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a b s t r a c t

The basic objective of wind farm layout optimization is to maximize the energy produced by wind farms.
However, when wind turbines are arranged in a limited space like an onshore wind farm, specific wind
turbines may have greater wake exposure than other wind turbines. This phenomenon can be con-
spicuous in a mixed layout that consists of turbines with different capacities and hub heights. In this
study, we developed and tested a new objective function to increase wind farm energy output while
making the wake loss of each wind turbine uniform. The purpose of this function is to adjust the wake
effects of all of the wind turbines on a wind farm to similar levels, thereby promoting the operational
stability of all of the wind turbines. Layout optimization was performed using a simulated annealing
algorithm, which is a heuristic method, with actual wind conditions for an existing wind farm in
operation. Then, the results obtained using the proposed method were compared with those yielded by
layout optimization for energy maximization. The layout generated using the proposed objective func-
tion had lower energy output than that obtained by energy maximization. However, this difference was
small and the proposed method prevented wake effect concentration on specific turbines by making the
wake effect levels uniform.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

The main objective in wind farm design is energy output
maximization. To achieve this objective, the losses must be mini-
mized while maximizing the energy generated by the wind farm.
The greatest losses are called wake losses, which are caused by
wakes and result from the mutual interference between wind
turbines. As wind consumes energy while passing through the
rotor of awind turbine, its speed is lower behind the turbine, which
decreases the outputs of other downstream wind turbines [1].
Furthermore, an arrangement of wind turbines in a row along the
wind direction causes additional wind speed and power output
reduction. These reductions of wind speed and energy output are
related to the problem of how to arrange wind turbines on a wind
farm. To solve this problem, an effective wind farm layout is
required to minimize the wake losses [2].

To minimize the wake losses, the turbines must be arranged
chuh@jejunu.ac.kr (J. Huh).
considering the directions of all of the winds around the wind farm.
However, numerous layout options are necessary for this purpose,
making determination of the optimal wind turbine layout an
extremely difficult task. The problem becomes more complicated if
constraints present when turbines are actually arranged are
considered, such as the presence of power cables, development-
prohibited areas, and geographical characteristics.

As shown in Table 1, many studies have been conducted from
the 1990s until recently to solve the problem of wind farm layout
optimization (WFLO). The first report was published in 1994 by
Mosetti et al. [3], who addressed the WFLO problem using a GA
based on a discrete model. Mosetti et al. assumed and applied three
simple wind conditions, which are different from those in actual
situations, but nonetheless demonstrated the applicability of an
optimization algorithm to solve the WFLO problem. After that,
WFLO research ceased, but it started again in the mid-2000s. In
2004, Ozturk et al. [4] published a report on wind turbine layout
optimization using a GHA. Grady et al. [5] investigated the same
example as Mosetti et al. by employing a GA that introduced a
subpopulation and compared the results. Marmidis et al. [6]
introduced MCS, and Rivas et al. [7] conducted a study on WFLO
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Nomenclature

AEP annual energy production
LOEM layout optimization for energy maximization
LOWU layout optimization for wake effect uniformity
SAA simulated annealing algorithm
STD standard deviation
WFLO wind farm layout optimization
WT wind turbines
Aoverlap overlap area between wake and rotor [m2]
Apartial overlap area created by partial wake [m2]
Ar wind turbine rotor swept area [m2]
Ct thrust coefficient [�]
Dr turbine rotor diameter [m]
Dw diameter of the downstream wake [m]
Enet net AEP [GWh]
Egross gross AEP [GWh]

F probability of wind speed [�]
fenery,max value of objective function for energy maximization

[�]
fwake,uniform value of objective function for wake effect

uniformity [�]
hhub hub height of the wind turbine [m]
kw wake decay constant [�]
L layout result of wind turbines
P power of wind turbine [kW]
Pmetro metropolis probability [�]
u wind speed [m/s]
udef wind speed deficit [m/s]
umdef wind speed deficit by multiple WT [m/s]
T virtual temperature parameter [�]
Ti virtual temperature parameter, iteration step i [�]
z0 surface roughness height [m]
a temperature control parameter [�]
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using an SAA. Before 2010, research was focused on the develop-
ment of a layout optimization algorithm using various optimization
methodologies. Furthermore, the investigations remained at the
level of reviewing the applicability of the algorithms using rect-
angular wind farm areas and simple wind conditions.

Since 2010, more practical studies have been conducted using
more diverse algorithms. The methodologies used in these studies
can be categorized into two main types, as shown in Table 1:
heuristic methodologies based on probabilistic theory [3e41] and
mathematical programming methodologies involving formulating
the variables and boundary conditions of the problem [42e51]. It
can be seen from Table 1 that many studies related to WFLO have
involved attempts to solve the problem using heuristic methodol-
ogies. That is because the WFLO problem is a combinatorial opti-
mization problem, which is treated as an NP-hard problem due to
its computational complexity and numerous constraints, which
make it difficult to express a perfect mathematical function to find
the optimal solution [10,51]. On the other hand, to overcome the
problems of the probabilistic heuristic approach, such as the lack of
a guarantee of global optimality and high computational cost, other
researchers have approached the WFLO problem using mathe-
matical programming methods such as MIP [42e46] and GBO
[47e51]. However, some scholars believe that using mathematical
programming for wind farm designing is not a good idea because of
the non-linear, multi-modal, and discontinuous nature of theWFLO
problem [52,53]. In this study, the heuristics method was adopted
to account for the aforementioned nature of the WFLO problem.

