) 1

(1 )(1 )(1 )
(1 )

n

nw
(3)

Except for T, the sources of the above parameters are based on Lin
and Li [54]. Hence, the parameters and values for the estimation of
feed-in tariffs are summarized as follows (See Table 6):

As mentioned above, the data on feed-in tariffs at the provincial
level in China are only published from 2013 to 2016. Additionally, the
results under no lag presented in Table 5 are similar to those under
lag= 1 shown in Table 4. Therefore, to avoid losing too much freedom,
this paper employs negative binomial fixed effect regression model and
all variables under no lag, but the values of alpha are not statistically
significant indicating that there is no problem of over-dispersion. The
Poisson fixed effect regression model with cluster-robust standard er-
rors for the estimation was used, and the findings are presented in
Table 7. Based on Pearson’s correlation coefficient, there is no multi-
collinearity between the feed-in tariffs, the R&D expenditure and in-
teraction effect between the feed-in tariffs and R&D funding. When the
interaction term was introduced into Model 7, the values of VIF for all
variables are far lower than 10, and the mean value of VIF is 1.4, in-
dicating that the problem of multicollinearity does not exist. Hence, this
paper includes the interaction term in Model 8. As shown in Table 7, the
feed-in tariffs of wind power are positive and statistically significant,

which shows that higher feed-in tariffs of wind power promote the
patent stock in wind power technologies. The significance of FITs is at
1% level. A 1% increase in feed-in tariffs brings a 0.12%-0.18% increase
the in the mean patent stock of wind power technologies. Although this
result is in contrast to the results shown in Johnstone et al. [12] and
Nicolli and Vona [13], it is in line with the result of Lindman and
Söderholm [16]. There are two reasons as follows: (1) the government
employs higher feed-in tariffs of wind power to induce investment in
wind power at high-cost sites [44], which are close to electricity con-
sumption centers with not only relatively sufficient consumptive ability

Table 5
Results of robustness check (under lag=0 and lag=2).

Model 3 lag= 0 Model 4 lag= 0 Model 5 lag= 2 Model 6 lag= 2

FIT 0.5741***

(0.0977)
0.9570***

(0.1493)
0.4896***

(0.0542)
0.6178***

(0.0898)
lnRD 0.7317***

(0.1247)
0.7141***

(0.1257)
0.3468***

(0.0697)
0.3513***

(0.0720)
lnRD*FIT 0.7472***

(0.2082)
0.2487*

(0.1480)
lnCIC 0.1391***

(0.0442)
0.0967**

(0.0447)
0.1062***

(0.0282)
0.0894***

(0.0309)
lnEP 1.8486***

(0.6425)
1.6134**

(0.6804)
1.5738***

(0.3123)
1.5001***

(0.3403)
Constant −12.0426***

(4.2661)
−10.5427**

(4.5042)
−7.0460***

(1.9599)
−6.6185***

(2.1372)
Log likelihood −1368.3684 −1355.3254 −1064.5382 −1061.5654
alpha 0.0574*** 0.0519*** 0.0237*** 0.0230***

Sample size 279 279 221 221

Note: ***, ** and * indicate the significance at the 1% level, 5% level and 10% level, respectively. The standard error is reported in the parentheses.

Table 6
Parameters and values for estimation of feed-in tariffs.

Parameter Definition Value

C Cost of wind power generator (CNY/kW) 5000 CNY/kW (2013; 2014)
4800 CNY/kW (2015; 2016)

r Discount rate 10%
n Service time 20
ω Ratio between operating cost and initial

investment
12%

τ Profit rate 10%
μ Value-added tax rate 8.5%
α Proportion of generation’s cost in initial

investment
70%

λ Auxiliary power rate 2.5% (2013; 2014)
3% (2015)
2.9% (2016)

T Equivalent hours The values are from Renewable Energy Data Manual and the Notification on National Electricity Price Regulation in the
Electric Power Enterprises published by National Energy Administration.

Cw Feed-in tariffs of wind power (CNY/kWh) The values are calculated by Eq. (3).

Table 7
Results of robustness check (under feed-in tariffs).

