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Abstract—This paper proposes a novel Kalman filtering based
dynamic state estimation method, which addresses cases of
models with a nonlinear unknown input, and it is suitable
for wind turbine model state estimation. Given the complexity
characterising modern power networks, dynamic state estimation
techniques applied on renewable energy based generators, such as
wind turbines, enhance operators’ awareness of the components
comprising modern power networks. In this context, the method
developed here is implemented on a doubly-fed induction genera-
tor based wind turbine, under unknown wind velocity conditions,
as opposed to similar studies so far, where all model inputs are
considered to be known, and this does not always reflect the
reality. The proposed technique is derivative-free and it relies on
the formulation of the nonlinear output measurement equations
as power series. The effectiveness of the suggested algorithm is
tested on a modified version of the IEEE benchmark 68-bus,
16-machine system.

Index Terms—Doubly-fed induction generators, Dynamic state
estimation, Kalman filtering, unknown inputs, wind turbines

I. INTRODUCTION

ELECTRIC power systems all over the world are undergo-
ing significant changes, mainly driven by energy market

liberalisation taking place in various countries, as well as
the advent of renewable energy based power generators [1],
[2]. The adoption of new technologies introduces complexity
in terms of network control and operation, therefore, good
knowledge of the behavioural model characterising the newly
introduced devices is challenging but very important. On the
other hand, the longstanding operation of power networks is
associated with the existence of aging components which are
likely to increase system stress and put system operation at
risk, with a notable example being the 1994 North American
blackouts in WECC [2], [3].

Given the aforementioned modern network challenges, dy-
namic security assessment (DSA) and wide area monitoring
systems (WAMS) are useful approaches, providing insight
regarding the system behaviour with respect to the advent of
contingencies [4]. In this context, dynamic state estimation
(DSE) is a useful tool to monitor the operational status of
the system. DSE is model-based, thus, good knowledge of
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the devices comprising the power network under study is
fundamental, in order to obtain highly accurate results. In this
respect, various DSE methods have been proposed in power
systems literature, engaging primarily Kalman filter variants,
such as the Extended Kalman filter (EKF) and the Unscented
Kalman filter (UKF), addressing the nonlinear features of
electric power systems [5]–[9].

Kalman filtering based DSE studies have primarily been
devoted to synchronous generators, and various techniques
have been proposed, addressing cases when complete model
information is required, or the estimation is conducted under
the presence of unknown inputs [5]–[9]. Moreover, such
algorithms have started to be implemented in renewable energy
based generators, such as fuel cells [10], [11] and wind turbine
generators (WTGs) [12]–[15]. However, in the context of the
latter case, the DSE is performed under the assumption that
all inputs, including the wind velocity, are known, which is
not always achievable in practice.

To tackle this issue, the work conducted in [8] is extended so
as to perform DSE of a wind turbine, when the wind velocity
is unknown or uncertain, assuming no prior knowledge of
the unknown input models or distributions. Here, the method
proposed has been modified in such a way so as to address
the nonlinearity which characterises the unknown input (i.e.
the wind velocity), since the technique proposed in [8] deals
with additive unknown inputs only. This research effort leads
to the following contributions:
• to propose a novel derivative-free Kalman filtering based

estimator, for models with a nonlinear unknown input;
• to establish a dynamic state estimation framework for

doubly-fed induction generator (DFIG) based wind tur-
bine models under uncertain wind velocity conditions,
which is tested in the context of a realistic power system.

The paper is organised as follows: In the next section, the
equations describing DFIG are given, since they form the
basis for the formulation of the estimation model. In Section
III, the new estimation method which is developed for cases
with a nonlinear unknown input is presented and thoroughly
analysed. Section IV includes implementations of the proposed
technique on the IEEE benchmark 68-bus, 16-machine system.
Section V summarizes the contributions.

II. WIND TURBINE GENERATOR MODEL

A. Model Development

The wind turbine generator used here is considered to be an
aggregate wind turbine generator model, in place of a wind
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farm. The wind turbine is considered to be of Type 3, i.e.
a doubly fed induction generator (DFIG). In this study, the
modelling is based on the analysis performed in [16]. It has
to be mentioned that the estimation model development is
linked with the level of knowledge of the actual wind turbine
model; thus, it is fundamental to list the equations describing
the DFIG in the simulation of the actual power system, as this
facilitates the estimation model specification. In this context,
the full order model used in the power system simulation is
comprised by the following parts:

1) Turbine: The presence of wind contributes to the cre-
ation of the turbine torque, which is given as follows:

Tt =Ptur/wt (1)

Ptur =0.5ρπR2
tCp (λ, β) υ

3
w (2)

Cp (λ, β) =c1(c2/(λ+ c8β)− c2c9/(β3 + 1)− c3β − c4βc5

− c6)e(−c7/(λ+c8β)+(c7c9/(β
3+1)) + c10λ (3)

λ =wtRt/υw (4)

where Tt, Ptur are the turbine torque and power, respectively,
wt is the turbine rotor speed, ρ the air density, Rt the blade
length, Cp the turbine performance coefficient, λ the tip speed
ratio, β the pitch angle, υw the wind velocity, and c1, ..., c9
are the parameters of Cp curves.