There are also studies involving the use of complex algorithms
that include both of the above-mentionedmethods. Perez et al. [54]
employed a random heuristic method for the initial layout of an
offshore wind farm and applied nonlinear mathematical pro-
gramming for local optimization. Mittal et al. [55] determined the
number and positions of wind turbines by developing a hybrid
methodology that combines a GA and GBO.

Examination of the applied algorithms indicates that
population-based, nature-inspired algorithms, such as GAs
[3,5,8e22], ESs [26e28], PSOs [22,29e34], and ACO [35], have been
used often, and GAs have been used the most frequently. GAs are
representative stochastic optimization algorithms that are used
widely in various fields. GAs are advantageous due to their use of
population-based cooperation systems, but the optimal solution
depends on the chosen numbers of populations and generations, as
well as the selection and crossover method, and it is difficult to
make decisions about these factors. Other studies involving
heuristic methods include one in which an SAA was employed to
simulate the annealing process to improve the ductility of metal
materials [7], and ones in which algorithms based on natural
searches such as HS [36], PS [37], and RSs [38e40] were applied.
Furthermore, GHAs [4,10,41], which are deterministic-based heu-
ristic methods, have been applied to the WFLO problem in some
studies.

For wind farm modeling, computational domains can be clas-
sified as grid-based discrete representations and coordinate-based
continuous representations. Discrete representations are used to
divide wind farms into rectangular grids and place wind turbines at
the centers of the divided cells. This representation method is
disadvantageous in that the degree of freedom of wind turbine
placement varies with the grid resolution, and the computation
time increases exponentially when a high-resolution grid is
employed to increase the positional freedom [49]. On the other
hand, in the continuous representation, wind turbines can be
placed anywhere on the wind farm based on 2D coordinates [44].
As shown in Table 1, the computational domain generally depends
on the algorithm. In the case of a GA, a discrete representation is
advantageous due to the binary coding method, and in the case of
an ES, in which real number operators are used, a continuous
representation is employed. Similarly, the discrete and continuous
representations are applied in MIP and GBO, respectively,
depending on the characteristics of the algorithm.

Recently, various objective functions reflecting the actual con-
ditions of real wind farms have been researched. Gonzalez et al. [13]
conducted layout optimization considering the effects of grouping
neighboring offshorewind farms that have been developed actively
in recent years. Hou et al. [34] performed layout optimization to
minimize the costs of configuring the substations and cables of
offshore wind farms using an objective function based on the lev-
elized production cost. Guirguis et al. [49] performed multi-
objective layout optimization to achieve various design objectives
including electrical infrastructure, land footprint, and land use.
Tingey et al. [50] investigated the trade-offs between power pro-
duction and noise impact using an acoustic model for noise, which
is often an issue in wind farm development. Future research on
WFLO is expected to reflect real problems actively, and this aspect
was also considered in this study.

As mentioned above, the basic objective of WFLO is energy
output maximization, but when wind turbines are arranged to
achieve this goal in a limited space, some wind turbines can
experience greater wake effects than other turbines. Consequently,



Table 1
Categorization of literature by methodology for WFLO.

Category Algorithm Authors. year [ref.] Computational domain

Heuristic Genetic algorithm
(GA)

Mosetti et al., 1994 [3] Discrete
Grady et al., 2005 [5] Discrete
Huang. 2007 [8] Discrete
Mora et al., 2007 [9] Discrete
Elkinton et al., 2008 [10] Discrete
Emami et al., 2010 [11] Discrete
Gonzalez et al., 2010 [12], 2018 [13] Discrete
Chen et al., 2013 [14], 2015 [15] Discrete
Rahbari et al., 2014 [16] Discrete
Gao et al., 2015 [17], 2016 [18] Discrete
Mayo et al., 2016 [19] Continuous
Sorkhabi et al., 2016 [20] Continuous
Wang et al., 2017 [21] Continuous
Pillai et al., 2017 [22] Discrete, Continuous
Song et al., 2017 [23] Discrete
Yin et al., 2017 [24] Discrete
Parada et al., 2017 [25] Discrete

Evolutionary strategy
(ES)

Kusiak et al., 2010 [26], 2010 [27] Continuous
Song et al., 2016 [28] Continuous

Particle swarm optimization
(PSO)

Wan et al., 2010 [29]
Chowdhury et al., 2012 [30], 2013 [31] Continuous
Pookpunt et al., 2013 [32] Discrete
Hou et al., 2016 [33], 2017 [34] Continuous
Pillai et al., 2017 [22] Discrete, Continuous

Ant colony optimization
(ACO)

