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A B S T R A C T

The study uses the two-stage bias-corrected DEA approach of Simar and Wilson (2007) to assess the efficiency of
the EU countries in terms of their wind power investment in 2015. The set of input variables includes installed
wind power capacity and average wind power density, while output variables include wind-generated electricity
and three additional aspects: environmental, economic and energy security. Next, the study examines the effect
of renewable energy policy regarding wind energy, the energy mix, and the offshore wind power utilisation on
the wind power efficiency of the analysed countries.

The results obtained reveal that the United Kingdom, Sweden, Denmark, and Ireland are the most efficient
countries in terms of wind power investment. The inclusion of additional aspects demonstrates the greatest
improvement of efficiency in Belgium, Cyprus, the Netherlands, Estonia and Germany.

The results seem to indicate that economic instruments used within renewable energy policy have a positive
effect on wind power efficiency, while policy support and regulatory instruments might negatively impact.
Moreover, the results show that the energy mix explains the variation of the efficiency of the EU countries when
their economic and environmental aspects are considered. The analysis of the geographic location indicates that
countries with a high share of offshore wind capacity are the most efficient.

1. Introduction

The rapid development of renewable energy sources in the EU
member states results from the common energy policy aimed at im-
proving energy security and reducing greenhouse gas emissions. In
accordance with the Directive 2009/28/EC, the share of renewable
energy in the overall energy consumption in the EU member states
should be increased to - on average - 20% by 2020 as part of its efforts
to cut carbon dioxide emissions. This target, connected with reducing
CO2 emissions by 20%, became part of Europe's climate policy (EU
2020 Energy Strategy, 2014). The European climate and energy
package specifies a national renewable target for each EU member state
ranging from 10% in Malta to 49% in Sweden. To meet this target, each
EU country, having the choice of renewable energy sources and means
of using them in the most effective way, has created its own national
renewable energy action plan (for instance, implementing a climate
change mitigation strategy linked with decarbonisation of the power
sector).

On the one hand, the viability of investment in renewable energy
sources (especially wind farms and solar parks, which are conducive to
decarbonisation of the power sector) to a great extent depends on the

supply of a given energy source. The EU countries are highly diversified
in terms of their wind potential: countries from northern Europe and
the ones neighbouring the Atlantic Ocean, the North Sea and the Baltic
Sea have much greater wind potential than countries from southern
Europe and the centre of the continent.

On the other hand, each country, even the ones with relatively low
wind potential, can introduce its own energy policy and support the
development of e.g. wind power by offering specific incentives, such as
feed-in tariffs, green certificates, promotional loans, investment grants,
tax exemptions, etc., which will increase the viability of investments in
renewable energy sources. If efficiency is understood as wind power
generation, such support can be seen as an obstacle. A broader per-
spective, however, indicates that the development of renewable energy
sources leads to positive changes in the natural environment, increases
energy security, and decreases the costs of importing energy sources.
The assessment of the viability of investment in wind power should take
all these factors into account.

There are numerous studies dedicated to the explanation of the
dynamics of the development of renewable energy, and they usually
examine the role of different aspects of energy and climate policy. Best
and Burke (2018), Newbery (2018) investigate the role of carbon
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pricing in the adoption of solar or wind energy. Jenner et al. (2013),
Zhoa et al. (2013), Yamamoto (2017) analyse the effect of the feed-in
tariff (FIT) efficacy. Ince et al. (2016) and Romano et al. (2017) ex-
amine the influence of informal institutions on renewable strategy de-
velopment, fiscal incentives, and public investments. All these studies
focus on the capacity (generation) of renewable energy achieved by
countries or the share of renewable electricity generation in total
electricity generation. However, only several of them admit that energy
policy can result in inefficiency, redundancy or overlapping of renew-
able energy (see Del Río and Mir-Artigues, 2014). Our study follows this
important remark extending the findings of other studies in two di-
rections. First, it concentrates on the efficiency of renewable energy
(wind power), not just capacity or electricity generation, which pro-
vides a deeper insight into the process, as it takes into account a larger
set of input and output variables. The set of outputs covers environ-
mental, economic and energy security aspects and thus constitutes the
second extension. It shows that the effects of energy policy applied to
promote renewable energy should be analysed in a broader perspective.
Especially the environmental effects of energy policy, frequently dis-
cussed in the literature (see Dowling, 2013; Totschnig et al., 2017),
seem to be an important outcome of energy policy.

The study has two aims. The first one is to assess the efficiency of 27
EU countries regarding their wind power investments. The second one
is to identify the impact of external factors on wind power efficiency in
these countries. The factors considered in the study are related to re-
newable energy policy regarding wind energy, the energy mix, and the
offshore wind power utilisation.

The assessment of the efficiency in this study takes into account not
only the technical efficiency but also environmental, economic and
energy security aspects. Such a wide approach has not been adopted in
previous studies. The study considers the reduction of greenhouse gas
emissions, savings resulting from the replacement of conventional en-
ergy with wind power, and an increase in energy security stemming
from the reduction of fossil fuel imports. The differences between the
EU countries in the above areas are linked to the differences in their
energy mixes.

The study analyses the efficiency of wind power with a two-stage
procedure. In the first stage, an input-oriented Data Envelopment
Analysis (DEA) model is applied to assess the efficiency of the EU
countries regarding different aspects of wind power generation. It is
assumed that the EU countries are unlikely to change their outputs
related to energy mix within a short period of time, although it is
possible over a longer timespan (see Papież et al., 2018). Consequently,
the efficiency can be increased by lowering input variables in the
model.

In the second stage, the analysis utilises the https://www.
sciencedirect.com/science/article/pii/S0140988308000637 Simar and
Wilson (2007) procedure to bootstrap DEA scores with a truncated re-
gression to identify and explain the role of factors which affect the
relative efficiency scores of the EU countries. The results reveal the
importance of a given factor to the wind power efficiency in a given
area. In particular, it will be possible to gain insight into the relations
between renewable energy policy and the development of wind power.

There are two approaches in the literature related to this study. The
first one assesses eco-efficiency of European countries (Menagaki, 2013;
Robaina-Alves et al., 2015; Gómez-Calvet et al., 2016; Madaleno et al.,
2016; Moutinho et al., 2017). The EU countries in these studies are
defined as decision-making units. Output and input variables are part of
the Cobb–Douglas production function.

The second approach measures the efficiency of wind power plants
(Iglesias et al., 2010; Azadeh et al., 2014; Ederer, 2015; Sameie and
Arvan, 2015; Wu et al., 2016; Sağlam, 2017a, 2017b; Niu et al., 2018).
Wind farms or wind turbines in a given country are treated as decision-
making units (DMUs). Installed wind capacity is the input variable, and
the output variables can include, for example, electricity generation,
production optimisation process, location optimisation of wind plants,

or investment performance.
This study implements both approaches used in the literature. First,

it assesses the efficiency of the EU countries regarding their wind power
investments, like in the first approach, but uses variables from the
second approach (e.g. installed capacity, plus average wind power
density as the input variable, and wind-generated electricity as the
output variable). In contrast to the second approach, this study uses the
EU countries (and not wind farms or wind turbines) as the decision-
making units. Second, it extends the analysis by including additional
output variables covering various economic, environmental and energy
security aspects. Consequently, the study comprehensively compares
the EU countries in terms of benefits gained by replacing conventional
energy with wind power, thus filling the gap in the literature.

The novel aspects of this study can be summarised as follows.
The most important novelty lies in the selection of objects used in

the analysis, that is the EU countries, as they have not been compared in
this context so far. There are three reasons why these countries are an
interesting object of study. First, all of them are obliged to meet the
targets set in the climate and energy package. Second, they are highly
diversified with reference to their wind potential, which is directly
linked with their offshore wind power utilisation, and, as a result, the
efficiency of investment aimed at increasing capacity of wind farms
may differ in particular countries. Third, their energy mixes differ.

Next, the approach adopted in the study is based on a comprehen-
sive view of the wind power efficiency on the country level. The study
assesses not only the technical efficiency, which transforms wind power
investment into electricity generation but additionally considers eco-
nomic, environmental and energy security aspects, which seem to play
a crucial role and have motivated the EU legislation in this area.