2) Drive Train: The turbine generator mechanical system
(‘drive train’, as referred in [17]) is represented using a simple
two mass - damper- spring system modelled as follows:

ẇt =(Tt − ktθtw − cθ̇tw)/(2Ht) (5)

ẇr =(ktθtw + cθ̇tw − Te)/(2Hg) (6)

θ̇tw =welB (wt − wr) (7)

where Ht, Hg are the turbine and generator inertias, re-
spectively, wr is the generator rotor speed, Te the generator
electromagnetic torque, kt the shaft stiffness, θtw the twist
angle, c the damping per electrical radian, and welB is the
electrical base speed.

3) Pitch Angle Controller & Optimum Power Point Track-
ing: The WTG produces rated output for wind velocity values
between the rated wind velocity and cut of wind speed (i.e.
the rated operational regime). In this region the output power
is limited by turning or pitching the turbine blade. The pitch
angle control mechanism is modelled using the equations:

Φ̇wr =− (1/Twr)Φwr + (1/Kwr)βref (8)

β̇ =(1/Tβ)(βref − β) (9)
βref =(wr,ref − wr)Kwr + ΦwrKwr/Twr (10)

where Φwr is the associated state variable, whereas Kwr, Twr
are the proportional gain and integral time constants of the PI
controller, respectively, βref is the reference pitch angle, Tβ is
the time constant of the actuators, and wr,ref is the reference
generator rotor speed. On the other hand, for wind velocity
values lower than the rated one (i.e. the subrated regime),
the blades are oriented to face the wind to capture maximum
energy. The latter is optimised using the maximum power point
tracking controller by changing the rotor speed, and, hence,
the reference torque for the rotor side converter control (see

subsection II-A5). This is given below, with ‘opt’ subscript
denoting the optimal value of the associated quantity:

Te,ref =Koptw
2
r (11)

Kopt =(0.5ρπR5
tCpmax)/(λ

3
opt) (12)

4) Induction Generator: The induction generator model
used here considers that the d-axis leads the q-axis, and it does
not ignore the stator transients. The equations characterising
the induction generator operation are given as follows:

İsq =(welB/L
′
s)(−R1Isq + wsL

′
sIsd + (wrE

′
sq/ws)

− E′sd/(wsTr)− Vsq +KmrrVrq) (13)

İsd =(welB/L
′
s)(−R1Isd − wsL′sIsq + (wrE

′
sd/ws)

+ E′sq/(wsTr)− Vsd +KmrrVrd) (14)

Ė′sq =wswelB(R2Isd + (1− wr/ws)E′sd − E′sq/(wsTr)
−KmrrVrd) (15)

Ė′sd =wswelB(−R2Isq − (1− wr/ws)E′sq − E′sd/wsTr)
+KmrrVrq) (16)

Irq =− (E′sd/Xm)−KmrrIsq (17)
Ird =(E′sq/Xm)−KmrrIsd (18)

where

R1 = Rs +K2
mrrRr, R2 = K2

mrrRr, Kmrr = Lm/Lr,

L′s = Ls − L2
m/Lr, Tr = Lr/Rr, Xm = wsLm

Here, Isq , Isd are the q & d-axis stator currents, respectively,
E′sq , E

′
sd are the transient emfs due to flux in d & q-axis

coils, respectively, Vsq , Vsd are the q & d-axis stator voltages,
respectively, Vrq, Vrd are the q & d-axis rotor voltages,
respectively, ws is the p.u. synchronous speed, Rs the stator
resistance, Rr the rotor resistance, Ls the stator inductance,
Lr the rotor inductance, and Lm is the mutual inductance.

5) Rotor Side Converter (RSC): The RSC is used to ener-
gize the rotor windings with a voltage at slip frequency and
carry the rotor power to the grid. The controllers of RSC
can be used to regulate the generator electrical torque (by
controlling active power output) and the stator reactive power
output. Independent control of torque and reactive power,
using the vector control approach, requires the q-axis voltage
to be aligned with WTG stator voltage. However, the generator
model assumes that the q-axis is aligned with the slack bus
voltage defined in the power flow; thus, these voltages and
currents must be transferred to a new axis aligned to the
WTG terminal bus voltage. A phase-locked loop (PLL) is used
to find the angle of rotation required to bring voltage and
current vectors to the new axis. The RSC uses two cascaded
PI controllers in both q & d axes. The relevant equations are:

I ′rq+jI
′
rd = (Irq + jIrd) e

−jθp (19)

Φ̇Te =Ki,Te (Te,ref − Te) (20)

Φ̇iq =Ki,iq

[
ΦTe +Kp,Te (Te,ref − Te)− I ′rq

]
(21)

V ′rq =Φiq +Kp,iq

[
ΦTe +Kp,Te (Te,ref − Te)− I ′rq

]
(22)

Φ̇Qs =Ki,Qs (Qs,ref −Qs) (23)

Φ̇id =Ki,id [ΦQs +Kp,Qs (Qs,ref −Qs)− I ′rd] (24)
V ′rd =Φid +Kp,id [ΦQs +Kp,Qs (Qs,ref −Qs)− I ′rd] (25)
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Vrq+jVrd =
(
V ′rq + jV ′rd

)
ejθp (26)

Te =Lm (IsqIrd − IsdIrq) (27)
Qs =VsdIsq − VsqIsd (28)

where I ′rq, I
′
rd are the q & d-axis rotor currents, respectively,

θp is the phasor argument determined by the PLL (see below),
ΦTe, Φiq are the state variables related to electromagnetic
torque PI control, with Kp,Te, Ki,Te, Kp,iq , Ki,iq its asso-
ciated constants, whereas, ΦQs, Φid are the state variables
related to reactive power PI control, with Kp,Qs, Ki,Qs, Kp,id,
Ki,id its associated constants, Te,ref is related to maximum
power point tracking, and Qs,ref is the reference value for
Qs, which in this case is equal to the value obtained from the
power flow for the wind turbine’s terminal bus.

