
2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2909356, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Traffic Load Balancing Using Software
Defined Networking (SDN) Controller as
Virtualized Network Function
SIKANDAR EJAZ1, ZESHAN IQBAL1, PEER AZMAT SHAH2, BILAL HAIDER BUKHARI3,
ARMUGHAM ALI3, FARHAN AADIL3
1Department of Computer Science,University of Engineering and Technology,Taxila, Punjab, Pakistan.
2Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, TX, USA.
3Department of Computer Science, COMSATS University Islamabad, Attock Campus, Pakistan.

Corresponding author: Farhan Adil (e-mail: farhan.aadil@cuiatk.edu.pk)

ABSTRACT SDN and NFV collaboratively recognized as the most promising bearing for flexible
programmability of network control functions and protocols with dynamic usage of network resources.
SDN provides abstraction of network resources over well-defined APIs to achieve underlying topology-
independent multiple tenant networks with required QoS and SLAs. NFV paradigm deploys network
functions as software instances namely VNFs on commodity hardware using virtualization techniques.
This way, virtual IP functions such as load balancing, routing and forwarding or firewall can operate as
VNF in cloud with positive outcome in network performance. In this paper we aimed to achieve traffic
load balancing by using virtual SDN controller (vSDN) as a VNF. With vSDN, when there is uneven and
increased load, secondary vSDN controllers can be added to share this load. Need of secondary vSDN is
determined and a copy vSDN with exactly same configurations as original vSDN is created which operates
accurately and shares traffic load balancing tasks with original vSDN controller. Both vSDN controllers
independently placed in cloud with transparency assuring that every client in network is familiar with the
existence of the newly created secondary vSDN controller. We experimentally validated the load balancing
in Fat-Tree topology using two vSDN controllers in Mininet emulator. Results showed 50% improvement
in Average Load, 41% improvement in Average Delay and considerable improvements in terms of Ping
Response, Bandwidth Utilization and Throughput of the system.

INDEX TERMS Load Balancing, Network Function Virtualization (NFV), Software Defined Networking
(SDN), Virtual SDN Controller (vSDN).

I. INTRODUCTION

SOFTWARE DEFINED NETWORKING is a constantly
progressive technology that offers more flexible pro-

grammability support for network control functions and
protocols. SDN provides logical central control model for
implementation and maintenance of programmable networks
by utilizing the concept of decoupling of data plane and
control plane [1] over a well-marked and comprehensible
controlling protocol like OpenFlow Figure 1. OpenFlow is
one of the control plane protocols standardized as per Open
Networking Foundation’s (ONF) [2] recommendation for
interfacing of components with their lower-level components
in the network. It allows the policies, logical switch abstrac-
tion, configuration, outlining of high-level instructions and
network resource administration to initiate functionalities in

small timelines to hide the vendor-specific component de-
tails, enhancing the ability of hardware to use and exchange
information in multi-vendor distributions and environments
[3]. Controller in the SDN paradigm uses this solitary control
protocol to provide abstraction of a wide variety of network
functions including routing and forwarding technologies,
traffic engineering, management and access control through
an Application Programming Interface (API). A network
hypervisor can be deployed from this abstraction to virtu-
alize the network to achieve network protocol and underly-
ing topology-independent multiple Virtual Tenant Networks
(VTNs) [4] functioning at the same time with physical in-
frastructure. Separate controller instances independently han-
dle network functions and ensure Service Level Agreement
(SLA) and Quality of Service (QoS) in VTNs.

VOLUME 4, 2016 1

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2909356, IEEE Access

Sikandar et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function.

FIGURE 1: SDN Three-layer Reference Model [5]

Proprietary characteristics of hardware components, cost
and insufficiently skilled professionals make it difficult to
bring and integrate new services to meet the user require-
ments. Combination of Network Function Virtualization
(NFV) and associated technologies such as SDN and cloud
computing are now capable of reducing these issues [6] [7].
NFV supports the separation of software control instances
from hardware infrastructure for faster provisioning of net-
work functions and services by means of software virtualiza-
tion [8]. It employs the network functions on demand (no
need of installation of new equipment for instantiation of
virtual appliances), decouples them from location and virtu-
alizes them on standardized commodity servers, switches and
storage. This way, capital expenditures and energy consump-
tion are decreased, and a lower-cost smart network infrastruc-
ture is achieved [9] [10] along with the benefits of changing
innovation cycle for network operators such as rapid and effi-
cient introduction of targeted and custom services according
to user’s needs. However, once network functions get virtual-
ized and turned into Virtualized Network Functions (VNFs),
NFV leads to raise some network performance related issues
[8] [9] like throughput instability and unusual latency vari-
ations in just fewer network utilization. Therefore, smooth
migration of tightly coupled large scale existing networks to
NFV-based solutions with efficient deployment and accurate
functioning of VNFs becomes a challenge. Similarly, the
decoupling of control operations from location also generates
the problem of effectual placement and dynamic on-demand
instantiation of the virtual appliances.