Finally, the study does not only estimate the efficiency of the EU
countries regarding their wind power investment but additionally in-
terprets the results obtained. Thus, three external types of factors which
affect renewable energy policy regarding wind energy, the energy mix,
and the offshore wind power utilisation are treated as potential vari-
ables influencing the efficiency of wind power in the analysed coun-
tries. The assessment of their influence could prove beneficial for pol-
icymakers, as it points at possible constraints to be taken into
consideration while deciding on renewable energy policy.

The paper consists of the following sections. Section 2 presents a
brief literature review. Section 3 describes a two-stage DEA. Section 4
describes the data, and section 5 reports and comments on the empirical
results. The paper ends with the conclusions, discussion and policy
implications.

2. Literature review

The DEA method was developed by Charnes et al. (1978) and is
frequently used in studies devoted to energy and environment.
Emrouznejad and Yang (2017) give an overview of articles published
between 1978 and 2016 in which DEA is used, listing over 10,000
studies, about 290 of which investigate efficiency or productivity in the
electricity generation sector. Mardani et al. (2017) review 144 articles
published between 2006 and 2015 in which DEA is used to assess en-
ergy efficiency. Also Sueyoshi et al. (2017) summarise the results of 693
studies on energy efficiency in which DEA is employed to measure
energy efficiency and environmental protection during the last 40
years.

Despite a large number of studies in which the DEA method is
employed to investigate energy efficiency, only several of them address
the efficiency of the renewable energy sector. This method is used to
compare the efficiency of different renewable energy sources (Cristóbal,
2011; Kim et al., 2015) and to evaluate the efficiency of individual
renewable energy sources, e.g. solar (Sueyoshi and Goto, 2017), biogas
(Madlener et al., 2009; Lijó et al., 2017), or hydroelectric power (Barros
et al., 2017).

Not many papers deal with the wind power efficiency (Iglesias et al.,
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2010; Azadeh et al., 2014; Ederer, 2015; Sameie and Arvan, 2015; Wu
et al., 2016; Sağlam, 2017a, 2017b; Niu et al., 2018), and their authors
use the DEA method or the two-stage (DEA and Tobit) analysis to
measure the efficiency of wind power farms or wind turbines. They take
into consideration various factors including, for example, electricity
generation, location optimisation of wind plants, investment perfor-
mance, financial performance, and operating costs and capital costs of
wind farms. In these studies wind farms or wind turbines are defined as
the decision-making units (DMUs).

Azadeh et al. (2014) and Sameie and Arvan (2015) investigate op-
timum location of wind plants in Iran. Niu et al. (2018) assess the ef-
ficiency of 32 wind turbines in China. Ederer (2015) studies capital and
operating costs of offshore wind farms in Europe. Iglesias et al. (2010),
Wu et al. (2016) and Sağlam (2017a) measure the productive efficiency
of wind farms in Spain, China and the USA. Iglesias et al. (2010)
identify the relevance of the economic impact of wind farms for wind
farm development companies, technology suppliers and operators. Wu
et al. (2016) demonstrate that most wind farms in China are efficient
and installed capacity and wind power density are the most important
factors in their efficiency. Sağlam (2017a) reveals that about two-thirds
of wind farms in the USA operate wind power efficiently and that the
choice of the brand of the wind turbine significantly contributes to the
productive efficiency of wind farms.

In the above-mentioned studies, wind farms or wind turbines are
treated as the decision-making units (DMUs). However, Sağlam (2017b)
uses two-stage DEA to measure the wind power efficiency of 39 states in
the US. He treats individual states in the USA as DMUs and uses the
following output variables: the production-related output variables, the
economic and environmental output variables, and the following input
variables: installed wind capacity, the number of wind turbines, total
project investment, and the annual land lease payment. The DEA results
indicate that more than half of the states operate wind power effi-
ciently. The results of the Tobit regression model reveal that early in-
stalled wind plants were more expensive and less productive than more
recently installed ones.

The DEA method is also used to measure eco-efficiency of countries
or regions (defined as DMUs) and three related efficiencies: economic
efficiency, energy efficiency, and environmental efficiency. Menegaki
(2013), Robaina-Alves et al. (2015), Gómez-Calvet et al. (2016),
Madaleno et al. (2016) and Moutinho et al. (2017) apply the DEA
framework to analyse the eco-efficiency of European countries which
are treated as the decision making units (DMUs), with GDP as the
output variable, the ratio GDP per GHG emissions as the undesirable
output variable, and capital, labour, fossil fuels and renewable energy
consumption as the input variables.

Menegaki (2013) applies the DEA model to benchmark the effi-
ciency of European countries’ growth in the period 1997–2010 with
respect to their RES performance, as the main input using variables
typically employed in the growth-energy nexus literature, such as en-
ergy consumption, carbon emissions, employment and capital, but she
also takes into consideration consumption of renewable energy sources.
Similarly, Gómez-Calvet et al. (2016), Madaleno et al. (2016) and
Moutinho et al. (2017) estimate the efficiency of different European
countries using the DEA method to compare their performance. The
results reveal that economic and environmental estimates change de-
pending on the models used.

3. Methodology

3.1. First-stage of the Simar and Wilson procedure

The first-stage of the Simar and Wilson (2007) procedure estimates
the DEA efficiency scores and next corrects them for bias using the
homogeneous bootstrap procedure.

The DEA method originated in microeconomics, in the production
theory and the production function, in which a single output was

connected to a single input. The authors of this method transferred this
relation to multidimensional situations. It is a frontier method, as it
allows for setting a so called production-possibility frontier on and
below which all possible combinations of inputs and outputs are found.
In this method, the frontier is based on the best objects in the group,
which become the benchmark for the remaining objects. The frontier is
built in a non-parametric manner without a priori assumption on the
distribution or production function considered.

The CCR model (Charnes, Cooper and Rhode's model), proposed by
Charnes at al. (1978), assumes constant returns to scale, and the
modification of the model presented in 1984 by Banker, Charnes and
Cooper (Banker et al., 1984) (the BCC model) allows for variable re-
turns to scale (VRS). The latter approach allows for assessing countries
not only from the perspective of their pure technical efficiency (the best
use of input) but also from the perspective of economies of scale (op-
erating within the area of optimal benefits). Consequently, the BCC
model enables us to uncover sources of inefficiency resulting either
from imperfect investment or from operating within non-optimal
economies of scale.

Basic DEA models consist of two approaches: input-oriented and
output-oriented. The first specification maximises the proportional re-
duction of inputs X while holding outputs constant Y. The second one
maximises the proportional increase of outputs Y whilst inputs X are
constant. Our study utilises an input-oriented model, as it focuses on
assessing optimal investment (and wind density) made to provide
output reached by efficient countries. To obtain the efficiency scores
in the input-oriented BCC model, a quadratic programing of the fol-
lowing form is implemented:

min,
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j1 is included to represent the convexity
constraint for j in VRS condition. This way each country (DMU) can be
compared only to the group of similarly-sized DMUs with similar re-
turns to scale.1 The optimisation procedure yields the score ranges
between 0 and 1. The larger the score is obtained, the more efficient the
given DMU appears. The most efficient countries, whose efficiency
score is 1, lie on the constructed frontier.

Statistical properties of the efficiency scores in a finite sample are
studied by Simar (1992), Simar and Wilson (1998, 2000, 2002), who
propose a statistical model and consistent bootstrap procedures to
provide a statistical inference of the technical efficiency measures. In
particular, their bootstrap-DEA method corrects the bias of estimators
and provides the confidence interval of the efficiency scores.

3.2. Second-stage of the Simar and Wilson procedure

A conventional approach in the DEA literature used to analyse de-
pendency between the efficiency scores and the set of explanatory
variables employs Tobit regression. Simar and Wilson (2007), demon-
strate, however, that this approach leads to inconsistent and biased
estimates of the parameters. As a remedy, Simar and Wilson (2007)

1 The previously mentioned input or output oriented DEA models can be
generalised into both orientations combined in a single model i.e. an additive
model proposed by Charnes et al. (1985).
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propose a truncated bootstrapped (Tobit) regression, and our study
follows their approach. Formally, we assume and infer the following
specification:

= + + =a Z for j n, 1, ..j j

where: a is a constant, Zj is a vector of variables which are expected to
affect DMU's efficiency scores, j is a vector or error term. The dis-
tribution of j is restricted by the condition a Z1 jj , and is
assumed to be normally distributed with zero mean and variance 2

before truncation ( N (0, )).j
2

Asymptotic theory finds confidence intervals using normal dis-
tribution, however, in a small sample, more efficient estimators can be
obtained using a bootstrap approach (Simar and Wilson, 2007). It is
even more important when the efficiency scores are correlated with
environmental variables. The bootstrap confidence intervals for the
regression parameters and variance of the error term distribution are
constructed by the parametric bootstrap which incorporates informa-
tion on both the parametric structure and regardless of the errors dis-
tribution.