6) Phase Locked Loop (PLL): The PLL is described by the
equations below [18], [19]:

ẋ1,p = c1,p
[
Im
(
(Vsq + jVsd) e

−jθp
)
− x1,p

]
(29)

ẋ2,p = c2,px1,p (30)

θ̇p = c3,px1,p + x2,p (31)

where x1,p, x2,p are the rest of the state variables associated
with the PLL operation, and ci,p, i = 1, 2, 3 are parameters.

7) Grid Side Converter (GSC) & Filter: The GSC consists
of a converter and a filter to remove switching harmonics.
Here, an LCL filter is assumed [20]. The switching frequency
dynamics of the GSC are not included in the model, and the
GSC is represented by two converter controller models, along
with the capacitor dynamics (DC link - see subsection II-A8).
Vector control approach is used for the GSC, which regulates
the DC capacitor voltage (ensuring that rotor power is seam-
lessly transferred) and reactive power transfer through the GSC
(zero reactive power transfer through GSC is assumed) [21].
The equations are listed below:

İiq =
welB
Li

[Viq − Vcq − (Ri +Rc) Iiq + wsLiIid +RcIgq]

(32)

İid =
welB
Li

[Vid − Vcd − (Ri +Rc) Iid − wsLiIiq +RcIgd]

(33)

İgq =
welB
Lg

[Vcq − Vsq − (Rg +Rc) Igq + wsLgIgd +RcIiq]

(34)

İgd =
welB
Lg

[Vcd − Vsd − (Rg +Rc) Igd − wsLgIgq +RcIid]

(35)

V̇cq = (welB/Cf )(Iiq − Igq + wsCfVcd) (36)

V̇cd = (welB/Cf )(Iid − Igd − wsCfVcq) (37)

I ′gq + jI ′gd = (Igq + jIgd) e
−jθp (38)

Φ̇igq = Ki,igq (Vdcref − Vdc) (39)

Φ̇viq = Ki,viq

[
Φigq +Kp,igq (Vdcref − Vdc)− I ′gq

]
(40)

V ′iq = Φviq +Kp,viq

[
Φigq +Kp,igq (Vdcref − Vdc)− I ′gq

]
(41)

Φ̇igd = Ki,igd (Qr,ref −Qr) (42)

Φ̇vid = Ki,vid

[
Φigd +Kp,igd (Qr,ref −Qr)− I ′gd

]
(43)

V ′id = Φvid +Kp,vid

[
Φigd +Kp,igd (Qr,ref −Qr)− I ′gd

]
(44)

Viq + jVid =
(
V ′iq + jV ′id

)
ejθp (45)

Qr = VrdIrq − VrqIrd (46)

where Iiq , Iid are the q & d-axis currents through the inverter-
side filter inductor, respectively, Igq , Igd the q & d-axis
currents through the grid-side filter inductor, respectively,
Vcq , Vcd the q & d-axis back-to-back capacitor voltages,
respectively, Viq , Vid the q & d-axis voltages at the inverter
terminal, respectively, Ri is the inverter-side resistance, Rg
the grid-side resistance, Rc the damping resistance, Li the
inverter-side inductance, Lg the grid-side inductance, Cf the
filter capacitor, Φigq, Φviq are the state variables related to
the DC-link capacitor voltage PI control, with Kp,igq, Ki,igq ,
Kp,viq , Ki,viq its associated constants, Φigd, Φvid are the state
variables related to reactive power PI control for the GSC
to the terminal bus, with Kp,igd, Ki,igd, Kp,vid, Ki,vid its
associated constants, Vdc is the DC-link capacitor voltage, Qr
is the generator rotor reactive power, and Vdcref , Qr,ref are
the reference values for Vdc and Qr,respectively, which are set
to 1 p.u. and 0, respectively.

8) DC Link: The equations are given below [21]:

V̇dc =(Cdc/Vdc)(Pr − PGSC) (47)
Pr =VrqIrq + VrdIrd (48)

PGSC =ViqIiq + VidIid (49)

where Cdc is the DC-link capacitor, Pr the generator rotor
active power, and PGSC the GSC output active power.

B. Estimation model specification

Equations (1)-(49) comprise the full-order wind turbine
model used as part of the power system model under study.
However, the estimation model, which is utilized in the context
of the DSE procedure, is a reduced version of the full-
order one, for observability and numerical integration reasons.
Thus, the estimation model includes the discrete form of the
differential equations (15), (16), (20), (21), (23), (24), (39),
(40), (42), (43), (47). Moreover, (13), (14), (32)-(37) are
set to zero (thus considered as algebraic equations), whereas
Vsq = Vt and Vsd = 0, where Vt is the terminal bus voltage, so
as to avoid the need to include the PLL equations ((29)-(31))
in the context of the estimation model, to reduce complexity.
Equations (1)-(10) lie outside the estimation model boundary.
Fig. 1 shows how the estimation model used for the estimation
purposes is related to the full order model, which is utilized
for the simulation of the real system. This model includes
one unknown input, the rotor speed (wr), which is affected
by the unknown wind velocity, which is the basic realistic
scenario of this study. The discretization is based on the
principle ẋ ≈ (xk − xk−1)/T0, where T0 is the simulation
time step. The simulation time step is associated with the
Phasor Measurement Unit (PMU) reporting rate, and this
is the reason behind the use of a reduced order model;
several dynamic equations are characterised by very low time
constants compared to the simulation time step, hence it is
preferable for them to be regarded as algebraic, to ensure that
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the estimation procedure does not diverge. Therefore, the state
vector has the form below:

x = [E′sq E
′
sd ΦTe Φiq ΦQs Φid Vdc Φigq Φviq Φigd Φvid]