Eroĝlu et al., 2012 [35] Continuous

Monte Carlo simulation
(MCS)

Marmidis et al., 2008 [6] Discrete

Simulated annealing algorithm
(SAA)

Rivas et al., 2009 [7] Continuous

Harmony search (HS) Kallioras et al., 2015 [36] Discrete
Pattern search (PS) Dupont et al., 2016 [37] Continuous
Random search (RS) Wagner et al., 2013 [38] Continuous

Feng et al., 2015 [39], 2017 [40] Continuous
Greedy heuristic algorithm
(GHA)

Ozturk et al., 2004 [4] Continuous
Elkinton et al., 2008 [10] Discrete
Chen et al., 2016 [41] Discrete

Mathematical programming Mixed integer programming
(MIP)

Archer et al., 2011 [42] Discrete
Turner et al., 2014 [43] Discrete
Kuo et al., 2015 [44], 2016 [45] Discrete
MirHassani et al., 2017 [46] Discrete

Gradient-based optimization
(GBO)

Park et al., 2015 [47] Continuous
Guirguis et al., 2016 [48], 2017 [49] Continuous
Tingey et al., 2017 [50] Continuous
King et al., 2017 [51] Continuous
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wind turbines exposed to high wake effects have decreased energy
outputs due to their wind velocity deficits and increased fatigue
loads due to increased turbulence of the flow into them, which can
cause mechanical failure and shorten their life expectancies
[45,55]. Therefore, the objective of this study was to maximize
energy output while preventing specific wind turbines from being
exposed to excessivewakes in thewind farm layout process. To that
end, a new objective function for theWFLO problemwas developed
that can increase energy output while making the wake losses of
the turbines on a wind farm uniform. This objective function ad-
justs the wake effects of all of the wind turbines on the wind farm
to similar levels, thus promoting the stabilization of all of them. An
SAA, which is a heuristic method, is used for the WFLO algorithm,
and a discrete model is applied for the computational domain.
Furthermore, a grid processing method for handling the irregular
outer boundaries of actual wind farms in a discrete model was
developed.

The rest of this paper is organized as follows. In Section 2, the
wake model and equations for calculating the energy output are
presented. Section 3 describes the layout optimization algorithm
and the newly proposed objective function for making the wake
losses uniform. Section 4 discusses the results obtained by imple-
menting the proposed algorithm. Finally, Section 5 summarizes the
conclusions.

2. Formulation

2.1. Estimation of annual energy production

The annual energy production (AEP) of awind farm is defined as
the sum of the hourly outputs from all of the wind turbines on the
wind farm. To calculate this quantity, the speed probability distri-
bution of the wind that blows to the wind farm and the wind tur-
bine power corresponding to the wind speed are required. If the
wind is divided into a number of intervals for all directions using
the bin method and then into a number of wind speed intervals for
each direction interval, the AEP can be expressed as follows [2]:

AEP ¼ 8760
XNt

i¼1

XNd

j¼1

XNs

k¼1

F
�
uijk

�
PðuikÞ (1)
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where F(uijk) is the probability that wind in speed bin k will blow
from turbine i to direction sector j, and P(uik) is the power of wind
turbine i at wind speed bin k. The number 8760 is the annual
number of hours based on 365 days per year. Ns is a number
determined by dividing the operating wind speed range (typically
3e25m/s) of a wind turbine by the wind speed interval. For the
wind speed interval, 0.5m/s is generally used. Nd is the total
bearing divided by the direction interval. Nt is the total number of
wind turbines to be installed.

2.2. Wake model

2.2.1. Single wake model
To analyze thewake effect, a mathematical model for calculating

the wake of a single rotor is required first. In this study, the wind
velocity deficit due to the wake effect in the downstream wind
turbines was calculated using the Jensen wake model (originally
proposed in Ref. [56], further developed by Katic et al. [57]), which
is an analytical wake model. The Jensenwake model is known to be
less accurate than the numerical wake model. However, it yields
valid results for offshorewind farms and in the far wake areas of flat
terrains. Therefore, and owing to its simple equations and fast
calculations, it is widely used in WFLO research and many com-
mercial software [52].

As shown in Fig. 1, the Jensen wake model assumes that the
diameter of the wake extended to the back of the rotor increases
linearly in proportion to the downstream distance x, and the wind
speed inside the wake in the radial direction of the wake is iden-
tical. By the law of conservation of momentum inside the wake
area, the Jensen wake model can be derived as follows:

D2
r uþ

�
D2
w �D2

r

�
u0 ¼ D2

wu1 (2)

where Dr is the turbine rotor diameter, u is the velocity behind the
turbine, Dw is the diameter of the downstream wake, u0 is free
streamwind speed (undisturbed incoming wind velocity), and u1 is
the wake velocity at a downstream distance x. Using the relation-
ship between axial induction factor and the thrust factor Ct, the
wake velocity as a function of x can be defined as follows [57]:

u1 ¼ u0

"
1�

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ct

p �� Dr

Dr þ 2kwx

�2
#

(3)
Fig. 1. Schematic representation of Jensen single wake model [57].
where kw is the wake decay constant, which determines the size of
the expanded wake behind the wind turbine. This wake decay
constant can be calculated as a function of the surface roughness of
the calculated area by using the following formula [52]:

kw ¼ 0:5
lnðhhub=z0Þ

(4)

where hhub is the hub height of the wind turbine and z0 is the
surface roughness height of the wind farm area. Because z0 is
difficult to calculate accurately, it generally depends on the judg-
ment of the designer, but the empirical value recommended by the
European Wind Atlas can also be used [58].
2.2.2. Multiple wake model
There are multiple turbines on wind farms, and they interact

with one another in various ways depending on the wind direction
and installed positions during operation or receive wake effects
from one or more turbines, as shown in Fig. 2. Therefore, to
consider the wake losses throughout a wind farm, the ranges of
these multiple and superimposed wake effects and the resulting
wind speed reduction due to the wake effects must be calculated.

Fig. 2 illustrates thewake effect according towind direction on a
wind farm. Depending on the wind direction, which is affected by
the wake, the entire rotor area (Fig. 2(a)) or only part of the rotor
area (Fig. 2(b)) may be affected by thewake. Therefore, according to
the Jensen single wake model Eq. (3), the wind velocity deficit in a
wind turbine subjected to the wake effect can be expressed using
the ratio of the area swept by the rotor under the wake effect as
follows [55]:

udef ¼ u0
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ct

p �� Dr

Dr þ 2kwx

�2Aoverlap

Ar
(5)

where Aoverlap is the overlap area between the expanded wake area
Aw of the upstream wind turbine and the rotor swept area of the
downstream wind turbine Ar, as shown in Fig. 3.

Fig. 3 illustrates the overlap area, which can be determined as
follows. (1) Calculate the center (Cw) of the expanded wake at the
downstreamwind turbine and the wake diameter Dw based on x, as
shown in Fig. 2(b). (2) Determine whether the rotor area overlaps
with the expanded wake area or is fully included in the wake area.
(3) Calculate the intersection area depending on whether over-
lapping or full inclusion occurs, as follows:

Aoverlap ¼

8>><
>>:

0; if Rw þ Rr � d
Ar ; if Rw � Rr � d
Apartial; otherwise

(6)

where Rw is the radius of the wake of the upstreamwind turbine, Rr
is the radius of the rotor of the downstream wind turbine, and d is
the distance between the centers of the wake and rotor. Apartial is
the overlap area created by partial wake and can be calculated as
follows from the area of the fan shape created by connection of the
centers of the wake and rotor with the intersection points (p1, p2) of
the two circles and the triangle that connects the intersection
points, as shown in Fig. 3 [21]:

Apartial ¼
1
2

h
R2wðqw � sinqwÞ þ R2r ðqr � sinqrÞ

i
(7)

where qw and qr are the angles of the wake intersection arc and
rotor intersection arc, respectively, and can be respectively
expressed as follows:



Fig. 2. Illustration of wake effect according to wind direction on a wind farm. (a) The entire wind turbine rotor area experiences the wake effect. (b) Only part of the wind turbine
rotor area experiences the wake effect.

Fig. 3. Overlap between the wake area and wind turbine rotor swept area.
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qw ¼ 2 cos�1

0
@d2 þ

�
R2w � R2r

�
2dRw

1
A (8)

qr ¼ 2 cos�1

0
@d2 �

�
R2w � R2r

�
2dRr

1
A (9)

The wind velocity deficit resulting from multiple wakes, where
one wind turbine i is subjected to wake effects from N wind tur-
bines, can be calculated as follows [54]:

umdef ;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

u2def ;i

vuut (10)
3. Methodology

3.1. Wind farm modeling

In this section, the optimization approach and objective
function for WFLO are described. First, a discrete model was used
for the computational domain to model the wind farm and handle
the positional variables of the wind turbines, as shown in Fig. 4.
This method is similar to the techniques used in previous studies, in
which a wind farm area is divided into square cells and a wind
turbine is placed at the center of each cell [3,5]. However, because
the boundary of an actual wind farm is not rectangular, a method of
modeling irregular wind farm boundaries is required in order to use
a grid-based computational domain. In this study, the geometry of
the outer boundary of the actual wind farm and that of an obstacle
inside the wind farm were drawn on a grid, as shown in Fig. 4(a).
Then, based on the results, the cells in which turbines could and
could not be placedwere specified using a flag variable, as shown in
Fig. 4(b). This method is useful for cases with irregular boundaries,
such as onshore wind farms, and helps avoid areas where no tur-
bine can be placed, such as buildings or small reservoirs in wind
farms, when performing layout optimization.
3.2. Optimization algorithm

The WFLO algorithm used in this study was an SAA, which is a
representative stochastic optimization method. SAA is a method
that is inspired by the annealing process in metallurgy in which a
material is heated and then slowly cooled under controlled tem-
perature conditions to change the position of the crystals inside the
material so as to minimize internal energy. This has the effect of
improving the strength and durability of the material [59]. The
process of crystal relocation is the main reason SAA has been
applied to the WFLO problem in this study. In the WFLO problem,
wind turbines are compared to crystals and the wind farm is
compared to the bulk material. Heat increases the energy of the
crystals (wind turbines), allowing them to move freely; the slow
cooling allows a new low-energy configuration (wake effect uni-
formity or energymaximization) to be discovered. The temperature
is one of the computational parameters used for iterations and
probability calculations during algorithm implementation to
arrange wind turbines. The optimal solution is searched depending
on the probability by varying this virtual temperature parameter
[60].