4. Data

The empirical part of the study incorporates two stages based on
different datasets. The first one, used in the bias-corrected DEA method,
contains two input variables and a subset of four output variables. The
selection of input and output variables is based on literature. Wu et al.
(2016), Sağlam (2017a, 2017b), and Niu et al. (2018) measure the
productive efficiency of wind farms as the input using wind power
density and installed wind capacity, which is a common metric for the
capital input. Wu et al. (2016), Sağlam (2017a, 2017b), and Niu et al.
(2018) 2 consider CO2 emissions avoided and electricity generation as a
set of output variables. The second dataset used in the truncated
bootstrapped regression is directed at assessing factors affecting the
efficiency of 27 EU countries regarding their wind power investment
and, next, at explaining their influence. The bias-corrected efficiency
scores of the analysed countries obtained from the bias-corrected DEA
method are used as the dependent variable. Factors linked with the
following three areas: renewable energy policy regarding wind energy,
the energy mix, and the offshore wind power utilisation, are considered
as independent variables. All data describe 27 European Union coun-
tries (excluding Malta, which did not generate any wind power in the
analysed period) in 20153 and are obtained from the European Com-
mission webpage.4

4.1. Input variable

Cumulative installed wind capacity (MW) per capita in 2015 (CAP)
serves as the input variable in the DEA models. The variable is a proxy
for total wind power investment in particular countries which cannot be

measured directly. The data describing investment in renewable energy
(including wind power) are available for the EU countries since 2010
and do not include previous investment (EurObserv'ER). This approach
follows the one adopted in numerous other articles (e.g. Iglesias et al.,
2010) and assumes that the costs of building a wind farm with given
capacity are similar in all EU countries (at least, in the last decade),
thus, can be expressed by total cumulative installed wind capacity.

The average wind power density (DEN) is the second input variable
in DEA, and it is calculated using wind speed, which is a crucial para-
meter in describing wind resources. The average wind power density
allows for evaluating the potential of wind resources for a specific area
(Wu et al., 2016; Saglam, 2017a; Niu et al., 2018). Following the sug-
gestions offered by Niu et al. (2018), wind farms should be built in
places where the annual average wind speed at 50m above the ground
is higher than 7.5 m/s, and wind power density at 50m above the
ground is higher than 200W/m2 (Zhao et al., 2009). Therefore, this
study uses the wind power density at 50m height. The data for 10% of
the windiest areas are obtained from the Global Wind Atlas.5

4.2. Output variables

The first variable used as the output in the DEA models is wind-
generated electricity (TWh per capita) in 2015 (GEN), which is a basic
output variable used in other studies analysing the efficiency of wind
power (Saglam, 2017b).

The economic aspect of wind power (ECON) is the second output
variable. This variable measures avoided costs of generating electricity
from fossil fuels after replacing conventional energy with wind power
(per capita). The prices of fossil fuels and their contribution to GEN in
the analysed countries are needed to calculate ECON. The following
formula is used:

=
=

ECON CFF
GEN

GEN
i i1
3

where: = =CFF GEN pricei i i1
3 ;i =coal, crude oil, natural gas, pricei –

average price of i-th fossil fuel, GENi – generated electricity from i-th
fossil fuel, GEN – wind-generated electricity (TWh per capita). The
more expensive energy sources are used in a given country, the more
efficient wind power in terms of economy appears to be.

The environmental aspect of wind power (ENV) is the third output
variable in the DEA models, and it measures carbon dioxide (CO2)
emissions avoided by replacing conventional energy with wind power
(per capita). To calculate the CO2 emissions avoided, the following
formula is used:

=ENV CO
TGEN

GEN2

where: CO2 – total CO2 emission from power industry,6 TGEN – total
electricity generation. The environmental benefits should be the most
significant in countries with the highest CO2 emissions.

The energy security aspect of wind power (DEP) is the fourth output
variable. This variable measures to what extent energy security of a
given country would improve if conventional energy were replaced by
wind power (per capita). This variable is calculated as:

=DEP IMPORT
TGEN

GEN

where: IMPORT – total fossil fuel imports. The more energy sources a
country imports, the more beneficial - in terms of energy security - wind
power generation is in it. On the other hand, if a country does not

2 To measure the efficiency of wind power, Wu et al. (2016), Sağlam (2017a,
2017b) and Niu et al. (2018) also use the following input variables: wake in-
teraction, wind direction and tower height, wind speed, the number of wind
turbines, wind turbines location, operation cost, total project(s) investment,
and the annual land lease payment, and the following output variables: the
value of production, the percentage of in-state energy production, the number
of homes powered, the economic output variables (wind industry employment),
and the environmental output variables (annual water savings). However, we
do not take them into account in our analysis as we were unable to gain access
to these data.

3 The study investigates 27 EU countries, and, formally, is conducted using a
cross-sectional data set from 2015. However, since one of the input variables in
the model is installed wind power capacity, its timespan covers the period
beginning with the introduction of wind power in each country.

4 Energy datasheets: EU-28 countries (https://ec.europa.eu/energy/en/data-
analysis/country) accessed on 10.01.2018.

5 https://globalwindatlas.info/accessed on 31.01.2019. A free tool provided
by the Technical University of Denmark (DTU) in partnership with the World
Bank Group.

6 Fossil CO2 emissions of all world countries, 2018 report: http://edgar.jrc.ec.
europa.eu/overview.php?v=booklet2018 accessed on 05.04.2019.
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import any energy (i.e. it is energy self-sufficient), it does not benefit
from wind power in this aspect.

Table 1 presents descriptive statistics of the input and output vari-
ables in the analysed EU countries. The values of variables for each
country are reported in Table A.1 in Appendix.

The comparison of installed wind capacity in the EU countries per
capita in 2015 reveals that Denmark is the country with the highest
installed wind capacity (MW) per capita (CAP). Countries with installed
wind capacity above average include: Sweden, Germany, Ireland,
Spain, Portugal and Austria. Countries with the lowest installed wind
capacity (i.e. below the first quartile) include Slovakia, which is the
country with the lowest capacity, Slovenia, the Czech Republic,
Hungary, Lithuania, Bulgaria and Croatia. Austria has the highest
average wind power density in the EU countries (W/m2). Countries
with the wind power density above average include: United Kingdom,
Croatia, Greece, Sweden, Ireland, France, Slovenia, Spain, and Italy.
Countries with the lowest installed wind capacity (i.e. below the first
quartile), include Hungary, which is the country with the lowest ca-
pacity, Luxembourg, Lithuania, Latvia, Poland, Cyprus and Belgium.
When wind-generated electricity (TWh per capita) (GEN) is considered,
Denmark again is the leader. Countries with wind-generated electricity
above the third quartile (which is almost the same as the average) in-
clude Sweden, Ireland, Portugal, Spain, Germany and the United
Kingdom. The greatest reduction of costs of electricity generated from
fossil fuels replaced with wind power (ECON) is noted in Sweden,
Denmark, Ireland, Spain. The highest values of the environmental as-
pect (ENV) per capita are noted in Denmark, Estonia, Ireland, Germany,
and Portugal. Denmark, the Netherlands, Lithuania, and Ireland are
countries with the highest energy security per capita (DEP). Energy
security indicates to what extent a country relies on import to meet its
energy requirements. The lowest values of this variable are found in
Slovakia and Slovenia.

4.3. Factors in the truncated bootstrapped regression models

The second dataset includes three factors related to: renewable
energy policy regarding wind energy, the energy mix, and the offshore
wind power utilisation.