>

(50)
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Fig. 1. The estimation model boundary with respect to the full order model

The noise-free part of the output measurement equations of
the estimation model at every time instant k are the following:

Itk =

√
(Isqk + Igqk)

2
+ (Isdk + Igdk)

2 (51)

φk =arctan

(
Isdk + Igdk
Isqk + Igqk

)
(52)

Ptk =E′sqkIsqk + E′sdkIsdk + ViqkIiqk + VidkIidk

−Rs
(
I2sqk + I2sdk

)
(53)

Qtk =E′sdkIsqk − E′sqkIsdk − VsqkIgdk + VsdkIgqk

− wsL′s
(
I2sqk + I2sdk

)
(54)

where It, φ, Pt, Qt are the terminal bus current magnitude,
argument, active and reactive power, respectively.

III. DYNAMIC STATE ESTIMATION WITH A NONLINEAR
UNKNOWN INPUT

A. Problem formulation

The power system state space model, including the wind
turbine generator, is given by the following set of discrete
nonlinear differential-algebraic equations (DAEs):

xk = f (xk−1, uk−1, dk−1, wk−1)

yk = h (xk, uk) + υk
(55)

where x and w are n-dimensional vectors of state variables
and process noise, respectively, u is a r-dimensional vector
of system (known) inputs, d is a scalar denoting the unknown
input of the estimation model, y and υ are m-dimensional
vectors of measurements and measurement noise, respectively,
whereas, f and h refer to the system dynamic state and output
measurement equations, respectively. The process and output
measurement noise vectors are considered to be Gaussian,
zero-mean, white and uncorrelated to each other, with Qk, Rk
being the process and output measurement noise covariances
at time instant k, respectively.

Given the wind turbine model used here, it is clear that
the unknown input (wr) has a nonlinear relationship with the
states, therefore the procedure outlined in [8] is not suitable
for this context, since it addresses cases of additive unknown
inputs. The employment of a sigma-point based approach like
the Cubature Kalman filter (CKF) avoids the calculation of
derivatives, hence, this derivative-free principle is kept in the

context of the unknown input estimation. For this reason, all
output equations are expressed as power series of the unknown
input, then, an objective function is defined, and the unknown
input is computed as a solution of an eigenvalue problem for
an equivalent matrix.

The algorithm is described in the sections below:

B. Biased State Estimation

Similarly to [8], the dynamic state estimation procedure
starts with the biased state estimation part, given the lack of
knowledge of the unknown input’s value. The state prediction
is conducted as follows:

1) Sigma point generation: CKF relies on the creation of a
family of points, which capture several statistical properties of
random variables, and, here, it is the mean and the covariance
of x. CKF is based on the following collection of sigma points:

χ
(l)
k−1 =

[
x̂u+k−1 + x̃(l)

]
, l = 1, 2, ..., 2n

x̃(l) =

(√
nPu+k−1

)
l

, l = 1, 2, ..., n

x̃(n+l) = −
(√

nPu+k−1

)
l

, l = 1, 2, ..., n

(56)

where x̂u+k−1 and Pu+k−1 are the unbiased dynamic state estimate
and the unbiased a posteriori state estimate error covariance of
the previous time step, respectively. Additionally,

(√
nPu+k−1

)
l

is the lth column of the lower triangular matrix resulting from

the Cholesky decomposition: nPu+k−1 =
√
nPu+k−1

√
nPu+k−1

T

.
2) Biased state prediction: Here, the sigma points are

instantiated through the process model, and the state prediction
is obtained. The state prediction is biased, since the unknown
inputs are not considered in the calculation procedure:

χ
b(l)
k = f

(
χ
(l)
k−1, uk−1

)
(57)

where

χ
(l)
k−1 =

[
x̂u+k−1 + x̃(l)

]
, l = 1, 2, ..., 2n

x̃(l) =

(√
nPu+k−1

)
l

, l = 1, 2, ..., n

x̃(n+l) = −
(√

nPu+k−1

)
l

, l = 1, 2, ..., n

(58)

x̂bk =
1

2n

2n∑
l=1

χ
b(l)
k (59)

In the above equations, χbk are the biased predicted sigma
points, and x̂bk is the biased state prediction.

3) Biased measurement prediction: Here, the sigma points
are instantiated through the output measurement equations, so
as to obtain the biased output measurement prediction (ŷbk):

γ
b(l)
k = h

(
χ
b(l)
k , uk

)
, ŷbk =

1

2n

2n∑
l=1

γ
b(l)
k (60)

where γbk are the biased predicted measurement sigma points.
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C. Unknown Input Estimation

The high nonlinearity characterising the wind turbine gen-
erator estimation model does not facilitate the utilization
of the CKF-UI algorithm developed in [8], since, in that
case, the unknown inputs were additive, and the unknown
estimation procedure was based on the statistical linearisation
of the nonlinear output measurement functions. However, here,
the unknown input is nonlinear with respect to the states,
and, given the nonlinear output measurement functions, the
statistical linearisation poorly captures the unknown input’s
effect on the measurement equations. Thus, another unknown
input estimation procedure is needed, which has to keep the
nonlinear nature of the measurement functions. Given that the
employment of CKF does not require the calculation of any
derivatives, the new approach is preferred to be derivative-free.
For this purpose, the following procedure is employed: First,
the output measurement functions are reformulated as power
series of the unknown input (wr):