Model 7 Model 8

lnFITs 0.3303***

(0.1102)
0.3470***

(0.1207)
lnRD 0.2989*

(0.1709)
0.3036*

(0.1707)
lnRD*lnFITs 0.8092

(1.1303)
lnCIC 0.2669***

(0.0475)
0.2653***

(0.0475)
lnEP 0.9712

(0.6520)
1.0128
(0.6638)

Log likelihood −398.9808 − 398.4599
Sample size 116 116

Note: ***, ** and * indicate the significance at the 1% level, 5% level and 10%
level, respectively. The standard error is reported in the parentheses.
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but also difficult exploitation conditions for wind power. Hence, these
sites require more innovation in wind power technologies. (2) Though
the benchmark feed-in tariffs of wind power have been constantly re-
duced, and are expected to be equal to those of thermal power in 2020,
it does not mean that government has no interest or motivation in wind
power. Because wind power technologies have become more commer-
cial and mature, innovation in wind power technologies will not only
depend on higher feed-in tariffs of wind power [56]. In addition, the
gap in renewable energy subsidies becomes bigger than before, which
makes the Chinese government face great financing pressure. At pre-
sent, the Chinese government also advocates that demand-pull policies
(e.g. feed-in tariffs) should be connected with R&D spending, deploy-
ment strategy, carbon trading market system and so on to promote the
innovation of wind power technologies [57–58]. Thus, although higher
feed-in tariffs foster higher patent counts, the feed-in tariffs of wind
power do not need to keep as high as in the past. Besides, R&D funding
and cumulative installed capacity have significantly positive impacts on
wind power technological innovation, which is similar to the results in
Table 4. A 1% increase in R&D funding raises the mean patent stock of
wind power technologies by 0.12%. However, the coefficients of the
interaction term and electricity price are not statistically significant.
Though increasing feed-in tariffs promote patent stock of wind power
technologies, it may not play a role in stimulating R&D funding to drive
wind power technological innovation.

Fifth, this paper used provincial R&D expenditure as a proxy for
technology-push policies rather than R&D funding investment of in-
dustrial enterprises above designated size. Like R&D funding invest-
ment of industrial enterprises above designated size, the data on the
provincial R&D funding are also available, as a whole, which also has
the same trend with the data on R&D investment in wind power. The
data on provincial R&D funding include the R&D expenditure for in-
dustrial enterprises, the universities and public research institutes.
Moreover, the data on R&D expenditure also contains R&D spending
from industry and government. Therefore, our study uses provincial R&
D investment (PRD) as a proxy for technology-push policies (e.g., R&D
spending). It has been deflated by CPI (2006= 1). Table 8 indicates
that the provincial R&D investment has a significantly positive impact
on patenting in wind power technologies. A 1% increase in R&D ex-
penditure raises the mean patent stock by about 10.23% −10.76%. The
feed-in tariff policy has a positive and statistically significant impact on
innovation in wind power technologies. The existence of a feed-in tariff
policy of wind power raises the mean patent stock by about 30.87%-
49.23%. However, there is no interaction effect between the feed-in
tariff policy and R&D funding, which shows only the interaction effect
between the feed-in tariff policy and R&D funding from industrial en-
terprises can impact innovation in wind power technologies. The

enterprises of the wind power industry are gainers for feed-in tariff
policy, but the universities and public research institutes are not. The
enterprises are the main bodies for innovation in wind power tech-
nologies. Although R&D spending of wind power enterprises from
government plays the most effective role in the short and medium term
[59–60], promoting government and enterprises investing on R&D ac-
tivities can induce wind power technological innovation in the long
run. Encouraging the R&D funding investment in wind power industry
enterprises from government and enterprises should be both paid at-
tention to.

Finally, the paper used the annual patent counts for wind power
technologies to replace the stock of patent for wind power technologies.
As shown in Table 9, the variables except interaction term have sig-
nificant positive relationships with the innovation of wind power
technologies, which is similar to the results of Table 4. In other words,
the feed-in tariff policy and R&D funding both promote patent counts of
wind power technologies, but there is no interaction effect between the
feed-in tariff policy and R&D funding on patent counts of wind power
technologies. A 1% increase in R&D expenditure raises the mean patent
counts by about 0.83% −0.84%. Moreover, the existence of feed-in
tariff policy of wind power raises the mean patent counts by about
55.28%-62.79%.

Therefore, a series of different model specifications and an alter-
native classification of variables verify our findings, to a certain extent,
are robust, and obtain new findings.

5. Concluding remarks and policy suggestions

Based on negative binomial fixed effect regression model and pro-
vincial panel data from 2006 to 2016, we investigate the effects of
policies (feed-in tariffs and R&D spending), their interaction, deploy-
ment of wind power and electricity prices on wind power technology
innovation at the provincial level in China. The following conclusions
are drawn from the findings: (1) demand-pull policies through feed-in
tariff policy promote innovation in wind power technologies; (2) higher
feed-in tariffs of wind power induce greater stock of patents in wind
technologies; (3) technology-push policies through R&D spending
support wind power technological innovation; (4) only R&D funding
investment in industrial enterprises under the implementation of feed-
in tariff policy can stimulate greater patent stock due to the fact that the
wind power industry enterprises are gainers for feed-in tariff policy,
indicating that there is interaction effect; (5) improving the wind power
deployment drives wind power technology patents; (6) increasing
electricity prices will incentivize innovation of wind power manu-
facturers in order to reduce cost and obtain more profit.

