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Abstract
In order to account for rigid-flexible coupling effects of floating offshore wind turbines, a nonlinear rigid-flexible
coupled dynamic model is proposed in this paper. The proposed nonlinear coupled model takes the higher-order axial
displacements into account, which are usually neglected in the conventional linear dynamic model. Subsequently,
investigations on the dynamic differences between the proposed nonlinear dynamic model and the linear one are
conducted. The results demonstrate that the stiffness of the turbine blades in the proposed nonlinear dynamic model
increases with larger overall motions but that in the linear dynamic model declines with larger overall motions.
Deformation of the blades in the nonlinear dynamic model is more reasonable than that in the linear model as well.
Additionally, more distinct coupling effects are observed in the proposed nonlinear model than those in the linear
model. Finally, it shows that the aerodynamic loads, the structural loads and global dynamic responses of floating
offshore wind turbines using the nonlinear dynamic model are slightly smaller than those using the linear dynamic
model.  In summary, compared with the conventional linear dynamic model,  the proposed nonlinear coupling
dynamic model is a higher-order dynamic model in consideration of the rigid-flexible coupling effects of floating
offshore wind turbines, and accord more perfectly with the engineering facts.
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1  Introduction
In recent years, floating offshore wind turbines

(FOWTs) have been receiving increasing attention due to
their prominent advantages, such as steadier and stronger
wind available resources, lower operational noise, reduced
visual pollution and fewer space limitations (Karimirad et
al., 2011; Bachynski and Moan, 2012; Pérez-Collazo et al.,
2015; Ma et al., 2015). FOWTs are complex rigid-flexible
coupled multi-body systems (Namik and Stol, 2010; Wang
and Sweetman, 2013; Nejad et al., 2015). Moreover, be-
cause the slender blades of an FOWT system typically work
at a high rotational speed and are influenced by the motions
of the floating platform, rigid-flexible coupled dynamic re-
sponses of FOWT systems are more complicated than those
of the fixed bottom wind turbines.

Rigid-flexible coupled multi-body dynamics have re-
ceived considerable attentions during the development of
modern high-speed airplanes (Shabana, 1997; Bauchau,

2011). In the 1970s, Winfrey (1971) proposed the “kineto-
elastodynamics” (KED) method to model the dynamic beha-
viour of rigid-flexible coupled multi-body systems. In this
method, the system is first modelled as a rigid multi-body
system to calculate the motion and inertia forces on the sys-
tem. Second, the inertia and external forces are applied to
the flexible components of the system to calculate the de-
formation and the motion of the flexible components. The
KED method is a decoupled method with the linear structur-
al dynamics and kinematics of a rigid multi-body system.
Hence, the coupling effects between the flexible bodies and
the large overall motions from rigid bodies were not con-
sidered. Likins (1972) proposed the “hybrid-coordinate dy-
namic model” to describe the dynamic behaviour of rigid-
flexible coupled multi-body systems. In this method, the
flexible deformation is described with respect to the local
body-fixed frames; then, the configuration of the system can
be described as a superposition of the motions of these
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body-fixed frames and the flexible deformation with re-
spect to these body-fixed frames. This method accounts for
the coupling effects between the flexible bodies and the
large overall motions of the rigid bodies to some extent.
However, the hybrid-coordinate dynamic model above is a
linear method in fact, and certain higher-order quantities are
neglected, which may cause some inaccurate dynamic res-
ults under large overall motions. Kane et al. (1989) studied
the dynamic behaviour of a cantilever beam attached to a
moving boundary and found that the deformation of the
beam in the linear hybrid-coordinate dynamic model would
tend toward infinity with the increasing rotational speed,
which contradicted the reality that the stiffness of a canti-
lever beam should increase with the increasing rotational
speed. Kane firstly proposed “dynamic stiffening” to de-
scribe this phenomenon. Other experiments also demon-
strated significant coupling effects between the flexible bod-
ies and the large overall motions (Lee et al., 2001; Santos et
al., 2004). Since then, coupling effects and the defects of the
linear dynamic model have attracted considerable attention.
Although several researchers have corrected the linear dy-
namic model to successfully detect dynamic stiffening ef-
fects in a rigid-flexible coupled multi-body system using
different methods (Banerjee and Dickens, 1990; Liu and
Liew, 1994; Mayo et al., 1995; Sharf, 1995), there is still no
widespread consensus regarding the essence of these coup-
ling effects. The omission of the higher-order strain-dis-
placement relationship in the linear dynamic model could be
the reason for the failure to model dynamic stiffening ef-
fects in a rigid-flexible coupled multi-body system (Mayo et
al., 1995). After investigating the dynamic characteristics of
a cantilever beam attached to a moving base, Liu and Hong
(2003, 2004) found that the inaccuracy in the linear dynam-
ic model is caused by the omission of the axial foreshorten-
ing displacement induced by the lateral displacements when
undergoing large overall motions.

In the wind energy field, researchers (Lee et al., 2002;
Santos et al., 2004; Larsen and Nielsen, 2006) have found
that these coupling effects are important for the blades of
fixed-bottom wind turbines as well. Compared with fixed-
bottom wind turbine systems, FOWTs are the relatively new
concept and their blades are slenderer and the six-degree-of-
freedom (DOF) motion of the floating platform usually
gives rise to large overall motions of the blades. Thus, non-
linear rigid-flexible coupling effects in FOWTs are more
distinct, but the related researches are scarce.

The purpose of this study is to propose an appropriate ri-
gid-flexible coupling dynamic model and to investigate the
coupling rigid-flexible effects of the floating wind turbine
system. Hence, the work of the paper includes:

(1) Deducing a nonlinear coupling dynamic model ap-
plied to the FOWTs modelling.