The first factor affecting the efficiency of the EU countries in terms
of their wind power embraces decisions regarding wind energy policy,
which are vital for all aspects of the energy market. Moreover, these
decisions and the environmental issues (the EU countries are obliged to
reduce their CO2 emissions) seem the leading ones (see Johnstone et al.,
2010). Marques and Fuinhas (2012), Aguirre and Ibikunle (2014),
Polzin et al. (2015) and Liu et al. (2019) attempt to measure policy
design using different aggregate and specific policy instruments. They
use different types of policy instrument to examine the effects of re-
newable energy policies on renewables development and investment.
Aguirre and Ibikunle (2014) formulate thirteen policy-related variables:
direct investment, feed-in tariff, fiscal and financial support, grants and
subsidies, green certificates, information and education, loans, market-
based instruments, negotiated agreements, R&D, policy support and
planning and voluntary agreements to discuss policies and other factors

affecting renewable energy deployment. Similar, Polzin et al. (2015)
examine the impact of different renewable energy policy instruments
on subsequent investments in renewable energy by private institutional
investors in OECD countries. They use five categories of aggregated
policy instruments: economic instruments—fiscal/financial incentives,
economic instruments — market-based instruments, economic in-
struments—direct investment, policy support and regulatory instru-
ments. Liu et al. (2019) expand Polzin et al. (2015) by applying a fixed
effect model to evaluate the effect of renewable energy policy using a
panel dataset covering 29 countries during the period of 2000–2015.
They consider seven aggregate (e.g. fiscal and financial incentives,
market-based instruments, direct investments, policy support, reg-
ulatory instruments, information and education, and research, devel-
opment and deployment) and fourteen specific policy instruments to
examine the effect of particular policies on renewables to discover the
effects of different policies on renewables development and to detail the
function of specific instruments in aggregate policies.

Following Marques and Fuinhas (2012), Aguirre and Ibikunle (2014),
Polzin et al. (2015), Marques et al., 2018 and Liu et al. (2019), the three
aggregated categories of policy instruments regarding wind energy policy
are analysed in the study and the policy-related variables are measured by
the number of active policies in a country per year; in these previous
studies they were called “accumulated number of renewable energy po-
licies and measures (ANPM)”. These policy-related variables are obtained
from the IEA's Global Renewable Energy Policies and Measures.

This approach to policy measurement is also similar to the one used
by Schmidt and Fleig (2018), as it measures only the existence of a
policy in a given category in a country (density related to its presence or
absence) and is not able to take into account the quality of the policy.7

A purely quantitative approach to policy instruments which does not
take into account the quality of these policies or the policies of the
Member States regarding their wind policy support (e.g. the develop-
ment of wind energy may be adversely affected by the lack of consistent
state policy, delays in the issuance of implementing regulations, the
lack of a stable and friendly legal environment ensuring the safety and
predictability of investments in the electricity sector, or the introduc-
tion of regulations that are unfavourable for the development of the
industry) could have an impact on the methodological limitations of
this study regarding renewable energy policy.

Due to a limited number of active policies in a country regarding the
wind energy policy target, we analyse three bundles of formulated
policies regarding economic instruments, policy support and regulatory

Table 1
Descriptive statistics of independent variables in the DEA model.

Description Unit Mean Min Max SD Median

Input
CAP Installed wind capacity MW per capita 23.650 0.055 89.669 21.230 18.367
DEN Wind power density (at 50m above the ground) W/m2 428.778 170.000 1243.000 250.697 331.000
Output
GEN Wind-generated electricity TWh per capita 54.750 0.111 249.712 56.830 35.545
ECON Economic aspect USD per capita 8.392 0.016 31.806 8.214 5.965
ENV Environmental aspect Mt CO2 per capita 20.471 0.028 90.917 21.873 11.861
DEP Energy security aspect Mtoe per capita 29.696 0.063 160.152 35.345 14.252

7 Literature offers a second stream of research on quantitative measurements
of the policy output that has been initiated by Schaffrin et al. (2014) and
Schaffrin et al. (2015). Schaffrin et al. (2014, 2015) propose the Index of Cli-
mate Policy Activity which provides a way of measuring the policy output and
is a function of policy density (e.g. the number of policies relating to a parti-
cular goal) and policy intensity (e.g. the content of policy instruments in rela-
tion to meeting specific goals). This approach to quantitative measurement of
policy outcomes is continued by Schmidt and Sewerin (2018). This approach is
more difficult to apply for a larger set of countries, which is the case of our
study, as it requires studying the content of policy instruments.

M. Papież, et al. Energy Policy 132 (2019) 965–977

969



instruments instead of each type of policy instruments. As a con-
sequence, the results, conclusions and policy recommendations are re-
lated to bundles of policies instead of each type of policy instruments.

a) Economic Instruments (EI), which include the following types of
policy instruments: direct investment (funds to sub-national gov-
ernments, infrastructure investments, procurement rules, RD&D
funding), fiscal and financial incentives (support) (feed-in tariffs,
grants and subsidies, loans, tax relief, taxes, user charges) and
market-based instruments (GHG emissions allowances, green certi-
ficates, white certificates). These policy instrument types are de-
signed to reduce investors' risk by providing a premium on top of
regular market prices for the sale of RE electricity and offering a
long-term agreement and regulation remunerating the sale of RE
electricity at a fixed price. They also offer capital subsidies, con-
sumer grants or discounts, and guarantees for private RE investors
that all generated electricity will be bought. They promote direct
investment aimed at reducing the capital cost of investment in re-
newable energy.

b) Policy Support (PS), which includes two types of policy instruments
to define strategies and to outline specific programs to promote
renewable capacity inside a country, such as institutional creation
and strategic planning.

c) Regulatory Instruments (RI), which include the following types of
policy instruments: auditing, codes and standards, monitoring, ob-
ligation schemes and other mandatory requirements. These policy
instruments impose requirements on the minimum amount of elec-
tricity supplied mainly from renewable sources and set standards for
entities that require them to undertake specific measures and/or
report on specific information.

The second factor related to the energy policy of each country is its
energy mix. The energy mix is used to assess the efficiency of the EU
countries regarding environmental, economic, and energy security as-
pects. The truncated bootstrapped regression models use either the
share of fossil fuels in the total electricity generation i.e. the coal share
(COAL), the petroleum products share (OIL), the natural gas share
(GAS), or the remaining shares of non-fossil fuels i.e. the nuclear power
share (NUCL) and renewable energy sources share (RES).

The third factor is related to the country's offshore wind power uti-
lisation. The share of installed offshore wind capacity (OFF) is used to
approximate it. Many authors (e.g. Wu et al., 2016) find that offshore
wind farms are more efficient than the onshore ones. This variable is
included in the study to discover to what extent the offshore wind power
capacity influences the wind power efficiency of the EU countries.

A detailed description of these variables is provided in Table 2.

5. Results

5.1. Bias-corrected DEA

To analyse the efficiency of the EU countries regarding their wind

power investments, the study considers five models with cumulative
installed wind capacity and average wind power density as the input
variables, and selected combinations of variables described in Section
4.2 as the output variables. The models are presented in Table 3.

The results of the bias-corrected DEA analysis, i.e. the bias-corrected
efficiency scores (θ) of the EU countries in 2015 in all five models, are
reported in Table 4, Fig. 1, and Fig. 2 a-d. The position of a given
country in the rank is given in Table 4 in the parentheses.

Fig. 1 presents the efficiency scores obtained by baseline model M1-
GEN. The countries are ranked in a descending order according to the
value of the bias-corrected efficiency scores in the first (baseline) model
with electricity generation (M1-GEN) as the output variable. Fig. 2a–c
illustrate the efficiency scores obtained by models M2-GEN_ECON, M3-
GEN_ENV, and M4-GEN_DEP. These figures allow for comparing the
results of the baseline model (M1-GEN) with the remaining models
which include additional aspects. Fig. 2d demonstrates the efficiency
scores obtained by the most comprehensive model (M5-ALL). As the
model covers all the output variables, the efficiency scores obtained in
it are the highest in comparison with the remaining five models.

Table 4 demonstrates that the efficiency scores of the EU countries
in the baseline model (M1-GEN) are relatively high. The overall bias-
corrected DEA efficiency scores range from 0.478 to 0.978, and the
average efficiency score is 0.809. It is worth noting that no country
reaches the maximum value equal 1. This means that no country is
efficient in terms of investment in wind power at 100 per cent. This is
due to the bootstrap procedure used.