Fossil fuel produces not only carbon emissions, but also SO2 and

Table 8
Results of robustness check (under provincial R&D spending).

Model 9 Model 10

FIT(t-1) 0.3087***

(0.0658)
0.4923**

(0.2238)
lnPRD(t-1) 1.1306***

(0.1714)
1.0744***

(0.1900)
lnPRD*FIT(t-1) 0.3867

(0.4535)
lnCIC(t-1) 0.0601

(0.0428)
0.0539
(0.0412)

lnEP(t-1) 0.5790
(0.4084)

0.7634*

(0.4205)
Constant −10.7976***

(3.1977)
−11.4853***

(2.9842)
Log likelihood −1203.1323 −1201.0595
alpha 0.0335*** 0.0332***

Sample size 250 250

Note: ***, ** and * indicate the significance at the 1% level, 5% level and 10%
level, respectively. The standard error is reported in the parentheses.

Table 9
Results of robustness check (annual patent counts as explained variable).

Model 11 Model 12

FIT(t-1) 0.6279***

(0.0930)
0.5528***

(0.1313)
lnRD(t-1) 0.1757**

(0.0859)
0.1776**

(0.0839)
lnRD*FIT(t-1) −0.1466

(0.2271)
lnCIC(t-1) 0.0804**

(0.0350)
0.0895**

(0.0407)
lnEP(t-1) 0.8680**

(0.4438)
0.9104**

(0.4482)
Constant −2.8066

(2.4742)
−3.0771
(2.4862)

Log likelihood −1026.421 −1026.102
alpha 0.0733*** 0.0730***

Sample size 250 250

Note: ***, ** and * indicate the significance at the 1% level, 5% level and 10%
level, respectively. The standard error is reported in the parentheses.
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NOx which pollute the environment [61]. Renewable energy with ra-
tional exploitation is beneficial to solve environmental problems and
obtain economic returns [62]. The Chinese government makes an effort
to increase the share of non-fossil energy consumption by about 20% in
2030. The wind power industry in China will keep expanding, which is
a strategic choice to change the mode of economic development and
adjust the energy structure. Technological innovation is also key to
promoting clean power, like wind power, to substitute for fossil fuel
[63]. As a strategic industry, the patents of wind power already have
obvious strategic significance. Moreover, the complementarities be-
tween policies can play an important role in the innovation of wind
power technologies [64].

From the above findings, we suggest that demand-pull policies (e.g.
feed-in tariffs) should combine with technology-push policies (e.g. R&D
spending), deployment strategy and incentive from electricity price to
promote the innovation in wind power technologies. Secondly, the
feed-in tariff policy not only plays a direct role in driving innovation in
wind power technologies, but also indirectly affects patent stock
through R&D spending, especially through R&D funding from wind
power industry enterprises. Therefore, wind power technological in-
novation in China is spurred by both demand-pull policies (e.g. feed-in
tariffs) and technology-push policies. Thirdly, feed-in tariff instrument
has a great effect on patenting. The government should employ higher
feed-in tariffs of wind power to induce investment in wind power at
high-cost sites, which are close to electricity consumption centers with
not only relatively sufficient consumptive ability but also difficult ex-
ploitation conditions for wind power. Forth, the benchmark feed-in
tariffs of wind power should be constantly adjusted, and are expected to
be equal to those of thermal power in 2020. Reforming the feed-in tariff
policy will induce wind power investors to pay attention to the pro-
duction cost [65].

Finally, promoting R&D spending is a key way for patenting in wind
power technologies. First of all, encouraging the R&D funding invest-
ment in wind power industry enterprises from government and en-
terprises should be both paid attention to. Promoting R&D expenditures
by government and enterprises are conducive to wind power techno-
logical innovation in the long term due to the fact that enterprises are
the main body of R&D activities. Next, the market stimulus is a major
means of promoting innovation, but there is also a market failure [54].
For instance, insufficient information may lead to uncertainties in the
value of R&D expenditures, and even make the actual value of R&D
spending below the optimal level, and information constraints will also
impair private investors’ decisions [66]. Therefore, government funds
to support wind power technologies should be utilized more efficiently
in order to achieve the technology transition under the improvement of
marketization [67]. Besides, improving the attractiveness of the green
industry is beneficial to broadening the green investment [68]. Further,
adequate government funds to support wind power technologies signal
the emphasis on wind power technologies, which also makes en-
terprises of wind power invest more R&D activities for wind power
technologies. Additionally, especially for regions with backward tech-
nology, more financial support measures should be applied to renew-
able energy technologies. Above all, R&D investment supported by fi-
nancial support measures, targets for emissions reduction and price-
based policies can play a better role in fostering innovation in wind
power technologies.
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