(2) Comparing dynamic differences between the pro-
posed nonlinear dynamic model and the linear one in an

FOWT system.
(3) Investigating rigid-flexible coupling effects of an

FOWT system.
In view of the fact that the movement of the foundation

of the tower is relatively small and the deformation of the
shaft is negligible, thus, the tower is modeled as a linear
model and the shaft is modeled as a rigid body. In other
words, the nonlinear rigid-flexible modeling is only applied
to the blades. This paper makes contribution for a better un-
derstanding of the rigid-flexible coupled dynamic effects of
an FOWT system and hopes to raise awareness of this issue
in the FOWTs research community.

2  Theories and methodology
In this section, the theories on the linear dynamic model

and the proposed nonlinear coupled dynamic model are in-
troduced in details. First, the fundamental kinematic meth-
od is presented. Subsequently, the dynamic governing equa-
tion for a three-dimensional flexible beam undergoing large
overall motions is deduced to compare the essential distinc-
tion between the linear dynamic model and the nonlinear
coupled dynamic model.

2.1  Kinematics description

e0

eb

The “floating frame of reference formulation” method
(Nada et al., 2010; Nowakowski et al., 2012; Held et al.,
2016) is used to describe the kinematics of an FOWT sys-
tem. In this method, there are two sets of coordinate frames.
One is the global reference frame (RF), which describes the
location and the orientation of the bodies, and the other is
the local elastic body-fixed frame (BF), which describes the
elastic deformation of flexible bodies. This method is
schematically illustrated in Fig. 1, where  is the global
reference coordinate frame (RF) and  is the local body-
fixed coordinate frame (BF).

eb(t)
ρP0

∆U

The position of an arbitrary point P with respect to the
body-fixed frame  in the undeformed state is denoted as

. The deformation of this point is defined as . Hence,
the position vector of Point P after deformation with re-

 
Fig. 1.   Floating reference frame.
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eb(t)spect to  is written as follows:
ρP = ρP0

+∆U. (1)

e0
The position vector of Point P after deformation with re-

spect to the global reference frame  is written as follows:
rP = rb+ρP . (2)

Substituting Eq. (1) into Eq. (2) yields:
rP = rb+ρP0

+∆U. (3)

rP

According to Eq. (3), the velocity vector of Point P is
the first derivative of the position vector , written as fol-
lows:

ṙP = ṙb+ω×
(
ρP0
+∆U

)
+∆U̇, (4)

ω
e0 ∆U̇

eb(t) ×

where  is the instantaneous angular velocity vector of the
body with respect to ,  denotes the first-order derivat-
ive of the deformation versus time with respect to the local
body-fixed frame  and the symbol  indicates the cross
product.

e0
Based on Eq. (4), the acceleration vector of Point P with

respect to the global reference frame  is written as fol-
lows:

r̈P =r̈b+ ω̇×
(
ρP0
+∆U

)
+2ω×∆U̇+ω×[

ω×
(
ρP0
+∆U

)]
+∆Ü, (5)

∆Ü

eb(t)

where  denotes the second-order derivative of the de-
formation versus time with respect to the local body-fixed
frame .

∆UIn order to describe the deformation  in a rigid-flex-
ible coupled multi-body system, Likins (1972) proposed the
linear hybrid-coordinate dynamic model. In this method, the
kinematic relationship between rigid and flexible bodies is
described by the floating frame of the reference formulation
described above, and the flexible deformation is based on
the small deformation assumption, in which the geometric-
ally nonlinear quantities are neglected to linearize the de-
formation field. However, the neglected certain geometric-
ally nonlinear quantities in this linear dynamic model may
be significant for a rigid-flexible coupled multi-body sys-
tem undergoing large overall motions. Therefore, the study
in this paper proposes a nonlinear dynamic model in consid-
eration of these geometrically nonlinear high-order quantit-
ies in a rigid-flexible coupled multi-body system. In the fol-
lowing sections, the linear dynamic model presented above
is denoted “L-model” (low-order model), and the proposed
nonlinear dynamic model is denoted “H-model” (higher-or-
der model).

2.2  Dynamic governing equations
In this subsection, the dynamic governing equation for a

three-dimensional flexible beam with large overall motions
is deduced. In addition, the essential difference between the
linear dynamic model and the proposed nonlinear dynamic
model will be discussed.

Ob− bex
bey

bez

ω
k0 x

k0

k Uk

Because the blades of an FOWT are slender and at-
tached to  a  hub,  the  blades  can be modeled as  an
Euler–Bernoulli cantilever beam attached to a movable ri-
gid boundary. For simplicity, in the following sections, the
cantilever beam is homogeneous and isotropic, and the
centroid axis of the cross section along the beam is also co-
incident. A three-dimensional Euler–Bernoulli cantilever
beam with large overall motions is shown in Fig. 2, where

 is the local body-fixed frame of the canti-
lever beam. The hub rotates at an angular velocity . Point

 is at the position  along the undeformed neutral axis of
the beam. After deformation, Point  moves to a new posi-
tion .  is the deformation vector of the point and can be
written as:

Uk =

[ ux0
uy0
uz0

]
(6)

ux0 uy0 uz0

Uk
bex

bey
bez

where ,  and  are the coordinate components of de-
formation  along the coordinate axes ,  and , re-
spectively.

Assuming that the length of a differential element at the
position x is dx before deformation, the stretch of this ele-
ment along the neutral axis after deformation can be written
as:

ds =

√(
1+

dux0

dx

)2

+

(
duy0

dx

)2

+

(
duz0

dx

)2

·dx (7)

ε0Hence, the axial normal strain  is:

ε0 =
ds−dx

dx
. (8)

Substituting Eq. (7) into Eq. (8), and then expanding the
equation by the Taylor expansion yields:

ε0 ≈
dux0

dx
+

1
2

(duy0

dx

)2

+

(
duz0

dx

)2 . (9)

k
x

According to Eq. (9), the stretch of the beam at Point 
can be obtained by an integral from zero to the position :

w1 =
w x

0
ε0dx = ux0+

1
2

w x

0

(duy0

dx

)2

+

(
duz0

dx

)2dx. (10)

Let

 
Fig. 2.   Three-dimensional cantilever beam with large overall motions.