In the next four models, only one additional aspect (except for wind-
generated electricity) is taken into consideration as the output variable,
and their relative bias-corrected efficiency scores are similar to the ones
obtained in the first model. In all these models (M2-GEN_ECON, M3-
GEN_ENV, M4-GEN_DEP, and M5-ALL) the average efficiency scores are
about 0.8. The lowest average efficiency score (0.783) is obtained in the
second model (M2-GEN_ECON) including the economic output. The
highest average efficiency score (0.826) is obtained in the model in-
cluding the environmental output M3-GEN_ENV).

Table 4 and Fig. 1 reveal that in the baseline model, with installed
wind capacity (CAP) and average wind power density at 50m height
(DEN) used as input variables and wind-generated electricity (GEN)
used as the output variable, (model M1-GEN), the United Kingdom,
Sweden, Denmark, and Ireland are the most efficient countries in terms

Table 2
Descriptive statistics of factors used in the truncated bootstrapped regression models.

Description Unit Mean Min Max SD Median

EI Economic Instruments ANPM 2.481 0.000 8.000 2.173 2.000
PS Policy Support ANPM 0.815 0.000 3.000 0.962 1.000
RI Regulatory Instruments ANPM 0.926 0.000 5.000 1.274 0.000
COAL The coal share in the total electricity generation % 0.235 0.000 0.791 0.215 0.203
OIL The petroleum products share in the total electricity generation % 0.051 0.000 0.912 0.171 0.011
GAS The natural gas share in the total electricity generation % 0.181 0.000 0.498 0.150 0.143
NUCL The nuclear power share in the total electricity generation % 0.173 0.000 0.770 0.212 0.037
RES The renewable share in the total electricity generation % 0.350 0.088 0.778 0.198 0.299
OFF The share of installed offshore wind capacity % 0.044 0.000 0.357 0.099 0.000

Table 3
Input-output variables of five models.

M1 M2 M3 M4 M5

GEN GEN_ECON GEN_ENV GEN_DEP ALL

CAP + DEN X X X X X
GEN X X X X X
ECON X X
ENV X X
DEP X X

Note: in bold: the variable, in italics: the model.

M. Papież, et al. Energy Policy 132 (2019) 965–977

970



of wind power investment. Although their efficiency scores are lower
than 1, they are the highest in all analysed countries and range between
0.940 and 0.978, which means that these countries are the most ef-
fective, i.e. their wind power productivity is relatively high. The deci-
sions regarding investments in wind power taken by their authorities
proved successful and adequate, taking into account the conditions of

offshore wind power utilisation, especially wind conditions. These
countries made the relatively smallest investment in comparison with
other countries and benefited the most from their investment by gen-
erating more wind power than other countries. The results obtained in
the study indicate these countries as the benchmark ones, whose ex-
ample should be followed by other countries in order to reduce their
capital expenditure and become effective. The least effective countries
are Slovenia and Italy. The efficiency scores obtained for these two
countries are 0.478 and 0.569 respectively. This means that their de-
cisions regarding investing in wind power were misguided because
about 50% (47.8% and 56.9%) of the capital investment incurred for
installed wind power was used to generate electricity from wind.

Table 4 and Fig. 2a–d illustrate the models which account for wind-
generated electricity and one other aspect (connected with economy,
environment or energy security).

When wind-generated electricity and the economic output (M2-
GEN_ECON) (Table 4 and Fig. 2a) are taken into account, the group of
the most efficient countries is joined by Belgium and Lithuania. Cyprus
gain the most, and its relative efficiency scores increase by 10%. When
the economic aspect, i.e. the costs of generating energy from fossil fuels,
is analysed, an increase in the relative efficiency scores and a higher
position in the rank is observed in countries using oil as the main en-
ergy source (i.e. Cyprus, in which in 2015 as much as 91% of total
electricity generation comes from heating oil power plants or natural
gas power plant (i.e. in Belgium 35% of electricity comes from natural
gas power plants). Their position in the rank improves, and the value of
parameter θ increases.

When wind-generated electricity and the environmental output are
investigated (model M3-GEN_ENV) (Table 4 and Fig. 2b), Estonia,
Belgium, and Lithuania join the group of countries with the highest
relative efficiency scores. Moreover, Germany, Poland, Estonia, Cyprus,
the Czech Republic, Greece, the Netherland, and Bulgaria gain the most
in terms of environmental benefits. These countries rely on coal as the

Table 4
The bias-corrected efficiency scores of the EU countries in 2015 for five models.

country M1 M2 M3 M4 M5

GEN GEN_ECON GEN_ENV GEN_DEP ALL

AT - Austria 0.674 (24) 0.664 (24) 0.676 (24) 0.677 (24) 0.663 (24)
BE - Belgium 0.927 (5) 0.929 (3) 0.924 (6) 0.926 (5) 0.827 (13)
BG - Bulgaria 0.772 (18) 0.745 (21) 0.794 (21) 0.759 (20) 0.784 (19)
CY - Cyprus 0.761 (21) 0.841 (7) 0.806 (19) 0.733 (22) 0.875 (5)
CZ - Czech Republic 0.842 (11) 0.789 (13) 0.880 (10) 0.800 (14) 0.885 (4)
DE - Germany 0.770 (19) 0.753 (18) 0.856 (13) 0.769 (18) 0.847 (10)
DK - Denmark 0.956 (3) 0.940 (2) 0.964 (3) 0.967 (3) 0.911 (3)
EE - Estonia 0.859 (10) 0.832 (8) 0.933 (5) 0.861 (8) 0.942 (1)
ES – Spain 0.749 (22) 0.713 (22) 0.751 (22) 0.751 (21) 0.722 (21)
FI – Finland 0.815 (15) 0.805 (10) 0.814 (18) 0.814 (13) 0.791 (18)
FR – France 0.725 (23) 0.690 (23) 0.725 (23) 0.725 (23) 0.691 (23)
GR – Greece 0.770 (20) 0.757 (17) 0.802 (20) 0.777 (16) 0.802 (15)
HR – Croatia 0.661 (25) 0.650 (25) 0.661 (25) 0.666 (25) 0.646 (25)
HU – Hungary 0.840 (12) 0.759 (16) 0.848 (14) 0.775 (17) 0.841 (12)
IE – Ireland 0.939 (4) 0.879 (5) 0.950 (4) 0.939 (4) 0.862 (7)
IT - Italy 0.569 (26) 0.553 (26) 0.568 (26) 0.564 (26) 0.590 (26)
LT - Lithuania 0.911 (6) 0.880 (4) 0.910 (7) 0.822 (11) 0.797 (17)
LU - Luxembourg 0.881 (8) 0.843 (6) 0.885 (9) 0.836 (9) 0.845 (11)
LV - Latvia 0.877 (9) 0.762 (15) 0.878 (11) 0.836 (10) 0.716 (22)
NL – Netherlands 0.793 (16) 0.782 (14) 0.816 (17) 0.893 (6) 0.817 (14)
PL – Poland 0.779 (17) 0.747 (20) 0.863 (12) 0.764 (19) 0.866 (6)
PT – Portugal 0.888 (7) 0.809 (9) 0.892 (8) 0.883 (7) 0.781 (20)
RO - Romania 0.824 (14) 0.796 (12) 0.825 (16) 0.820 (12) 0.801 (16)
SE - Sweden 0.969 (2) 0.803 (11) 0.974 (2) 0.973 (2) 0.852 (8)
SI – Slovenia 0.478 (27) 0.445 (27) 0.486 (27) 0.460 (27) 0.488 (27)
SK - Slovakia 0.833 (13) 0.749 (19) 0.843 (15) 0.787 (15) 0.848 (9)
UK – United Kingdom 0.977 (1) 0.958 (1) 0.977 (1) 0.980 (1) 0.916 (2)
Min 0.478 0.467 0.486 0.461 0.489
Max 0.978 0.967 0.977 0.980 0.943
Mean 0.809 0.783 0.826 0.799 0.793

Note: The numbers in parentheses are country ranking. The DEA is performed using the Stata “simarwilson “command and 1000 bootstrap replication.