It =I
ba
t + Itlinawr + Itsqaw

2
r + υI (61)

φ =φm +Kφ0 +Kφ1wr +Kφ2w
2
r +Kφ3w

3
r

+Kφ4w
4
r + υφ (62)

Pt =P
b
t + Ptlinwr + Ptsqw

2
r + υP (63)

Qt =Q
b
t +Qtlinwr +Qtsqw

2
r + υQ (64)

where υ denotes measurement noise for each quantity.
The details of the derivation of these power series, along

with the definition of constants, are given in Appendix A.
Given this form of the measurement equations, the following
objective function is sought to be minimized:

R2
obj = υ2I + υ2φ + υ2P + υ2Q (65)

This means that the solution sought should make the first
derivative of the objective function equal to zero, therefore
the unknown input is one of the solutions of the following
equation:

C0+C1wr+C2w
2
r+C3w

3
r+C4w

4
r+C5w

5
r+C6w

6
r+C7w

7
r = 0

(66)
where

C0 =− Itlina
(
It − Ibat

)
−Kφ1 (φ− φm −Kφ0)

− Ptlin
(
Pt − P bt

)
−Qtlin

(
Qt −Qbt

)
(67)

C1 =− 2Itsqa
(
It − Ibat

)
+ I2tlina − 2Kφ2 (φ− φm −Kφ0)

+K2
φ1 − 2Ptsq

(
Pt − P bt

)
+ P 2

tlin

− 2Qtsq
(
Qt −Qbt

)
+Q2

tlin (68)
C2 =3ItlinaItsqa − 3Kφ3 (φ− φm −Kφ0) + 3Kφ1Kφ2

+ 3PtlinPtsq + 3QtlinQtsq (69)

C3 =2I2tsqa − 4Kφ4 (φ− φm −Kφ0) + 4Kφ1Kφ3

+ 2K2
φ2 + 2P 2

tsq + 2Q2
tsq (70)

C4 =5Kφ1Kφ4 + 5Kφ2Kφ3 (71)

C5 =6Kφ2Kφ4 + 3K2
φ3 (72)

C6 =7Kφ3Kφ4 (73)

C7 =4K2
φ4 (74)

This formulation allows the computation of the unknown
input in a straightforward manner, since the solutions of this
equation are the eigenvalues of the following matrix [22]:

A =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−C0

C7
−C1

C7
· · · −C6

C7

 (75)

The preferred solution is the real eigenvalue for which the
objective function (65) has the minimum value.

D. Unbiased State Estimation

Following the unknown input estimation, the standard CKF
procedure is followed, since the previously unknown input is
now known. The CKF algorithm is given as follows:

1) Unbiased (a priori) state prediction:

χ
u(l)
k = f

(
χ
(l)
k−1, uk−1, d̂k−1

)
, x̂u−k =

1

2n

2n∑
l=1

χ
u(l)
k (76)

where χuk are the unbiased state prediction sigma points, d̂k−1
is the unknown input estimate for the time instant k − 1, and
x̂u−k is the unbiased a priori state estimate.

2) Unbiased a priori state error covariance calculation:

Pu−k =
1

2n

2n∑
l=1

(
χ
u(l)
k − x̂u−k

)(
χ
u(l)
k − x̂u−k

)T
(77)

where Pu−k is the unbiased a priori state estimate error
covariance.

3) Unbiased measurement prediction:

γ
u(l)
k = h

(
χ
u(l)
k , uk

)
, ŷuk =

1

2n

2n∑
l=1

γ
u(l)
k (78)

where γuk are the unbiased measurement prediction sigma
points, and ŷuk is the unbiased measurement prediction.

4) Unbiased measurement prediction error covariance es-
timation:

Puyk =
1

2n

2n∑
l=1

(
γ
u(l)
k − ŷuk

)(
γ
u(l)
k − ŷuk

)T
+Rk (79)

where Puyk is the unbiased measurement prediction error
covariance.

5) Calculation of the unbiased cross-covariance between
the states and the predicted measurements:

Puxyk =
1

2n

2n∑
l=1

(
χ
u(l)
k − x̂u−k

)(
γ
u(l)
k − ŷuk

)T
(80)

where Puxyk is the unbiased cross-covariance between x̂u−k , ŷuk .
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6) Measurement update of the state estimate (or a posteriori
state estimate):

Kk =Puxyk
(
Puyk
)−1

(81)

x̂u+k =x̂u−k +Kk (yk − ŷuk ) (82)

Pu+k =Pu−k −KkP
u
ykK

T
k (83)

where Kk is the Kalman gain matrix.
The steps (56)-(83) constitute the proposed CKF based

algorithm for dynamic state and unknown nonlinear input
estimation for wind turbine generators, used here. All these
calculations are repeated at every time step.