 CHEN Jia-hao et al. China Ocean Eng., 2019, Vol. 33, No. 1, P. 1–13 3



wg = −
1
2

w x

0

(duy0

dx

)2

+

(
duz0

dx

)2dx, (11)

and thus,
ux0 = w1+wg. (12)

wg
bex

uy0 uz0

Eq. (11) indicates that  is an axial foreshortening dis-
placement along  caused by the coupling effects from the
lateral displacements  and . Considering this fore-
shortening displacement or not is the essential difference
between the linear dynamic model (L-model) and the pro-
posed nonlinear dynamic model (H-model).

bex

For an arbitrary point in the cross-section of a beam, an
additional axial displacement along  caused by the cross-
sectional rotation effect can be approximated as follows:

wr ≈ −y
∂w2

∂x
− z

∂w3

∂x
. (13)

Hence, the deformation of an arbitrary point in the cross-
section of an Euler-Bernoulli cantilever beam is written as:

U =
[ ux0

uy0
uz0

]
=

[ w1+wg+wr
w2
w3

]
, (14)

w1 w2 w3

wg wr

where  is the stretch along the neutral axis, and  and 
are the lateral displacements induced by the bending deflec-
tions with respect to the body-fixed frame.  and  are the
lateral-displacement-induced axial displacement and sec-
tion-rotation-induced axial displacement, respectively.

ux0

By substituting Eqs. (11) and (13) into Eq. (14), the x-
axis displacement  (see Fig. 2) can be written as:
ux0 =w1+wg+wr = w1−

1
2

w x

0

(duy0

dx

)2

+

(
duz0

dx

)2dx− y
∂w2

∂x
− z

∂w3

∂x
. (15)

According to Eq. (9) and Eq. (15), the strain power of
the beam can be approximated as follows:

V̇ =
w L

0

w
A
σdAε̇dx ≈

w L

0
EA

(
∂w1

∂x

)(
∂w1

∂x∂t

)
dx+

w L

0
EIzz

(
∂2w2

∂x2

)(
∂2w2

∂x2∂t

)
dx+

w L

0
EIyy

(
∂2w3

∂x2

)(
∂2w3

∂x2∂t

)
dx,

(16)
Izz =

r
A y2dA Iyy =

r
A z2dA

E A

where  and  are the central princip-
al second moments of the area with respect to the z-axis and
y-axis, respectively;  is Young’s modulus and  is the
cross-sectional area.

In this paper, the modal superposition method (Andr-
eaus et al., 2016) is used to disperse the beam model. Thus,
axial and lateral deformation can be dispersed as:

w1 =

n∑
i=1

ϕxiqxi =Φ
T
x qx = qT

xΦx; (17)

w2 =

n∑
i=1

ϕyiqyi =Φ
T
y qy = qT

yΦy; (18)

w3 =

n∑
i=1

ϕziqzi =Φ
T
z qz = qT

zΦz, (19)

ϕxi ϕyi ϕzi
qxi qyi qzi

bex
bey

bez

w (0) = 0
w′ (0) = 0

w′′ (L) = 0
w′′′ (L) = 0

where ,  and  are the i-th spatial shape functions and
,  and  are the i-th generalized coordinates with re-

spect to the coordinate axes ,  and  of the local
body-fixed frame, respectively. A cantilevered boundary
condition is used for the beam model, in other words, the
base of the beam does not experience any deflection

, the derivative of the deflection function at that
point is zero , there is no bending moment at the
free end , and there is no shearing force acting at
the free end .

In regard to blades mode order, Øye (1996) found that
the first 3 or 4 eigenmodes (2 flapwise eigenmodes, 1 or 2
edgewise eigenmodes) used for a wind turbine are in good
agreement with the measurements. Thus, the first 3 eigen-
modes (2 flapwise eigenmodes and 1 edgewise eigenmode)
are used to disperse the blades in the subsequent tests. Spa-
tial shape functions for the blades are approximated as 6th-
order polynomials calculated by the preprocessor Mode
(Marshall, 2002), as shown in Fig. 3.

According to Eq. (14), the deformation of an arbitrary
point in the cross-section and its first and second derivat-
ives are written as follows:

U =
(
Φ+

1
2

AT
QH+R

)
Q; (20)

U̇ =
(
Φ+ AT

QH+R
)
Q̇; (21)

Ü =
(
Φ+ AT

QH+R
)
Q̈+ ȦT

QHQ̇, (22)

where
Spatial shape functions matrix:

Φ =

 Φ
T
x 0 0

0 ΦT
y 0

0 0 ΦT
z

 ,

Φx =

[ ϕx1 ϕx2 · · · ϕxn
]

Φy =
[
ϕy1 ϕy2 · · · ϕyn

]
Φz =

[ ϕz1 ϕz2 · · · ϕzn
] (23)

Generalized coordinate matrix:

 
Fig. 3.   Spatial shape functions of the blades.
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Q =
 qx

qy
qz

 ,


qx = [ qx1 qx2 · · · qxn ]
qy = [ qy1 qy2 · · · qyn ]
qz = [ qz1 qz2 · · · qzn ]

(24)

AQ = [ Q 0 0 ] (25)
Cross-sectional rotation effect matrix:

R =

 0 −y
(∂ϕy

∂x

)T

−z
(∂ϕz

∂x

)T

0 0 0
0 0 0

 (26)

Nonlinear coupling effect matrix:

H =

 0 0 0
0 Hy 0
0 0 Hz

 ;

Hy = −
w x

0

(∂ϕy

∂x

)
·
(∂ϕy

∂x

)T

dx;

Hz = −
w x

0

(∂ϕz

∂x

)
·
(∂ϕz

∂x

)T

dx. (27)

Variational forms of the above terms are rewritten as
follows:

δU̇ =
(
Φ+R+ AT

QH
)
·δQ̇; (28)