Fig. 1. The bias-corrected efficiency scores of the EU countries in 2015 ob-
tained by baseline model M1-GEN.
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main source in electricity generation: e.g. in 2015 77% of the total
electricity generation in Estonia comes from coal power stations, in
Poland −79%, in the Czech Republic - 49%, in Bulgaria - 46%, in
Greece - 43%, in Germany - 44%, while in Cyprus 91% of electricity is
generated by oil power plants. The relative efficiency score of Germany
increases by 11%, of Poland by 11%, of Estonia by 9%, of Cyprus by
6%, of the Czech Republic by 5%, of Greece by 4%, of the Netherlands
3%, and of Bulgaria by 3%.

When wind-generated electricity and the energy security output
(model M4-GEN_DEP) (Table 4 and Fig. 2c) are taken into considera-
tion, the Netherlands and Belgium join the list of the most efficient
countries. The Netherlands efficiency score increases by 13% in com-
parison with the basic model. An improvement is also noted in Den-
mark, Greece, and Croatia (their efficiency scores grow by 1%). These
countries gain the most in terms of energy security benefits.

When all variables are considered, Estonia, the United Kingdom,
Denmark, the Czech Republic, Cyprus, Poland, and Ireland are the most
efficient countries (model M5-ALL, Table 4 and Fig. 2d). In other words,

Cyprus (where the efficiency score increases by 15%), Poland (11%),
Germany (10%), Estonia (10%), the Czech Republic (5%), Greece (4%),
Italy (3%) and the Netherlands (3%) gain the most. In this model Slo-
venia turns out to be the least efficient country. Moreover, the relative
efficiency score of Latvia decreases by 18%, while these of Lithuania,
Sweden, and Portugal by 12%.

The efficiency of the EU countries obtained in the bias-corrected
DEA model are compared, as a robustness check, with two other DEA
approaches. The first one is the standard input oriented BCC DEA
model8 (the results of the relative efficiency scores obtained by five
models are presented in Table A2 in Appendix). The second one is the
additive model proposed by Charnes et al. (1985). The sums of input
and output slacks obtained in the additive DEA model are presented in
Table A3 in Appendix. The Spearman rank correlation coefficient is
calculated for pairs of these three models. The results are presented in

Fig. 2. The bias-corrected efficiency scores of the EU countries in 2015 obtained by M2-GEN_ECON, M3-GEN_ENV, M4-GEN_DEP, and M5-ALL models.

8 These efficiency scores are bias-corrected by the bootstrap application in the
main model in our study, Table 4.

M. Papież, et al. Energy Policy 132 (2019) 965–977

972



Table A4 in Appendix. As can be noticed, the correlations between
equivalent models are quite high. The highest correlation is observed
comparing the BCC and additive approaches (the Spearman rank cor-
relation coefficient in M3-GEN_ENV model is 0.944). A high correlation
is also obtained between the BCC and bias-corrected approaches (in
M1-GEN model the correlation coefficient is 0.893). The bias-corrected
and additive approaches are the least similar (for M5-ALL model the
coefficient equals 0.384).

5.2. The truncated bootstrapped regression models

The next stage of the study analyses the role of external factors in
explaining the bias-corrected DEA efficiency scores obtained by the EU
countries. Three factors – renewable energy policy regarding wind en-
ergy, the energy mix, and the offshore wind power utilisation - are
considered in order to investigate their impact on the wind power ef-
ficiency of the analysed countries. Two kinds of truncated bootstrapped
regression models are estimated for each efficiency score yielded by
models M1-M5. The first set of the truncated bootstrapped regression
models includes the following independent variables: Economic
Instruments (EI), Policy Support (PS) and Regulatory Instruments (RI)
(which describe wind energy policy of a country), the share of installed
offshore wind capacity (OFF) (which describes the impact of the off-
shore wind power utilisation), and the shares of fossil fuels in electricity
generation, like the coal share (COAL), the petroleum product share
(OIL), and the natural gas share (GAS) (which represent the energy
mix9). The second set of models includes the same independent vari-
ables as the models from the first set, but instead of the shares of fossil
fuels in electricity generation, they use the shares of non-fossil fuels in
electricity generation, such as nuclear share (NUCL) and renewable
energy sources share (RES), due to multicollinearity with the shares of
fossil fuels.

Table 5 reports the results of the truncated bootstrapped regression
models.

The results (Table 5) reveal that the effect of renewable energy
policy regarding wind energy on the wind power efficiency of the EU
countries is significant, yet ambiguous. In all five models bundles of
policies regarding economics instruments (EI) (i.e. direct investment,
fiscal and financial instruments, feed-in tariffs, etc.,) seem to have a
significant and positive effect on the efficiency of the EU countries in
terms of their wind power investments. Similar results are reported by
Polzin et al. (2015), García-Álvarez et al. (2017), and Li et al. (2017).
Whereas, bundles of policy support (PS), which covers institutional
creation and strategic planning, might negatively influence wind power
efficiency. Similarly, bundles of regulatory instrument policies (RI),
which include auditing, codes and standards, monitoring, obligation
schemes and other mandatory requirements, seem to have a negative
and significant (except for M3-GEN_ENV model) impact on the wind
power efficiency of the EU countries. This result is surprising, yet fre-
quently observed in previous studies (see Zhao et al., 2013). A negative
example of regulatory instruments and policy support is the an act on
wind farm investments (Journal of Laws 2016, item 961) which was
introduced in Poland in July 2016. The most important changes con-
cerned the location of new wind power plants. According to the reg-
ulations, the distance to the nearest buildings must not be shorter than
ten times the height of the windmill and shovels. The introduction of
this regulatory instrument has resulted in a significant reduction of the
areas where new wind power plants can be built. Consequently, the
investments in wind farms in Poland were inhibited.

To sum up, it seems that a positive effect on the wind power effi-
ciency of each country is exerted only by bundles of economic

instruments (EI), mainly fiscal and financial incentives, such as feed-in
tariffs (FIT). These feed-in tariffs are likely to spur deployment and
technological diversity and lower risks associated with renewable en-
ergy technologies faced by private sectors.

The results presented in Table 5 indicate that the wind power effi-
ciency of the EU countries in terms of environmental, economic and
energy security benefits is related to their energy mix. The results are
not surprising, as the positive and significant coefficient of COAL is
obtained in models M3-GEN_ENV (environmental output) and M5-ALL.
Benefits resulting from replacing coal with wind are significant for the
environment because coal power plants are responsible for high emis-
sions of CO2. Similarly, the natural gas share (GAS) significantly and
positively affects the wind power efficiency (M1-GEN and M2-GEN_-
ECON) when economic aspect is also taken into account. It means that
both the wind power efficiency and energy security benefits would
increase if natural gas were replaced with wind power. The results
confirm that the energy mix substantially affects the wind power effi-
ciency when the shares of non-fossil fuels are taken into account. When
all beneficial aspects are considered (M5-ALL), the results demonstrate
that the nuclear share and the renewable energy source share in elec-
tricity generation have a negative and significant effect on the wind
power efficiency. It means that the lower renewable energy source
share in electricity generation, the lower wind power efficiency and the
lower the benefits regarding all aspects.

As can be seen in Table 5, almost all coefficients of OFF are statis-
tically significant and positive. The coefficient is positive, which means
that the larger the share of the offshore wind farm a country has, the
more wind power efficient it is. Similar results are obtained by Wu et al.
(2016), Sağlam (2017a), and Sağlam (2017b). Since access to the sea is
directly connected with the location of the country, it can be concluded
that the wind power efficiency is significantly related to the offshore
wind power utilisation.

6. Conclusions and policy implication

6.1. Conclusions

The empirical strategy applied in the study allows for assessing the
efficiency of the EU countries in terms of their wind power investments.
Three different aspects (economic, environmental and energy security)
measuring the benefits of wind power investment in these countries are
considered. Next, the truncated bootstrapped regression model is em-
ployed to identify and explain the role of various factors which affect
the relative efficiency of the EU countries. These factors are related to:
renewable energy policy regarding wind energy, the energy mix, and
the offshore wind power utilisation.

The bias-corrected DEA implementation yields the following con-
clusions.

Four countries - the United Kingdom, Sweden, Denmark, and
Ireland - are the most efficient ones when the relationships between
both the investment in wind power and the average wind power density
and the wind-generated electricity are considered. Moreover, Belgium,
Lithuania, and Portugal obtain high relative efficiency scores. The
group of the least efficient countries includes Slovenia and Italy.