IV. CASE STUDIES

The suggested DSE scheme has been applied to the IEEE
benchmark 68-bus, 16-machine NETS-NYPS system [23]. The
details of this system can be found in [24], and it is depicted in
Fig. 2. The proposed estimation technique has been tested with
respect to 4 case studies, to address cases of different wind
turbine operating regions, various wind trajectory patterns as
well as different grid operating conditions. In all case studies,
the measurements are obtained at the wind turbine’s terminal
bus. For all measurements, along with the measured input
(i.e. V ), Gaussian noise of standard deviation of 10−3 has
been considered, which lies within the measurement noise
limits dictated by the IEEE Standard C37.118.1-2011, which
sets as maximum 1% total vector error (TVE) for PMU
measurements, blending together three possible sources of
error for each phasor: phasor magnitude, angle and time
synchronisation [25]. The simulation time step is 0.83 ms,
and, given the absence of commercial PMUs with such a high
reporting rate (this would correspond to 1200 Hz), pseudo-
measurements are employed by performing measurement in-
terpolation between two successive PMU measurements, in a
similar way as conducted in [26]. Therefore, assuming IEEE
Standards-compliant PMUs with reporting rate of 120 Hz,
this corresponds to 10 measurements per 8.3 ms. Such low
simulation time step is driven by the low time constants of
the estimation model differential equations. Power system
modelling is MATLAB/Simulink based, and the simulation
lasts for 5 seconds. The following case studies have been
considered:

1) Sub-rated region, sinusoidally varying wind velocity:
The synchronous machine at bus 1 has been replaced by a
wind turbine model which simulates a wind farm of equivalent
capacity, comprised of 100 wind turbines. The wind turbine
operates in the sub-rated operating region, with the wind speed
being equal to 11.96 m/s in the beginning of the simulation,
corresponding to active power output of 2.5 MW for each
wind turbine. The full order model has been used in the
context of the simulation of the system model. The details
of the wind turbine parameters can be found in Appendix
B. The wind velocity pattern considered is sinusoidal, and
Gaussian noise of 0.5 (m/s)2 variance has been added as well,
to account for turbulence. The wind velocity trajectory for this
case study is illustrated in Fig. 3. The dynamic state estimation
results are shown in Figs. 4 and 5, whereas the unknown
input estimation results are depicted in Fig. 6. The estimation
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Fig. 2. NETS-NYPS 68-bus, 16-machine system

procedure proves to be successful against highly varying wind
velocity conditions, with turbulence being present.
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m
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)
Time (s)

Fig. 3. Wind velocity trajectory for case studies 1 and 4.

2) Sub-rated region, oscillating wind velocity: The same
system setup has been followed as in the previous case study,
but a different wind velocity pattern has been regarded: Here,
small variations are considered around the value of 11.96 m/s,
and these variations have been generated by the addition of
Gaussian noise of 1 m/s standard deviation, as shown in Fig.
7.The dynamic state estimation results are depicted in Figs.
8 and 9, whereas the unknown input estimation results are
illustrated in Fig. 10. The results show high accuracy with
respect to slightly varying wind velocity conditions.

3) Rated region, sinusoidally varying wind velocity: The
wind turbine considered operates in the rated region, with the
wind speed being equal to 19 m/s in the beginning of the
simulation. Thus, to match the capacity of the synchronous
generator which is replaced at bus 1, the wind turbine model
is assumed to simulate a wind farm of equivalent capacity,
comprised of 50 wind turbines, corresponding to active power
output of 5 MW each, operating in the rated region. In this case
study, the wind velocity pattern is sinusoidal, with Gaussian
noise of 0.2 (m/s)2 variance been added, as depicted in Fig. 11.
The dynamic state estimation results are illustrated in Figs. 12
and 13, and the unknown input estimation results are shown in
Fig. 10. It can be clearly noticed that the estimation algorithm
is also successful in the rated operating region of the wind
turbine, accurately tracking its response under significantly
varying wind velocity conditions.

4) Weak grid consideration: Given that the system used in
the previous case studies is strong, the estimation procedure
has been tested on a Thevenin equivalent of a weak grid [27],
with Short-circuit Ratio (SCR) equal to 2, which has been
determined in accordance with the information provided by



0885-8950 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2019.2909160, IEEE
Transactions on Power Systems

7

0 1 2 3 4 5
1.08

1.09

1.1
E

′ sq
 (

p.
u.

)

 

 

0 1 2 3 4 5
0.04

0.05

0.06

E
′ sd

 (
p.

u.
)

 

 

0 1 2 3 4 5
−0.8

−0.6

−0.4

Φ
T

e (
p.

u.
)

 

 

0 1 2 3 4 5
0.2

0.3

0.4

Φ
iq

 (
p.

u.
)

 

 

0 1 2 3 4 5
0.64

0.641

0.642

Φ
Q

s (
p.

u.
)

 

 

0 1 2 3 4 5
0.005

0.01

0.015

Time (s)

Φ
id

 (
p.

u.
)

 

 

Estimated (CKF−UI)
Theoretical

Fig. 4. Case Study 1: Dynamic state estimation results for E′
sq , E′

sd, ΦTe,
Φiq , ΦQs, and Φid.
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Fig. 5. Case Study 1: Dynamic state estimation results for Vdc, Φigq , Φviq ,
Φigd, and Φvid.
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Fig. 6. Case Study 1: Unknown input estimation results for the wind turbine
estimation model.
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Fig. 7. Wind velocity trajectory for case study 2.

the North American Electric Reliability Corporation (NERC)
[28]. Given this SCR value, the voltage source of the Thevenin
equivalent is, without loss of generality, 0.88∠− 26.23◦ p.u.
and the Thevenin reactance is 0.546 p.u.. The wind turbine
characteristics are the same as in case study 1. The same
applies for the wind velocity assumed for the case. It is noted
that the determination of the Thevenin equivalent parameters
has been driven by the intention to match the voltage value at
the wind turbine’s terminal bus to the one of bus 1 of the 68-
bus, 16-machine system, where the wind turbine is connected
in the previous case studies, so as to perform a fair comparison,
especially with respect to the first case study, where the wind
velocity pattern is the same. Figs. 15 and 16 illustrate the
dynamic state estimation results, whereas Fig. 17 depict the
unknown input estimation outcomes. It can be observed that,
although the terminal voltage is sensitive to changes in the
system, the estimation technique is able to track the wind
turbine’s dynamics.