δÜ =
(
Φ+R+ AT

QH
)
·δQ̈+ ȦT

QH ·δQ̇. (29)

From Eq. (4), the velocity of an arbitrary point in the
cross section in the variational form is:

δṙ = δṙb−
(
ρ̃P0 + Ũ

)
·δω+

(
Φ+R+ AT

QH
)
·δQ̇. (30)

From Eq. (16), the virtual strain power of the beam is
written as follows:

δV̇ = δQ̇TK0Q, (31)
where

Constant stiffness matrix:

K0 =

[ Kx 0 0
0 Ky 0
0 0 Kz

]
,

Kx =
w L

0
EA

(
∂ϕx

∂x

)(
∂ϕx

∂x

)T

dx

Ky =
w L

0
EIzz

∂2ϕy

∂x2

∂2ϕy

∂x2

T

dx

Kz =
w L

0
EIyy

∂2ϕz

∂x2

∂2ϕz

∂x2

T

dx

(32)

Based on Jourdain’s variational principle (Jourdain,
1909; Wang and Pao, 2003), the dynamic equation for the
flexible cantilever beam with a movable boundary can be
written as:

δẆ−
w
Ω
ρδṙT r̈dΩ−δV̇ = 0, (33)

δẆ

δẆ = 0

where  is the power of the virtual active forces. For sim-
plicity in the following analysis, we assume that the beam
vibrates without any active force (  ), and the beam

δṙb = 0 δω = 0

R = 0

performs a specified motion; in other words, we can let the
variation  and . For a slender beam (e.g., off-
shore wind turbine blades), the transverse size is far smaller
than the axial size; thus, additional axial displacements
caused by the cross-sectional rotation effect can be neg-
lected, . Substituting Eqs. (5), (30) and (31) into Eq.
(33), we can obtain the dynamic governing equation of a
three-dimensional flexible beam with large overall motions:

δQ̇T
{w

Ω
ρ
(
ΦT+HAQ

) [
r̈b+ ˜̇ω

(
ρP0
+U

)
+2ω̃U̇ +

ω̃ω̃
(
ρP0
+U

)
+ Ü

]
dΩ+K0Q

}
= 0, (34)

H = HT ρP0
=

[
xP 0 0

]T

δQ̇T U U̇ Ü
where , and . Eliminating the
term  and then substituting ,  and  (Eqs. (20), (21)
and (22)) into Eq. (34) becomesw
Ω
ρ
(
ΦT+HAQ

) {(
Φ+ AT

QH
)
Q̈+2ω̃

(
Φ+ AT

QH
)
Q̇ +[

˜̇ω
(
Φ+

1
2

AT
QH

)
+ ω̃ω̃

(
Φ+

1
2

AT
QH

)]
Q+(

r̈b+ ˜̇ωρP0
+ ω̃ω̃ρP0

+ ȦT
QHQ̇

)}
dΩ+K0Q = 0. (35)

The above dynamic governing equation can be summar-
ized as follows:

MQ̈+CQ̇+KQ+F = 0. (36)

In the linear dynamic model (L-model) for the beam,
Eq. (36) is written as:

MLQ̈+CLQ̇+KLQ+FL = 0. (37)
In the proposed nonlinear coupling dynamic model (H-

model), Eq. (36) is written as:

(ML+MH) Q̈+ (CL+CH) Q̇+ (KL+KH)Q+
FL+FH = 0, (38)

where
Mass matrix:

MQ̈ =
w
Ω
ρ
(
ΦT+HAQ

) (
Φ+ AT

QH
)
dΩ · Q̈; (39)

ML =
w
Ω
ρΦTΦdΩ; (40)

MH =
w
Ω
ρHAQΦdΩ+

w
Ω
ρΦT AT

QHdΩ+w
Ω
ρHAQ AT

QHdΩ. (41)

Damping matrix:

CQ̇ =
w
Ω
ρ
(
ΦT+HAQ

)
·2ω̃ ·

(
Φ+ AT

QH
)
dΩ · Q̇; (42)

CL = 2
w
Ω
ρΦTω̃ΦdΩ; (43)

CH =2
w
Ω
ρΦTω̃AT

QHdΩ+2
w
Ω
ρHAQω̃ΦdΩ+

2
w
Ω
ρHAQω̃AT

QHdΩ. (44)

Stiffness matrix:
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KQ =
w
Ω
ρ
(
ΦT+HAQ

) [
˜̇ω
(
Φ+

1
2

AT
QH

)
+ ω̃ω̃

(
Φ+

1
2

AT
QH

)]
dΩ ·Q+

w
Ω
ρ
(
HAQ

) (
r̈b+ ˜̇ωρP0

+ ω̃ω̃ρP0

)
dΩ+K0Q;

(45)

K = KL+KH; (46)

KL = K0+Kf ; (47)

Kf =
w
Ω
ρΦTω̃ω̃ΦdΩ+

w
Ω
ρΦT ˜̇ωΦdΩ; (48)

KH =
1
2

w
Ω
ρΦT ˜̇ωAT

QHdΩ+
w
Ω
ρHAQ ˜̇ωΦdΩ+

1
2

w
Ω
ρHAQ ˜̇ωAT

QHdΩ+
w
Ω
ρHAQω̃ω̃ΦdΩ+

1
2

w
Ω
ρΦTω̃ω̃AT

QHdΩ+
1
2

w
Ω
ρHAQω̃ω̃AT

QHdΩ+w
Ω
ρ
(

˜̇ωρP0

)
1
HdΩ+

w
Ω
ρ
[
(r̈b)1+

(
ω̃ω̃ρP0

)
1

]
HdΩ,

(49)
()1where the symbol  denotes the first element of a matrix.