Fig. 5 shows a flow chart of the SAA for the WFLO problem
proposed in this report, and the main steps of the method and
procedure for implementing this algorithm are as follows.

Step 1: Initialization of the wind turbine layout



Fig. 4. Discrete method of modeling irregular wind farm boundaries. (a) Drawing of
the outer boundary of an actual wind farm and the boundary of an obstacle on the
wind farm on a grid. (b) Specification of cells in which turbines can and cannot be
placed.
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Theoretically, the initial solution does not have a significant
effect on the SAA result. Therefore, the initial layout solution is
generally determined randomly [59]. The initial temperature
parameter may be set to 1.0 or lower depending on the character-
istics of the problem.

Step 2: Perturbation of wind turbine position

Perturbation involves changing the positions of some turbines
to find better positions and requires a perturbation strategy to
improve the layout solution. As shown in Fig. 6, a two-step position
change method was applied in this study. The first perturbation
step is global positioning, in which the positions of the turbines for
the entire wind farm are found, as shown in Fig. 6(a). The second is
local positioning, in which the turbines are moved from their cur-
rent positions to surrounding positions, as shown in Fig. 6(b).
Global positioning was applied in 90% of the total algorithm per-
formance, and local positioning was applied in the last 10% of the
layout performance for fine tuning of the positions. Global posi-
tioning prevents dropping into local optima through broad space
searching, and local positioning helps elucidate positions with
higher energy efficiencies.

Step 3: Evaluation of the objective function

After perturbation, the value of the objective function of the
obtained layout is calculated, and the candidate layout (Lcandidate) is
evaluated to determine whether this value is improved compared
to that of the current layout (Lcurrent). In this step, it is determined
whether the candidate layout is accepted as the current layout
using a cost function, in which the difference between the values of
the objective function for the current and candidate layouts (fcurrent
and fcandidate, respectively) is calculated:

Df ¼ fcurrent � fcandidate (11)

Lcurrent ¼
8<
: Lcandidate; Df <0

go to step 4; otherwise
(12)

where Df is the cost function. If its value is smaller than zero, that is,
if the layout has improved, the candidate layout is accepted;
otherwise, it is evaluated again using the Metropolis criterion in
Step 4.

Step 4: Metropolis criterion

If the candidate layout is not accepted in Step 3, it is not dis-
carded immediately, but rather is evaluated again using the
Metropolis criterion to decide whether or not to accept it as the
current layout. In this process, even if the value of the objective
function of the candidate layout is lower than that of the current
layout (i.e., the AEP of the candidate layout is lower than that of the
current layout in terms of energy maximization), it is determined
whether the candidate layout can be accepted as the current layout
probabilistically. This characteristic of the SAA prevents conver-
gence to local optima that may occur by following only improved
solutions. The Metropolis criterion based on the
MetropoliseHastings algorithm is as follows [59]:

Pmetro ¼ exp
�
� Df

Tc

�
(13)

Lcurrent ¼
8<
: Lcandidate; if Pmetro > Prand

Lcurrent ; otherwise
(14)

where Pmetro is a metropolis probability, Prand is a probability ob-
tained using the random number generator function, and Tc is the
current temperature parameter.

Step 5: Temperature control

This step involves gradually lowering the temperature param-
eter via a “cooling schedule.” This cooling schedule is an important
factor affecting the efficiency of the SAA. A linearly fast temperature
decrease increases the possibility of convergence to local optima,
and a logarithmically slow decrease increases the performance



Fig. 5. Flow chart of the optimization algorithm process.

K. Yang et al. / Energy 183 (2019) 983e995 989
time. Therefore, the following practical method is often used [59]:

Ti ¼ aTi�1 ð0:85<a<0:96Þ (15)

3.3. Objective function

In this study, objective functions for (1) energy maximization,
which is the basic objective function for WFLO, and (2) making the
wake losses uniform were developed and applied to layout opti-
mization. The first objective function is for wind farm energy
maximization and is defined by the ratio of net AEP (Enet), which
considers the energy loss resulting from the wake effect, to the
gross AEP (Egross), which assumes no energy loss due to wake effect
on the wind farm, as follows:

fenergy;max ¼ Enet
Egross

(16)

Secondly, the new objective function proposed in this study
aims to adjust the wake loss ratios of the individual turbines on the
wind farm to similar levels. As mentioned in Section 1, if specific
turbines on a wind farm are subjected to greater wake effects than
other turbines, they are likely to cause more problems during
operation and their design lives cannot be guaranteed. The pro-
posed objective function that minimizes the standard deviation of
the wake losses to which the turbines are subjected is as follows:

fwake;uniform ¼1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nt

XNt

i¼1

ðwa �wiÞ2
vuut (17)

where wa is the average wake loss, wi is the wake loss of each wind
turbine, and Nt is the number of wind turbines on the wind farm.