V. CONCLUSIONS

A derivative-free Kalman filtering based dynamic state
estimation technique has been developed, to tackle cases when
there is a nonlinear unknown input in the estimation models.
This method has been developed to be implemented in the
context of a doubly-fed induction generator based wind gen-
erator model, under the assumption of unknown or uncertain
wind velocity. This algorithm is employed, given that the
output measurement equations are formulated as power series.
The proposed technique has been successfully applied to the
IEEE benchmark 68-bus, 16-machine NETS-NYPS system,
as well as to an equivalent system representing a weak grid,
verifying that the estimation model’s states can be accurately
estimated, under uncertain wind velocity conditions. It has to
be highlighted that this result is significant, since operators are
given the opportunity to gain knowledge of the operational
status of generators which are driven by stochastic sources.
This methodology can be proven very beneficial for power
system monitoring, in the context of modern power networks,
which are characterised by components of highly nonlinear
nature and occasionally unpredictable behaviour.
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Fig. 8. Case Study 2: Dynamic state estimation results for E′
sq , E′

sd, ΦTe,
Φiq , ΦQs, and Φid.
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Fig. 9. Case Study 2: Dynamic state estimation results for Vdc, Φigq , Φviq ,
Φigd, and Φvid.
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estimation model.
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Fig. 11. Wind velocity trajectory for case study 3.

APPENDIX A
OUTPUT MEASUREMENT FUNCTIONS REFORMULATION

The concept is to calculate the value of wr based on the
measurements obtained, as well as the biased output measure-
ment predictions made, given the fact that wr is unknown.
For instance, when making the biased measurement prediction
(60), regarding the active and reactive power output Ptk, Qtk,
according to (53), (54), they can be formulated as a power
series of the unknown variable wr(k−1), given that E′sqk, E′sdk,
Isqk, Isdk are functions of wr(k−1), according to the state
equations of the estimation model. Therefore, at time instant
k, the parameters of (53), (54) are given as follows (with the
b superscript referring to biased predictions - (59)):

P bt =E′
b

sqkI
b
sqk + E′

b

sdkI
b
sdk + ViqkIiqk + VidkIidk

−Rs
(
Ib

2

sqk + Ib
2

sdk

)
(84)

Ptlin =KIqE
′b
sqk +KEqI

b
sqk +KIdE

′b
sdk +KEdI

b
sdk

− 2Rs
(
IbsqkKIq + IbsdkKId

)
(85)

Ptsq =KEqKIq +KEdKId −Rs
(
K2
Iq +K2

Id

)
(86)

where

KIq =
welBT0

R2
s + w2

sL
′2
s

(
−RsE′sd(k−1) + wsL

′
sE
′
sq(k−1)

)
(87)

KId =
welBT0

R2
s + w2

sL
′2
s

(
RsE

′
sq(k−1) + wsL

′
sE
′
sd(k−1)

)
(88)

Qbt =E
′b
sdkI

b
sqk − E′

b

sqkI
b
sdk − VsqkIgdk + VsdkIgqk

− wsL′s
(
Ib

2

sqk + Ib
2

sdk

)
(89)

Qtlin =KIqE
′b
sdk +KEdI

b
sqk −KIdE

′b
sqk −KEqI

b
sdk

− 2wsL
′
s

(
IbsqkKIq + IbsdkKId

)
(90)

Qtsq =KEdKIq −KEqKId − wsL′s
(
K2
Iq +K2

Id

)
(91)

The cases concerning It and φ require special attention,
since, unlike Pt, and Qt, they cannot straightaway be ex-
pressed as power series. For this purpose, the power series
formulae are employed for arctan, square root, and rational
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Fig. 12. Case Study 3: Dynamic state estimation results for E′
sq , E′

sd, ΦTe,
Φiq , ΦQs, and Φid.
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Fig. 13. Case Study 3: Dynamic state estimation results for Vdc, Φigq , Φviq ,
Φigd, and Φvid.
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Fig. 14. Case Study 3: Unknown input estimation results for the wind turbine
estimation model.
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Fig. 15. Case Study 4: Dynamic state estimation results for E′
sq , E′

sd, ΦTe,
Φiq , ΦQs, and Φid.

functions. Regarding It, since Isqk and Isdk are functions of
wr(k−1), (51) takes the following form:

It =
√
I2tb + Ilinwr(k−1) + Isqw2

r(k−1) (92)

where

I2tb =
(
Ibsqk + Igqk

)2
+
(
Ibsdk + Igdk

)2
(93)

Ilin =2
[
KIq

(
Ibsqk + Igqk

)
+KId

(
Ibsdk + Igdk

)]
(94)

Isq =K
2
Iq +K2

Id (95)

The purpose is to transform (92) in the form of√
(·)
√
1 + κ, with κ almost 0, so as to be able to use the

first order term only of the standard power series formula
for
√
1 + κ. Thus, if (92) is expressed as

√
I2tb + ζ, with

ζ = Ilinwr(k−1) + Isqw
2
r(k−1), then it can be given as√

I2tb + ζ =
√
I2tb + ξ

√
1 +

ζ − ξ
I2tb + ξ



0885-8950 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2019.2909160, IEEE
Transactions on Power Systems