Additional generalized force terms:

FL =
w
Ω
ρΦT r̈bdΩ+

w
Ω
ρΦT ˜̇ωρP0

dΩ+
w
Ω
ρΦTω̃ω̃ρP0

dΩ;

(50)

FH =
w
Ω
ρ
(
ΦT+HAQ

)
ȦT

QHdΩ · Q̇, (51)

ω̃

where ~ notes a coordinate matrix of a vector, for example,
 is written as follows:

ω̃ =

[ 0 −ω3 ω2
ω3 0 ω1−ω2 ω1 0

]
(52)

H
ω̃

˜̇ω
r̈b

As illustrated in Eqs. (37) and (38), the L-model is a lin-
ear model, but the H-model is a nonlinear higher-order
model. And the H-model contains additional mass terms,
damping terms, stiffness terms and additional generalized
force than the L-model. All of these additional terms in the
H-model are relevant to the higher-order geometrically non-
linear term . Moreover, some of them are relevant to the
coordinate matrix of the angular velocity , the coordinate
matrix of the angular acceleration  and the acceleration of
the boundary . In other words, the additional terms in the
H-model are influenced by the motions of the body, which
is more in accordance with the actual situation.

ω̇ r̈b

ω1 ω2

Kf KH

KH

To simplify the following analysis, the angular accelera-
tion term  and the acceleration of the foundation  are
neglected (these quantities are typically much smaller than
the angular velocities). Moreover, because the rotational
motion of the blades is mainly along one axis, the other
components of the angular velocity (e.g.,  and  ) are re-
latively small and are neglected to simplify the following
analysis. Therefore, the stiffness terms  and  (some
small higher-order quantities are neglected in  ) are sim-
plified as follows:

Kf = −ω2
3ρ ·

w
Ω

 ϕxϕT
x 0 0

0 ϕyϕT
y 0

0 0 0

dΩ; (53)

KH ≈
w
Ω
ρ


0 0 0
0 −ω2

3xPHy 0
0 0 −ω2

3xP Hz

dΩ =

ω2
3ρ

w
Ω

xP



0 0 0

0
w x

0

(∂ϕy

∂x

)
·
(∂ϕy

∂x

)T

dx 0

0 0
w x

0

(∂ϕz

∂x

)
·
(∂ϕz

∂x

)T

dx


dΩ.

(54)
Kf

KH

Eq. (53) shows that  is negative and proportional to
the square of the angular velocity. In other words, the stiff-
ness of the flexible bodies in the L-model declines and the
deformation is amplified with the rotational motion, which
is inconsistent with the reality (Lee et al., 2001; Santos et
al., 2004). In contrast, as shown in Eq. (54),  is positive
and increases with the square of the angular speed. In other
words, the stiffness of the flexible bodies in the H-model in-
creases with the rotational motion, which is more in line
with the reality (Lee et al., 2001; Santos et al., 2004). The
difference in the stiffness between the two modelling meth-
ods likely causes other differences in the dynamic beha-
viours in a rigid-flexible multi-body system. Moreover, as
shown in Eq. (38), the H-model contains additional mass
terms, damping terms, stiffness terms and generalized force
terms. These additional terms likely also give rise to differ-
ences in the dynamic behaviour of a rigid-flexible coupled
multi-body system between the two models. Detailed in-
vestigations and comparisons between the two modelling
methods are conducted in the subsequent sections.

The aforementioned linear dynamic model and the non-
linear coupled dynamic model were both incorporated into
our in-house aero-hydro-servo-elastic coupled FOWT simu-
lation code DARwind to simulate the time-domain coupled
dynamic behaviours of an FOWT system. In this section,
the theories of the numerical program DARwind are briefly
introduced.

(1) Aerodynamics (Hansen, 2015): The blade element
momentum (BEM) method is used to calculate the aerody-
namic loads. Several corrections are also considered, such
as the Prandtl’s blade-tip loss, hub-loss, the Glauert’s cor-
rection, the skewed wake correction and the dynamic wake
correction. The solution to the aerodynamic induction
factors iterates until it converge to reasonable values.

(2) Hydrodynamics (Faltinsen, 1990; Newman, 1997):
Airy linear wave theory, the potential flow theory and Mor-
ison’s formula are applied to calculate the hydrodynamic
loads. Hydrodynamic parameters are calculated by a pre-
processor WAMIT. Subsequently, these frequency-domain
hydrodynamic coefficients are taken as input data and con-
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verted to the time-domain hydrodynamic loads in DAR-
wind. Morison’s formula is used to correct the flow-separa-
tion-induced nonlinear viscous drag on the floating plat-
form.

(3) Mooring lines (Masciola et al., 2013): A quasi-static
approach for a catenary mooring system is used in the code.
The stretching of a mooring line is considered, but certain
dynamic characteristics (e.g., the inertia, damping and bend-
ing) of the mooring system are neglected.

(4) Control system (Jonkman, 2007): Controller
strategies consist of a generator-torque controller and a full-
span rotor-collective blade-pitch controller. The generator-
torque controller is mainly used to maximize the power cap-
ture below the rated wind speed. The blade-pitch controller
is mainly used to regulate the generator speed and electrical
power above the rated wind speed.

(5) Kinetics (Kane and Levinson, 1983; Huston and
James, 1982): Kane’s dynamic equations are used to estab-
lish the dynamic governing equations of an FOWT system.
The adjacent array method is applied to describe the topolo-
gical relation between the bodies of an FOWT system. The
modal superposition method is applied to discretize the flex-
ible bodies (e.g., blades and tower). The aforementioned lin-
ear dynamic model and the nonlinear coupled dynamic
model are considered in the dynamic equations.

The code DARwind was developed using the above the-
ories to model the time-domain coupled dynamic beha-
viours of an FOWT system. Compared with the other exist-
ing softwares, DARwind is more convenient to simulate
FOWTs as different models. For example, the FOWT sys-
tem can be modeled as a single rigid body system for less
time cost, modeled as a multi-rigid-body system for a bal-
ance of the time cost and computational accuracy, or
modeled as a rigid-flexible coupling multi-body system with
or without considering nonlinear rigid-flexible coupled ef-
fects for accurate simulations but most time consuming.
More details about the theories and verification of DAR-
wind code can be found in Refs. (Hu et al., 2017; Chen et
al., 2019).