The purpose of minimizing the standard deviation of the wake
losses is to reduce the wake loss differences between turbines to
prevent the concentration of wake effects on specific turbines.

4. Case study: Gasiri wind farm

This section describes the implementation of WFLO for Gasiri
wind farm using the two types of objective functions mentioned
above and presents a comparison of the results.

Gasiri wind farm is in operation on Jeju Island in the south of



Fig. 6. Perturbation steps to search promising location of wind turbines. (a) Global
positioning method. (b) Local positioning method.

Fig. 7. Wind farm layout and wind rose of Gasiri wind farm.

Table 2
Specifications of the three types of wind turbines on Gasiri wind farm.

Wind turbines HS50 U50 HJWT77

Rated power (kW) 750 750 1500
Hub height (m) 50 50 70
Rotor diameter (m) 50 50 77
Cut-in wind speed (m/s) 3.5 3 3.5
Rated wind speed (m/s) 12 12.5 13
Cut-out wind speed (m/s) 25 25 25
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Korea. Fig. 7 shows the configuration of the wind turbines on Gasiri
wind farm and the wind rose at a height of 70m measured in the
meteorological mast near Gasiri wind farm. On Gasiri wind farm,
there are six 750 kW (HS50, U50) wind turbines and seven
1500 kW wind turbines (HJWT77), and the total capacity of the
farm is 15,000 kW. As shown in Fig. 7, the prevailing wind direction
on the wind farm is NNW, and all 13 wind turbines are placed in a
grid pattern based on this direction. Table 2 summarizes the
specifications of the three types of wind turbines on Gasiri wind
farm.
4.1. AEP validation

To verify the reliability of the WFLO results, accurate calculation
of the wind farm AEP is required. To that end, computer code was
developed to calculate the actual AEP of the farm using measured
wind data, as shown in Fig. 8. And the AEP calculation results for
Gasiri wind farm were compared with the power production data
collected from the Gasiri wind farm wind turbines.

Fig. 9 compares the computed and actual AEPs for each wind
turbine. The 750 kW wind turbines are excluded because the data
collected from some of them showed a low recovery rate. In the
actual AEP results in Fig. 9, wind turbines with the same capacity
show different power outputs. There may be various reasons for
these differences in power production, but the variation in wake
loss with on the turbine position can be seen as a factor that has a
substantial effect on these power production differences. The
computed AEPs show a trend similar to that of the AEPs for the
actual wind turbines; thus, the computed AEPs reflect the wake
losses of each wind turbine well. Table 3 summarizes the data
collected from the wind turbines and the AEP calculation results.
The total AEP calculated for seven wind turbines is 24.06 GWh,
which is 0.86 GWh greater than the actual AEP of 23.2 GWh. The
cause of this difference could be related to the actual operation of
the wind turbine, but the main cause seems to be the error in the
calculations with the wake model.

4.2. Layout optimization

Gasiri wind farm was rearranged to verify the performance of
the proposed layout optimization algorithm. Since the purpose of
this study was to optimize the process of deciding the specific
positions of wind turbines after the types and numbers of wind
turbines to be installed on the farm are selected, layout optimiza-
tion for energy maximization (LOEM) and layout optimization for
wake effect uniformity (LOWU) were performed under the same
conditions without changing the types and numbers of wind tur-
bines in the Gasiri wind farm using the two types of objective
functions mentioned above, and the results were compared.

Fig. 10 shows the wind farm computational domain for layout



Fig. 8. Flowchart of the developed code for calculating the AEP of the wind farm.

Fig. 9. Comparison of the AEPs collected from Gasiri wind farm with the computed
AEPs. All of the compared wind turbines have capacities of 1500 kW.

Fig. 10. Wind farm domain and coordinates for layout optimization. Circles and
numbers indicate the positions and numbers of the existing wind turbines in the Gasiri
wind farm.
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optimization and the existing wind turbine positions. The total
domain area is 1.2� 1.1 km based on the boundaries of Gasiri wind
farm. The area for locating the wind turbines was divided into
120� 110 cells with dimensions of 10� 10m to improve the degree
of freedom of placement, and the cells were divided into
placement-allowed cells and placement-prohibited cells. The x and
y axes of the coordinate system were north and east, respectively,
based on the azimuth rotation direction. The minimum spacing
betweenwind turbines was set to 230m to maintain the minimum
of 3D (rotor diameter) considering the largest wind turbine rotor
size (HJWT77) on Gasiri wind farm.

The temperature parameter was determined based on the pre-
liminary performance. For the initial temperature, 0.05 was applied
because the solutions only fluctuated without improvement until
approximately 0.05, because a high-temperature parameter
increased the probability of selecting a worse solution. For the
stopping temperature, a sufficiently low value is required, and a
Table 3
Comparison of the AEPs collected from Gasiri wind farm with the computed AEPs.