What is interesting, when additional aspects are included in the
models, other countries join the group of the most efficient countries or
gain the most, and the assessment of the efficiency of the EU countries
regarding their wind power investment offers a broader perspective on
these benefits.

When the assessment of the wind power efficiency of the EU
countries accounts for economic, energy security, and environmental
aspects resulting from replacing conventional energy with wind power,
Estonia, the United Kingdom, Denmark, the Czech Republic, Cyprus,
Poland, Ireland, and Sweden turn out the most efficient countries.
Countries which gain the most are Cyprus, Poland, Germany, Estonia,
the Czech Republic, Greece, Italy and the Netherlands.

9 Different sources of energy are included in the models, as they have dif-
ferent impact on the aspects considered. For example, COAL is crucial for en-
vironmental aspects and GAS for economy.
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When the environmental output is included, Estonia, Belgium, and
Lithuania join the group of the most efficient countries, while Germany,
Poland, Estonia, Cyprus, the Czech Republic, Greece, the Netherland,
and Bulgaria gain the most. Energy mixes in these countries contain
high coal shares, so they benefit the most from investing in wind power
as the volume of CO2 emissions avoided is very high. Conversely, the
economic output is important in countries with the limited coal share in
their energy mixes. When this aspect is included in the models, Belgium
and Lithuania become efficient countries, while Cyprus and Belgium
gain the most. When the energy security aspect is analysed, the
Netherlands and Belgium join the group of the most efficient countries.
Moreover, Denmark, Greece, and Croatia benefit the most. Since wind
is a local energy source, it allows for reducing fossil fuel imports.

To explain the above results, the efficiency of the EU countries is
next interpreted using factors from three areas: renewable energy
policy regarding wind energy, the energy mix and the offshore wind
power utilisation.

The role of political factors seem to be significant, albeit rather
ambiguous.

The wind power efficiency might be positively related to bundles of
economic instruments of wind energy policy. These packages of in-
struments are meant to reduce investors’ risk and to offer economic
support mainly by the implementation of fiscal and financial incentives
and capital subsidies, consumer grants or discounts and guarantees for
private RE investors that all generated electricity will be bought. This
result is in line with other studies. Polzin et al. (2015) suggest that this
type of support instruments proves especially beneficial in the early
stages of technological development. Similar results are observed by
García-Álvarez et al. (2017) and Li et al. (2017), and they confirm that
the feed-in tariff policies promote wind power development in the
European Union.

The two remaining wind energy policy areas (bundles of policy
support and bundles of regulatory instruments) might play a negative
role in the wind power efficiency context. Policy support packages in-
cluding institutional creation (such as the implementation of an energy
agency), strategic planning and regulatory instruments seem to have a
negative impact on the efficiency of the EU countries regarding in-
vestment in wind power. On the one hand, this result is rather un-
expected, as it might be reasonably assumed that a clear long-term
energy strategy is conducive to investment, as investors appreciate a
long-term framework with a clear vision. This surprising outcome could
result from using a purely quantitative approach adopted in the study,
which ignores the quality of policies and the design features of policy
instruments.

On the other hand, Zhao et al. (2013) and Polzin et al. (2015) report
a negative impact of policy support and regulatory instruments on re-
newable energy sources development.

The energy mix explains the variation of the efficiency of the EU

countries when economic, environmental and energy security aspects
are considered. The larger the share of coal in the energy mix, the more
a country benefits environmentally. Similarly, the wind power effi-
ciency would increase and energy security benefits would grow if nat-
ural gas were replaced with wind power. The results confirm that the
energy mix significantly affects wind power efficiency when the shares
of non-fossil fuels in electricity generation are taken into account. It
seems that the energy mix is important not only to the development of
renewable energy sources (see Papież et al., 2018) but also to their
efficiency.

Finally, the results obtained for the offshore wind power utilisation
indicate that the countries with high shares of offshore wind capacity
are the most efficient. This result remains positive for each group of
benefits considered. Our findings confirm the results obtained by, for
example, Wu et al. (2016), Sağlam (2017a), and Sağlam (2017b).

6.2. Policy implications

Knowledge of the factors which contribute to increasing wind power
efficiency should prove helpful to policymakers. The results regarding
the impact of factors related to national energy policy, including na-
tional renewable energy action plans, seem crucial.

The results of the study allow for formulating two policy re-
commendations. First, policymakers considering wind energy devel-
opment should take into account its different aspects, as countries differ
in their wind potential. However, environmental, economic and energy
security aspects influence the energy mix and lead to differences in the
wind power efficiency of particular countries. Decisions regarding the
wind energy development should be made on the basis of all these
aspects. Even countries with relatively poor wind potential could ben-
efit considerably when they use wind power to replace coal power (the
environmental benefit), oil power (the economic benefit) or fossil fuel
imports (energy security improves).

Second, three renewable policy areas regarding wind energy (i.e.
bundles of economic instruments, policy support, and regulatory in-
struments) seem to have a different impact on wind power efficiency. A
positive impact of economic instruments regarding renewable energy
policy, including economic and fiscal incentives, on wind power effi-
ciency, offers a relevant recommendation of these tools.

It seems that economic instruments are introduced (so far, at least)
reasonably and are likely to contribute to the rational wind power de-
velopment. On the other hand, policy support covering institutional
creation (such as the implementation of an energy agency) and strategic
planning might have a negative impact on wind power efficiency.
Consequently, these two policy tools should be limited or reconsidered
by policymakers who would like to improve the efficiency of different
aspects of wind power.

The results related to the impact of different areas of renewable

Table 5
The results of the truncated bootstrapped regression models.

M1 M2 M3 M4 M5

GEN GEN_ECON GEN_ENV GEN_DEP ALL

EI 0.056*** 0.048** 0.038** 0.040*** 0.071*** 0.058** 0.049*** 0.038** 0.041** 0.046***
SP −0.089** −0.067* −0.061** −0.058** −0.102** −0.079* −0.079** −0.059* −0.047 −0.053**
RI −0.047** −0.038* −0.029* −0.032* −0.052** −0.041 −0.039** −0.033 −0.028* −0.027*
OFF 0.996** 1.124** 0.829*** 0.786*** 1.096* 1,090* 1.291** 1.415** 0.422** 2.300
COAL 0.806 0.106 0.250* 0.115 0.290***
OIL −0.067 0.120 −0.006 −0.056 0.161
GAS 0.277* 0.234* 0.298 0.266 0.109
NUCL −0.069 −0.114 −0.143 −0.079 −0.144*
RES −0.048 −0.115 −0.213 −0.069 −0.332***
Const 0.707*** 0.786*** 0.657*** 0.804*** 0.671*** 0.879*** 0.682*** 0.797*** 0.649*** 0.881***

Note: Calculations obtained using STATA program; ***, **, * indicate statistical significance at 1, 5 and 10 per cent level of significance, respectively. Bootstrapped
regression models are performed using the Stata “simarwilson” command.
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energy policy on the wind power development should be crucial for two
groups of countries: the ones which have only recently started using
and supporting the wind power development, and the ones which, due
to their economic situation, have to be very careful with their ex-
penditure. Promoting renewable energy sources with the use of ade-
quate support methods can significantly improve the efficiency of in-
vestment.
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Appendix

Table A.1The values of variables in DEA.