3  Results and discussion
Tests (see Table 1) are conducted to compare differ-

ences between the H-model and L-model and to clarify the
significance of the rigid-flexible coupling effects in an

Hs Tp

γ

FOWT system. The floating platform is fixed to eliminate
the influence from the 6-DOF motion of the floating plat-
form for certain test cases (e.g., T1, T2, and T3). For the
cases T4 and T6, the platform is moored by three catenary
mooring lines. For T5, the floating platform moves in a spe-
cified manner regardless of external forces. The wave con-
ditions are based on the JONSWAP wave spectrum with a
significant wave height , a peak period , and a peak en-
hancement factor .

O0− x0y0z0

O0

O1−x1y1z1

Ob− xbybzb

xb zb

In the following tests, an OC4 semi-submersible FOWT
(Robertson et al., 2014) is selected as the test object, in
which the NREL-5MW reference wind turbine is used
(Jonkman et al., 2009). Main properties of the OC4 semi-
submersible FOWT are listed in Table 2. The construction
of the OC4 semi-submersible FOWT are shown in Fig. 4.
As shown in Fig. 4a,  is the global inertial frame
and the origin  is located at the intersection between the
still water surface and the initial tower centreline. 
is the body-fixed frame of the floating platform, which ini-
tially coincides with the frame of global inertial frame.

 is the local body-fixed frame of each blade,
fixed at the blade root (see Fig. 4b). The positive direction
of the -axis points to the nacelle and the -axis is along
the neutral axis of the blade, which is different from Fig. 2.

3.1  Dynamic stiffening effect and influencing factors
This subsection investigates the relationship between the

rotational speed and bending stiffness of the blades for the
two models (L-model and H-model). Calculations are con-
ducted for the test case T1 (see Table 1). In T1, the support-
ing platform is fixed, and the rotor rotates at different rota-
tional speeds without suffering from aerodynamic loads.
The first natural frequencies of the blades in flapwise and
edgewise modes under different rotational speeds are listed
in Table 3 and plotted in Fig. 5. The results are compared
with those calculated by FAST (Jonkman et al., 2005; Jonk-
man, 2007). Table 3 and Fig. 5 show that the results calcu-
lated by Darwind (H-model) and FAST are in good consist-
ency. More comparisons on the dynamic responses between
these two codes can be found in the reference (Hu et al.,
2017).

Comparing the results calculated by the H-model and L-
model (see Table 3 and Fig. 5), we know that the flapwise
natural frequency of the L-model’s blades is nearly con-

Table 1   Test case matrix
Test case Platform state Vwind (m/s) Wave condition Ω  (rmp) BtDef (m)

T1 Fixed 0.00 Still water 0–30 0.0
T2 Fixed 11.4 Still water 12.1 0.0
T3 Fixed 11.4 Still water 20.0 0.0
T4 Moored 0.00 Still water 0.00 4.0
T5 Specified 0.00 Still water 0.00 1.0
T6 Moored 11.4 Irregular wave 12.1 0.0

Ω
Hs=2 m Tp=8 s γ=3.3

Notes: “Vwind” represents the steady wind speed; “ ” represents the rotor speed; “BtDef” denotes the initial deformation at the blade tips. Irregular wave
condition: , , .
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stant under different rotational speed conditions and the
edgewise frequency in the L-model declines with the rota-
tional speed. It is consistent with Eq. (53) in that the out-of-
plane (flapwise) stiffness of the L-model is not influenced
by the rotational speed, but the in-plane (edgewise) stiff-
ness declines and is even negative when the rotational speed
exceeds its fundamental natural frequency. In contrast, in
the H-model, the natural frequency of the blades increases
with the rotational speed in both the flapwise and edgewise
modes. In other words, the stiffness of the H-model’s blades

increases with the rotational speed, which is in accordance
with Eq. (54). Relevant experiments (Lee et al., 2001; San-
tos et al., 2004) have also proved that flexible bodies stiffen
when undergoing large rotational motions and the stiffen-
ing effects increase with the rotational speed, which is the
so called “dynamic stiffening effect” (Liu and Hong, 2003).
On the other hand, Cai et al.(2005) found that a numerical
divergence might appear using the linear dynamic model (L-
model) when the rotational speed of the flexible beam is
close to or exceeds its fundamental natural frequency. For-
tunately, the operating rotational speed of the wind turbine
blades is generally much smaller than the fundamental nat-
ural frequency.

The above analysis demonstrates that the stiffness of the
blades in the H-model and L-model are different, and the
gap even increases with the blades rotational speed. The dif-
ferences likely introduce dynamic differences between the
two models, e.g., aerodynamic loads, structural loads and
blade deflection. Thus, the test case T2 (see Table 1) was

Table 2   Main properties of an OC4 semi-submersible FOWT
Property Values

Rated power 5 MW
Rated wind & rotor speed 11.4 m/s, 12.1 rpm

Rotor type Upwind, 3 blades
Rotor diameter 126 m
Tower height 77.6 m
Platform type Semisubmersible
Water depth 200 m

Mooring system 3 lines, catenary

Table 3   First natural frequency of the blades in the two models

Rotor speed
(rad/s)

Flapwise (x) (rad/s) Edgewise (y) (rad/s)

FAST
Darwind

FAST
Darwind

H L H L
0.000 4.41577 4.43970 4.41896 6.80595 6.89014 6.89014
0.722 4.50996 4.52327 4.41896 6.84829 6.91088 6.84804
0.942 4.56353 4.58610 4.41896 6.84836 6.91088 6.82731
1.267 4.70993 4.73312 4.41896 6.86878 6.93161 6.76448
2.094 5.21296 5.23515 4.41896 6.95278 7.01580 6.55462
3.140 6.06013 6.09406 4.41896 7.12011 7.20430 6.13616

 
Fig. 4.   Overview of an OC4 semi-submersible FOWT.