Wind turbine number 7 8 9 10

AEP (GWh) Collected 3.52 3.36 3.31 3.
Computed 3.72 3.5 3.35 3.
marginal area in which there is no improvement in the final solu-
tion even after long-time performance was found based on the
preliminary performance and applied. The related parameters are
listed in Table 4.

Fig. 11 shows the variations of the values of the two objective
functions in the total performance process of the algorithm. These
values improve and converge to certain value, although they fluc-
tuate frequently in the early stage. In the early stage of the algo-
rithm, various layouts are tested for the entire farm areawith a high
probability of movement when the temperature parameter is high,
and the layout is stabilized as the temperature decreases. This
behavior clearly shows the characteristics of the SAA. The LOEM has
11 12 13 Total Difference

14 3.31 3.2 3.37 23.2 -
33 3.48 3.34 3.35 24.06 0.86



Table 4
Parameters of the optimization algorithm for the WFLO problem.

Parameter Value

Grid size (m) 1200� 1100
Cell size (m) 10� 10
Minimum spacing (m) 230
Initial temperature (�) 0.05
Stopping temperature (�) 0.0001
Temperature control (a) 0.95

Fig. 11. Variation of the value of the objective function in WFLO.
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a high applicability value, which is due to the relative size of the
value of the objective function and is not related to the efficiency of
the optimal layout.

The layout optimization results obtained using the proposed
algorithm are shown in Fig. 12 and summarized in Table 5. Fig. 12(a)
compares the wind turbine positions in the LOEM results with the
existing layout. In the LOEM layout, the high-capacity wind
Fig. 12. Gasiri WFLO results obtained using two objective functions. (a) LOEM results. (b) Co
of AEPs between LOWU and existing layout.
turbines have moved to the front of the prevailing wind direction
compared to their positions in the existing layout. Consequently, as
shown in Fig. 12(b), the AEPs of the low-capacity wind turbines
(nos.1e6) decreased, whereas those of high-capacity wind turbines
(nos. 7e13) increased. As can be seen in Table 5, as the total wake
loss of the farm decreased by 4.72%, the net AEP increased by
2.42 GWh compared to that of the existing layout. This difference is
due to the greater gain from reducing the wake loss of high-
capacity wind turbines than low-capacity wind turbines because
the former are placed in the front in the prevailing wind direction.

Fig. 12(c) shows the LOWU results, and the layout is slightly
different from the LOEM layout. In the LOEM case, the low-capacity
wind turbines are located at the back of thewind farm in relation to
the prevailing wind direction, but in the LOWU results, some of
them are located in front of the prevailing wind direction. Conse-
quently, the AEPs of low-capacity wind turbines 5 and 6 increased,
while those of high-capacity wind turbines 9 and 10 decreased
compared to those in the LOEM results, as shown in Fig. 12(d). The
net AEP of the total wind farm is 0.46 GWh lower than that in the
LOEM case, but 1.96 GWh higher than that with the existing layout.
However, the LOWU has additional advantages for the wake effects
to which the individual wind turbines are subjected.

Fig. 13 compares the wake losses and standard deviations of the
losses for each wind turbine among the existing layout and those
obtained using the LOEM and LOWU. It can be seen that with the
existing layout and that resulting from using the LOEM, there are
turbines with 15% or higher wake losses (nos. 2, 6, 9, and 10), but
the LOWU does not yield such turbines. Thus, although the LOEM
produced the highest AEP, some wind turbines are exposed to high
wake effects. In particular, these effects are concentrated on low-
capacity wind turbines, because the LOEM performed layout opti-
mization to increase the total energy while sacrificing some wind
turbines that produced little energy. This choice is correct from the
perspective of energy maximization but needs to be reviewed in
terms of long-term wind farm operation. On the other hand, the
mparison of AEPs between LOEM and existing layout. (c) LOWU results. (d) Comparison



Table 5
Comparison of AEPs and wake losses among LOEM, LOWU, and existing layout.

Wind turbine
number

net AEP/gross AEP (GWh) Wake loss (%)

Existing layout LOEM LOWU Existing layout LOEM LOWU
1 1.45/1.52 1.25/1.41 1.27/1.42 5.16 11.35 10.70
2 1.59/1.69 1.35/1.55 1.34/1.49 5.72 12.91 10.23
3 1.47/1.56 1.20/1.40 1.35/1.51 6.13 14.57 10.43
4 1.54/1.58 1.31/1.50 1.27/1.42 2.32 12.74 10.52
5 1.42/1.55 1.26/1.46 1.51/1.66 8.13 13.77 8.77
6 1.38/1.54 1.26/1.40 1.50/1.59 10.06 9.79 5.43
7 3.72/4.15 3.73/4.18 3.79/4.18 10.39 10.72 9.28
8 3.50/4.06 4.04/4.15 4.05/4.43 13.87 2.67 8.59
9 3.35/4.00 3.98/4.17 3.69/4.17 16.17 4.68 11.49
10 3.33/4.05 4.26/4.42 3.56/3.97 17.83 3.65 10.31
11 3.48/4.00 4.08/4.33 3.92/4.23 13.04 5.86 7.52
12 3.34/3.88 3.83/4.01 3.78/4.20 13.87 4.59 10.07
13 3.35/3.91 3.79/4.20 3.84/4.13 14.38 9.72 6.90
Total 32.92/37.50 35.34/38.20 34.88/38.41 12.21 7.49 9.19
Difference - þ2.42 þ1.96 - �4.72 �3.02