CAP DEN PROD ECON ENV DEP

MW per capita W/m2 TWh per capita USD per capita Mt CO2 per capita Mtoe per capita

AT 29.022 1243 56.435 11.109 11.861 29.022
BE 19.364 234 49.603 10.59 12.252 19.364
BG 9.719 276 20.161 1.677 11.586 9.719
CY 18.654 226 26.092 8.045 16.943 18.654
CZ 2.666 250 5.437 0.472 3.506 2.666
DE 55.014 272 97.547 10.408 48.643 55.014
DK 89.669 396 249.712 27.052 90.917 89.669
EE 22.816 257 54.378 4.568 61.395 22.816
ES 49.393 584 106.19 18.237 30.754 49.393
FI 18.367 388 42.528 5.806 10.4 18.367
FR 15.367 645 31.959 5.965 1.834 15.367
GR 19.258 694 42.558 6.159 24.998 19.258
HR 9.893 705 18.839 2.521 5.449 9.893
HU 3.338 170 7.032 1.017 2.742 3.338
IE 52.712 646 141.998 24.142 58.695 52.712
IT 15.029 562 24.416 4.696 9.395 15.029
LT 14.925 190 27.728 6.533 9.316 14.925
LU 11.369 185 18.119 4.086 3.16 11.369
LV 3.474 190 7.401 1.669 2.483 3.474
NL 20.064 363 44.673 7.133 25.427 20.064
PL 12.856 222 28.569 2.368 25.958 12.856
PT 47.586 243 111.886 16.029 40.546 47.586
RO 15.752 264 35.545 4.488 15.454 15.752
SE 59.914 693 166.897 31.806 6.362 59.914
SI 0.242 598 0.291 0.024 0.089 0.242
SK 0.055 331 0.111 0.016 0.028 0.055
UK 22.028 750 62.135 9.977 22.525 22.028

Table A.2The results of relative efficiency scores obtained by standard input oriented BCC DEA model

country M1 M2 M3 M4 M5

GEN GEN_ECON GEN_ENV GEN_DEP ALL

AT - Austria 0.689 (24) 0.689 (24) 0.690 (25) 0.689 (24) 0.690 (25)
BE - Belgium 0.951 (11) 0.951 (13) 0.951 (14) 0.951 (12) 0.951 (16)
BG - Bulgaria 0.803 (20) 0.829 (20) 0.806 (21) 0.803 (20) 0.829 (22)
CY - Cyprus 0.810 (19) 0.853 (17) 1 (5.5) 0.811 (19) 1 (6.5)
CZ - Czech Republic 0.924 (12) 0.966 (11) 0.928 (15) 0.924 (13) 0.966 (15)
DE - Germany 0.856 (14) 0.926 (15) 0.856 (16) 0.856 (15) 0.926 (18)
DK - Denmark 1 (3) 1 (3.5) 1 (5.5) 1 (4.5) 1 (6.5)
EE - Estonia 0.881 (13) 1 (3.5) 1 (5.5) 0.881 (14) 1 (6.5)
ES – Spain 0.770 (22) 0.770 (22) 0.770 (23) 0.770 (22) 0.770 (23)
FI – Finland 0.836 (17) 0.836 (19) 0.836 (19) 0.836 (18) 0.836 (21)
FR – France 0.741 (23) 0.741 (23) 0.741 (24) 0.741 (23) 0.741 (24)
GR – Greece 0.786 (21) 0.825 (21) 0.789 (22) 0.799 (21) 0.850 (20)
HR – Croatia 0.676 (25) 0.676 (25) 0.683 (26) 0.684 (25) 0.687 (26)
HU – Hungary 1 (3) 1 (3.5) 1 (5.5) 1 (4.5) 1 (6.5)
IE – Ireland 0.964 (9) 0.975 (9) 0.967 (13) 0.964 (11) 0.975 (14)
IT - Italy 0.586 (26) 0.588 (26) 0.586 (27) 0.586 (26) 0.588 (27)
LT - Lithuania 0.970 (8) 0.970 (10) 0.981 (12) 1 (4.5) 1 (6.5)
LU - Luxembourg 0.960 (10) 0.960 (12) 1 (5.5) 0.968 (10) 1 (6.5)
LV - Latvia 0.977 (7) 0.977 (8) 1 (5.5) 1 (4.5) 1 (6.5)
NL – Netherlands 0.811 (18) 0.840 (18) 0.811 (20) 1 (4.5) 1 (6.5)
PL – Poland 0.856 (15) 0.931 (14) 0.856 (17) 0.856 (16) 0.931 (17)
PT – Portugal 1 (3) 1 (3.5) 1 (5.5) 1 (4.5) 1 (6.5)
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RO - Romania 0.847 (16) 0.857 (16) 0.847 (18) 0.847 (17) 0.857 (19)
SE - Sweden 0.998 (6) 0.998 (7) 0.998 (11) 0.998 (9) 0.998 (13)
SI – Slovenia 0.549 (27) 0.549 (27) 1 (5.5) 0.549 (27) 1 (6.5)
SK - Slovakia 1 (3) 1 (3.5) 1 (5.5) 1 (4.5) 1 (6.5)
UK – United Kingdom 1 (3) 1 (3.5) 1 (5.5) 1 (4.5) 1 (6.5)

Note: The numbers in parentheses are country ranking.

Table A.3The sum of input and output slacks resulted from additive DEA model

country M1 M2 M3 M4 M5

GEN GEN_ECON GEN_ENV GEN_DEP ALL

AT - Austria 1043, (27) 1054. (27) 1815. (27) 1112. (27) 1870. (27)
BE - Belgium 27,48 (9) 33.40 (12) 359.7 (14) 45.19 (10) 380.9 (14)
BG - Bulgaria 97,70 (16) 93.13 (16) 385.8 (15) 126.5 (17) 395.2 (15)
CY - Cyprus 50,00 (12) 46.54 (14) 0 (5) 108.9 (15) 0 (6)
CZ - Czech Republic 47,23 (11) 15.11 (8) 105.6 (11) 49.11 (11) 65.38 (13)
DE - Germany 52,46 (14) 41.56 (13) 524.1 (17) 102.6 (13) 541.9 (18)
DK - Denmark 0 (3) 0 (3.5) 0 (5) 0 (4.5) 0.000 (12)
EE - Estonia 52,25 (13) 0 (3.5) 0 (5) 103.0 (14) 0 (6)
ES – Spain 349,1 (21) 358.2 (22) 940.7 (23) 393.2 (22) 984.5 (24)
FI – Finland 193,3 (18) 198.5 (18) 805.9 (20) 233.1 (18) 825.3 (21)
FR – France 459,1 (24) 469.9 (24) 1023. (25) 510.3 (24) 1055. (26)
GR – Greece 500,1 (25) 488.8 (25) 1139. (26) 537.5 (25) 1049. (25)
HR – Croatia 528,3 (26) 530.8 (26) 838.8 (21) 558.7 (26) 829.3 (22)
HU – Hungary 0 (3) 0 (3.5) 0 (5) 0 (4.5) 0 (6)
IE – Ireland 355,1 (22) 346.3 (21) 715.8 (19) 388.4 (21) 737.4 (20)
IT - Italy 384,2 (23) 386.3 (23) 950.9 (24) 443.1 (23) 952.4 (23)
LT - Lithuania 8,444 (6) 10.97 (7) 131.7 (12) 0 (4.5) 0 (6)
LU - Luxembourg 10,63 (7) 16.13 (9) 0.000 (10) 34.10 (9) 0 (6)
LV - Latvia 19,67 (8) 20.06 (11) 0 (5) 0 (4.5) 0 (6)
NL – Netherlands 167,6 (17) 156.6 (17) 854.5 (22) 0 (4.5) 0 (6)
PL – Poland 37,43 (10) 18.04 (10) 485.5 (16) 68.95 (12) 489.2 (17)
PT – Portugal 0 (3) 0 (3.5) 0 (5) 0 (4.5) 0 (6)
RO - Romania 74,53 (15) 71.73 (15) 623.0 (18) 117.3 (16) 649.3 (19)
SE - Sweden 288,3 (20) 342.7 (20) 339.3 (13) 360.8 (20) 466.2 (16)
SI – Slovenia 276,3 (19) 276.4 (19) 0 (5) 276.5 (19) 0 (6)
SK - Slovakia 0 (3) 0 (3.5) 0 (5) 0 (4.5) 0 (6)
UK – United Kingdom 0 (3) 0 (3.5) 0 (5) 0 (4.5) 0 (6)

Note: The numbers in parentheses are country ranking.

Table A.4The Spearman rank correlation coefficient

bias-corrected DEA ADD BCC

M1 GEN bias-corrected DEA 1 0.646 0.893
ADD 0.646 1 0.822
BCC 0.893 0.822 1

M2 GEN_ECON bias-corrected DEA 1 0.582 0.697
ADD 0.582 1 0.846
BCC 0.697 0.846 1

M3 GEN_ENV bias-corrected DEA 1 0.523 0.620
ADD 0.523 1 0.944
BCC 0.620 0.944 1

M4 GEN_DEP bias-corrected DEA 1 0.572 0.799
ADD 0.572 1 0.882
BCC 0.799 0.882 1

M5 ALL bias-corrected DEA 1 0.384 0.496
ADD 0.384 1 0.934
BCC 0.496 0.934 1
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