 
Fig. 5.   First natural frequency of the blades in the two models.
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conducted to compare the dynamic responses between the
two models, and the test results are listed in Table 4. Com-
paring the results calculated by the H-model and the L-mod-
el (see Table 4), we know that the lateral blade-tip deforma-
tions in the H-model are smaller than those in the L-model.
In addition, there is an axial foreshortening displacement in
the H-model but that keeps zero in the L-model. For the
structural loads at the blade root, the mean shear force and
bending moment of the H-model is slightly smaller than
those of the L-model. However, the standard deviation of
the structural loads on the H-model is slightly larger than
that of the L-model. In other words, the H-model has smal-
ler structural loads but more variation of the structural loads
at the blade root. For the aerodynamic loads, not only the
aerodynamic thrust force but also the aerodynamic torque of
the H-model are slightly smaller than those of the L-model.

The deformation along a blade for the test case T2 (12.1
rpm, see Table 1) and T3 (20.0 rpm, see Table 1) obtained
from the two models is compared in Fig. 6, which shows
that the deflection along the blade in the H-model is gener-
ally smaller than that in the L-model, and the gap increases
with the rotor speed. In addition, the colour variation along
a blade is nonlinear. Deformation in the first half of the
blades changes slowly, whereas that in the last half of the
blades changes more rapidly. The above analysis demon-
strates that the blade stiffness in the H-model is larger than
that in the L-model and that the difference increases with
the rotor speed. Finally, the larger stiffness gives rise to
smaller deformation.

The differences observed in the aerodynamic loads and
structural loads at the blade root (see Table 4) between the

two models are due to the differences of the deflection of
the blades between the two models. The lateral displace-
ments of the blades in the H-model are smaller than those in
the L-model due to the “dynamic stiffening” effect (Liu and
Hong, 2004) in the H-model. In contrast, the axial deforma-
tion of the L-model is zero, whereas that of the H-model is
negative. This is the effect of the “foreshortening displace-
ment” caused by the nonlinear coupling effect from the lat-
eral displacements, as shown in Eq. (11). Hence, the total
arc length of the rotating blade in the H-model (SH in Fig. 7)
is smaller than that in the L-model (SL in Fig. 7). The blades
with a shorter arc length and effective vertical length, hence
have less effective windward area, and are subjected to the
smaller aerodynamic loads and structural loads at the blade
root. In addition, the overvalued deflection predicted by the
L-model also cause inaccuracy in the aerodynamic al-
gorithm with the increasing rotational speed.

3.2  Interaction between the blades and the supporting plat-
form
Research shows that there are complicated interactive

effects in a rigid-flexible multi-body system undergoing

Table 4   Comparison of the deformation and aerodynamic loads from
the two models

Model Mean St. Dev.

BtDefx (m)
H 5.629 0.166
L 6.641 0.167

BtDefy (m)
H 0.221 0.319
L 0.232 0.334

BtDefz (m)
H –0.438 0.023
L 0.000 0.000

Fxbrt (kN)
H –247.429 4.369
L –248.135 4.075

Mybrt (kN·m)
H –10121.600 195.010
L –10159.000 182.178

RotThrust (kN)
H 736.383 9.308
L 738.411 9.917

RotTorque (kN·m)
H 4310.453 92.685
L 4317.001 97.528

Notes: “BtDefx” and “BtDefy” represent the blade-tip lateral displacement
along the xb-axis and the yb-axis, respectively; “BtDefz” represents the
blade-tip foreshortening displacement along the zb-axis; “Fxbrt” represents
the shear force at a blade root along the xb-axis; “Mybrt” represents the
bending moment at a blade root along the yb-axis; “RotThrust” represents
the aerodynamic thrust  force on the rotor;  “RotTorque” represents the
aerodynamic torque on the rotor.

 
Fig. 6.   Comparison of deformation along a blade from two models.

 
Fig. 7.   Illustration of the blade deformation between models.
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large overall motions (Cai et al., 2005; Liu and Hong,
2003). Hence, the interactive effects from the flexible blades
and the motions of the floating platform of an FOWT sys-
tem are investigated and compared between the H-model
and L-model in this section.

In the example of test T4 (see Table 1), the floating plat-
form is moored by a catenary mooring system in still water.
Additionally, one of the blades vibrates with an initial out-
of-plane blade-tip displacement of 4 m. The calculation res-
ults of the floating supporting platform motion (surge,
heave, pitch and yaw) between the models are shown in Fig.
8. These figures indicate that the vibration of the flexible
blades gives rise to small high-frequency fluctuations in the
platform motions. The fluctuation in the H-model is typic-
ally larger than that in the L-model in general. In addition, it
is interesting that vibration of the blades in the H-model
causes a slight offset of the mean position of the floating
supporting platform.

When the floating platform decays with an initial dis-
placement of 0.5° in the pitch, the vibration of the blades
also gives rise to some small high-frequency fluctuations of
the platform motions as shown in Fig. 9. Furthermore, the
flexible bodies even change the natural period of the pitch
motion of an FOWT system, which was also found by
Matha et al. (2010).

Several studies (Mayo et al., 1995; Liu and Hong, 2004)
have also proven that not only the angular motions but also
the translational motions of the rigid bodies can affect the

dynamic behavior of the flexible bodies. In this subsection,
a test is performed for the case T5 (see Table 1). In the test,
the heave motion of the floating platform is specified with
an initial blade-tip deformation of 1 m as follows:

ξ̈ = −Amω2 sin(ωt) , (55)
ξ̈ Am = 3 m

ω
where  is the acceleration of the heave motion, ,
and  is the heave motion frequency, which takes values of
0.16 rad/s and 16 rad/s, respectively.

w
Ω
ρΦT r̈bdΩ

w
Ω
ρ(r̈b)1HdΩ

r̈b

Fig. 10 shows that the vibration amplitude of the blades
increases with the heave motion frequency (0.16 rad/s to 16
rad/s), due to the increased generalized force terms in Eq.
(50). For example, the term  in Eq. (50) is in-
fluenced by the motions of the floating platform. Moreover,
compared with the vibration curve of the blade in the L-
model (dashed line in Fig. 10), the vibration curve in the H-
model (solid line in Fig. 10) offsets slightly, and this trend
intensifies with the motion frequency. This occurs because
the natural frequencies of the blades in the H-model are af-
fected by the motions of the floating platform. As shown in
Eq. (49), the term  in Eq. (49) affects the nat-
ural frequencies of the blades to a small extent due to the
movement of the floating supporting platform .