10

0 1 2 3 4 5
0.9999

1

1

V
dc

 (
p.

u.
)

 

 

0 1 2 3 4 5
−0.15

−0.14

−0.13

−0.12

Φ
ig

q (
p.

u.
)

 

 
Estimated (CKF−UI)
Theoretical

0 1 2 3 4 5
1.04

1.06

1.08

Φ
vi

q (
p.

u.
)

 

 

0 1 2 3 4 5
−2

0

2
x 10

−4

Φ
ig

d (
p.

u.
)

 

 

0 1 2 3 4 5
−0.026

−0.024

−0.022

−0.02

Time (s)

Φ
vi

d (
p.

u.
)

 

 

Fig. 16. Case Study 4: Dynamic state estimation results for Vdc, Φigq , Φviq ,
Φigd, and Φvid.
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Fig. 17. Case Study 4: Unknown input estimation results for the wind turbine
estimation model.

In the above relationship, ξ is a quantity which differs every
time step, so as to achieve that (ζ−ξ)/(I2tb+ξ) = p, and in our
case p = 0.001. However, ξ is calculated based on ζ, but, since
ζ is a function of wr(k−1), which is still unknown, the value
of the previous time step is used (wr(k−2)), relying on the
concept that the value of wr does not tremendously change in
successive time steps. Therefore, ζproxy is calculated based on
wr(k−2), and, then, ξ is computed, aiming at (ζ−ξ)/(I2tb+ξ) ≈
p. The factors of wr(k−1) in (61) are given below:

Ibat =
√
I2tb + ξ − ξ/

(
2
√
I2tb + ξ

)
(96)

Itlina =Ilin/

(
2
√
I2tb + ξ

)
(97)

Itsqa =Isq/

(
2
√
I2tb + ξ

)
(98)

Regarding (52), the same concept is used. From the prop-
erties of arctan function, it is arctan(a) + arctan(b) =
arctan((a + b)/(1 − ab)). If (a + b)/(1 − ab) = (Isdk +

Igdk)/(Isqk + Igqk) = g(wr), then b = (g(wr) − a)/(1 +
ag(wr)), and a can be determined so as for b to be equal
to a number close to 0 (which in our case is 0.001), so as
to use the first order term only of the standard power series
formula for arctan. Thus, the measured value can be used
to calculate a (hence considering than g(wr) = tan(φk)).
Therefore, φk = arctan(a) + b, with

b =
Ibtdk − aIbtqk + (KId − aKIq)wr(k−1)

Ibtqk + aIbtdk

1

1 +Kwwr(k−1)

where Kw = (KId+aKIq)(I
b
tqk+aI

b
tdk), I

b
tdk = Ibsdk+ Igdk

and Ibtqk = Ibsqk + Igqk. The final step is to employ the power
series corresponding to 1/(1+κ) function, and try to achieve
that κ is small, so as to use the first few terms of the series.
In a similar way as in the aforementioned

√
1 + κ function:

1

1 +Kwwr(k−1)
=

1

1 + α

1

1 +
Kwwr(k−1)−α

1+α

In the above relationship, α is calculated, based on that
(Kwwr(k−1) − α)/(1 + α) = 0.001. Similarly to the It case,
since wr(k−1) is unknown, wr(k−2) is used instead. Hence, the
factors of (62), are given as follows:

φm = arctan(a) (99)

Kφ0 =
(
(Ibtd − aIbtq)Kf0

)
/
(
Ibtq + aIbtd

)
(100)

Kφi =
(Ibtd − aIbtq)Kfi + (KId − aKIq)Kf(i−1)

Ibtq + aIbtd
, i = 1, 2, 3

(101)

Kφ4 = ((KId − aKIq)Kf3) /
(
Ibtq + aIbtd

)
(102)

where

Kf0 = 1/(1+α)+α/(1+α)2+α2/(1+α)3+α3/(1+α)4,

Kf1 = −Kw/(1+α)
2−2αKw/(1+α)

3−3α2Kw/(1+α)
4,

Kf2 = K2
w/(1+α)

3+3αK2
w/(1+α)

4, Kf3 = −K3
w/(1+α)

4

APPENDIX B
DFIG DATA

The DFIG data is listed in the following table.

Lm = 4, Rs = 0.005, ws = 1, kt = 0.3, c = 0.01,
Ht = 4, Hg = 0.4, ρ = 1.225, Rt = 40.05, c1 = 0.5176,
c2 = 116, c3 = 0.4, c4 = 0, c5 = 0, c6 = 5, c7 = 21,
c8 = 0.08, c9 = 0.035, c10 = 0.0068, Kwr = −150,
Twr = 3, Tβ = 0.5, Cpmax = 0.48, λopt = 8.1, Ri = 0,

Kp,Te = 0, Ki,Te = −60, Kp,iq = −1, Ki,iq = −400,
Kp,Qs = 0.5, Ki,Qs = 10, Kp,id = −0.1, Rg = 0,
Ki,id = −20, Kp,igq = −22, Ki,igq = −870, Rc = 0.7333,
Kp,viq = 0.3, Ki,viq = 200, Kp,igd = 0, Ki,igd = −60,
Kp,vid = 0.3, Ki,vid = 200, Li = 0.1667, Lg = 0.0033,
Cf = 0.015, Vdc,ref = 1, Cdc = 2, c1,p = 100,
c2,p = 680, c3,p = 40
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