Fig. 13. Comparison of wake losses and standard deviations by wind turbine among
the layouts obtained using the LOEM and LOWU and the existing layout.
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LOWU yielded a slightly lower AEP than the LOEM, but the differ-
ence is only 0.46 GWh, and the LOWU shows generally uniform
wake losses, as can be confirmed by the standard deviations of the
wake losses. The standard deviations of the wake losses in the
existing, LOEM, and LOWU cases are STDExisting¼ 4.58%,
STDLOEM¼ 4.01%, and STDLOWU¼ 1.68%, respectively (Table 6). Thus,
the standard deviation in the LOWU case is less than half of the
other two values.
Fig. 14. Comparison of wake losses by direction among the LO
The wake effect in each direction on the wind farm was exam-
ined through the wake loss by bearing. Fig. 14 shows the wake
losses by bearing in 36 directions on the wind farm. The existing
layout generates 40% or higher wake losses at 120�, and the LOEM
generates high wake losses at 90�. Thus, multiple wind turbines are
subjected to wake effects when the wind blows from a specific
direction and wake effect review for all bearings is necessary. On
the other hand, the LOWU does not show marked peak points
compared to the other layouts, suggesting that the LOWU distrib-
utes the wake effects to all bearings on the wind farm.

Table 6 compares the final results for the existing layout and the
optimized layouts obtained using the two objective functions. Both
layout optimization methods enabled the basic goal of WFLO to be
achieved by improving the AEP while reducing the wake losses
compared to those in the existing layout. In the LOWU case, the
maximum wake loss is the lowest, at 11.49%, confirming that this
method prevented the wake effects from being concentrated on
specific turbine s. Moreover, the LOWU yielded wake losses with
the smallest standard deviation, suggesting that the wake effects of
the wind turbines throughout the entire wind farm were made
uniform. However, the AEP produced by the LOWU was 0.46 GWh
lower than that resulting from using the LOEM, indicating a
somewhat lower efficiency in terms of energy maximization.
Nonetheless, the LOWU contributed to stabilizing the overall wind
turbine operation bymaking thewake losses of the individual wind
turbines uniform.
EM, LOWU, and existing layout in the Gasiri wind farm.



Table 6
Comparison of final results of layout optimization among the existing layout and the optimized layouts obtained using the two objective functions.

Layout AEP (GWh) Wake loss (%) Max. wake loss (%) STD. wake loss (%)

Existing layout 32.92 12.21 17.83 4.58
LOEM 35.34 7.49 14.57 4.01
LOWU 34.88 9.19 11.49 1.68
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5. Conclusions

In this study, a new objective function for making the wake
effects of individual wind turbines uniform was developed and
tested for WFLO. An SAA was used for layout optimization, and its
performance was verified for an actual wind farm using an objec-
tive function for energy maximization, as well as the proposed
objective function.

The AEP was calculated for optimization evaluation with no
special assumptions about the wind using the wind data obtained
from a meteorological mast on an actual wind farm. Furthermore,
to verify the accuracy of the AEP before optimization, the calculated
AEP was validated by comparing it with the annual power gener-
ated by an actual wind farm.

The LOEM produced the highest AEP, but the wake losses had a
high standard deviation. On the other hand, the LOWUproduced an
AEP slightly lower than that of the LOEM but showed a higher
energy output than the existing layout and wake losses with the
lowest standard deviation. Furthermore, the AEP of the LOWU was
not much different from that of the LOEM. In conclusion, although
the LOWU yielded a lower energy output than the LOEM, the dif-
ference was small, and the LOWU prevented wake effect concen-
tration on specific turbines by making these effects uniform.

The review of the wake losses by bearing confirmed that the
wake effects primarily occurred in specific directions, which was
due to the wind farm layout, and the LOWU approach proposed in
this study made the wake effects uniform across bearings as well.
Therefore, the objective function that made the wake losses uni-
form not only made the wake effects of the individual wind tur-
bines uniform, but also made the wake effects uniform in all wind
directions.

Because wind turbines are installed in limited spaces on most
onshore wind farms, it is necessary to consider the wake effects in
the layout, and the excessive wake effects of specific wind turbines
must be examined. Thewake effect differences increase whenwind
turbines of different hub heights and capacities are placed together.
Since the proposed objective function does not simultaneously
meet the two goals of maximizing energy andminimizing thewake
loss standard deviation, techniques such as multi-objective opti-
mization will need to be applied in future studies to achieve these
conflicting objectives. However, the proposed algorithm is ex-
pected to provide a method of achieving long-term stable wind
farm operation through effective design.
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