In conclusion, compared with the rigid-bodies model,
there are interactive effects between the flexible bodies and
the 6-DOF motions of the floating supporting platform in an
FOWT system. These coupling effects in the H-model are
more distinct than those in the L-model.

 
Fig. 8.   Illustration of the blade deformation between the models. (“-still” represents an FOWT in still water without the blades vibration; “-H” represents
a nonlinear model with the blades vibration; “-L” represents a linear model with the blades vibration)
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3.3  Comparison of the global dynamic responses
The above analysis demonstrates that large overall mo-

tions (e.g., rotor rotation and 6-DOF motions of the floating
platform) can affect dynamic responses of the flexible

blades, vice versa, the flexible bodies affect the motion of
the system as well. In addition, there are differences in the
coupling effects between the H-model and L-model. Hence,
under operational conditions, the global dynamic responses
(e.g., 6-DOF motions, mooring line tension, aerodynamic
loads) of the FOWT might also be different between the two
models. In this subsection, a combined wind/wave case T6
(see Table 1) is conducted to compare the global dynamic
responses of the two models.

The statistical data of the H-model and L-model for T6
are compared in Table 5. The load case T6 is simulated for
the duration of 3600 s (time step is 0.0125 s) and the statist-
ical data are calculated based on the time-series data by the
statistical tool OriginPro. The extreme values include the
minimum and maximum of the time-series data. Table 5
shows that the mean value, standard deviation (St. Dev.)
and extreme values of the dynamic responses (aerodynamic
loads, structural loads at the blade root, surge motion, pitch

Table 5   Comparison of the global dynamic responses between the two models
Item Model Mean St. Dev. Minimum Maximum

RotThrust (kN)
H 725.661 34.956 395.296 834.822
L 727.576 35.319 390.046 838.025

RotTorque (kN·m)
H 4189.843 408.280 1206.827 5617.833
L 4195.145 410.475 1176.642 5590.204

Fxbrt (kN)
H –247.501 8.141 –275.981 –136.249
L –248.224 7.804 –276.973 –134.942

Mybrt (kN·m)
H –10135.600 327.648 –11229.200 –4900.450
L –10174.000 311.640 –11275.700 –4831.470

Surge (m)
H 1.761 0.275 –0.052 2.503
L 1.766 0.275 –0.054 2.507

Pitch (°)
H 3.029 0.407 –0.039 4.712
L 3.040 0.409 –0.041 4.724

FairlTen (kN)
H 2889.250 71.508 2502.982 3127.838
L 2890.356 71.644 2502.661 3129.013

BtDefx (m)
H 5.613 0.285 0.000 6.565
L 6.621 0.319 0.000 7.633

BtDefy (m)
H 0.215 0.316 –0.302 0.747
L 0.225 0.331 –0.319 0.782

BtDefz (m)
H –0.436 0.043 –0.595 0.000
L 0.000 0.000 0.000 0.000

Notes: “FairlTen” represents the tension force of the fairlead.

 
Fig. 9.   Pitch decay for the rigid-bodies model, H-model and L-model.

 
Fig. 10.   Blade-tip displacements of the two models (heave motion frequency of 0.16 rad/s to 16 rad/s).
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motion, mooring lines tension and blade deflection) of the
H-model are smaller than those of the L-model in general.
As noted above, there are differences in the blade stiffness
and blade deformation between the two models. These dif-
ferences result in larger aerodynamic loads and structural
loads in the L-model. Consequently, the larger aerodynamic
loads in the L-model cause the corresponding larger 6-DOF
motions and mooring line tension forces. In other words, the
extreme values in an FOWT system could be overestimated
when using the L-model.

4  Conclusions
In this paper, a nonlinear rigid-flexible coupling dynam-

ic model is proposed to simulate dynamic behaviors of
floating wind turbines. Subsequently, a series of testing
cases are conducted to investigate the rigid-flexible coup-
ling effects of an FOWT system and compare the differ-
ences between the linear dynamic model and the proposed
nonlinear coupled dynamic model.

Conclusions are summarized as: Firstly, the coupling
axial displacements caused by the lateral displacements play
an important role in a rigid-flexible coupled multi-bodies
FOWT system with larger overall motions, which is also the
essential difference between the linear dynamic model and
the proposed nonlinear coupled dynamic model. Secondly, a
series of tests demonstrate that the lateral stiffness of the
blades in the linear dynamic model declines (or holds con-
stant) with the increase of the rotational speed of the rotor,
but that in the nonlinear coupled dynamic model increases
with the increase of the rotational speed of the rotor, which
is more in line with the actual situation. Thirdly, the inter-
active effects between the flexible bodies (e.g., blades) and
the motions of rigid bodies (e.g., the floating supporting
platform) in the nonlinear coupled dynamic model are more
distinct than those in the linear dynamic model. Fourthly,
the aerodynamic loads, blades deformation and global dy-
namic responses in the linear dynamic model are slightly
larger than those in the nonlinear coupled dynamic model.
In other words, extreme values could be overestimated us-
ing the linear dynamic model. In general, the rigid-flexible
coupling effects in floating offshore wind turbines should be
paid attention to and the nonlinear coupled dynamic model
is more appropriate than the linear dynamic model in gener-
al.
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