A. BACKGROUND

Usually, SDN controller distributions for tenant networks are
open-source implementations, such as Floodlight, OpenDay-
light, Ryu, POX, ONOS and Trema etc. Each VTN contains

independent SDN controller running on a dedicated host.
So, SDN controller is essential to be physically deployed
and configured at dedicated host at time of each dynamic
VTN employment. This implementation of SDN controller
adds delays of several days in required service provisioning.
Virtualization of the SDN controller functions by means of
NFV paradigm is supposed as a more sophisticated approach
for utilization of network functions including load balancing,
routing and forwarding, firewall and traffic engineering. NFV
gives the idea of virtualizing the SDN controller and moving
it into the cloud for dynamic deployment and required con-
nectivity of autonomous SDN controller prototypes within
minutes. Consequently, whenever a new VTN is deployed
dynamically, the functionality of the whole network can
be accomplished in a couple of minutes [11]. Moreover,
this technique also offers supplementary advantages like
reduction in hardware retainment pause and improvement
in recovery time in catastrophe or failure conditions. A
virtualized SDN controller [12] can be immediately and
effortlessly moved among physical servers within a cloud
of data centers when a hardware retainment is needed (less
hardware retainment pause), snapshots and backups of the
states of virtualized SDN controllers can be shared from one
data center to another in a cloud for quick reconfiguration
after a failure (faster recovery).

NFV related network functions (VNFs) includes IP net-
work functions (load balancing, routing and forwarding,
security, firewall or Authentication, Authorization and Ac-
counting (AAA), EPC/LTE network control functions, Serv-
ing Gateway (SGW), Mobility Management Entity (MME)
and PDN Gateway (PGW) and virtualization of Path Com-
putation Element (PCE) [13] [14]. In general, VNFs are
deployed as software instances in dedicated specialized hard-
ware in data centers or distributed computing platforms.

2 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2909356, IEEE Access

Sikandar et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function.

NFV is appropriate virtualization technology for any control
plane function or data plane packet processing in static and
dynamic network infrastructures. Despite of all, this work
focuses on virtualization of IP functions particularly traffic
load management through which load balancing would be
achieved to distribute the workload on several resources to
avoid overload on any resource. Some load balancing goals
include taking full advantage of throughput and bandwidth,
minimizing the transmission delay and response time with
optimized traffic flows [15] [16]. When it comes to saving
of resources, load balancing can be the centralized decision
based or the distributed decision based [17]. Centralized
decision and distributed decision are not so efficient methods
because of their processing delays and extended completion
times. Centralized decision collects all load information of
local controllers and sends load balancing requests to the
local overloaded controller. Distributed decision [18] allows
every controller to do load balancing locally without sending
commands. The processing delays of centralized decision
and extended completion time of load balancing in dis-
tributed decision reduces the availability and scalability of
both the strategies.

However, due to today's industry concerns [15] [19], the
existing methods need to be revised and load balancing func-
tionality would be virtualized to make it dynamic, resource
saving and independent of vendor-specific. In this paper, we
utilize the abilities of NFV paradigm and propose traffic
load balancing using SDN controller as virtualized network
function (creation of vSDN). When using vSDN we have this
opportunity that by the increase of load we can further add
secondary vSDNs to share this load. Since all the resources
(switches, routers and connections etc.) get virtualized, so we
can assign/add hardware resources as per requirement. So,
firstly it should be determined that when there is a need to
create a copy of vSDN controller and then secondly, all nodes
should learn about the existence of secondary controllers. A
copy of vSDN with exactly same configurations as original
vSDN operates correctly and shares traffic load balancing
tasks with original vSDN controller. Both vSDN controllers
independently placed in cloud with transparency assuring
that there is no master controller and every host in network
is familiar with the existence of the newly created secondary
vSDN controller.

The remaining sections of paper are planned in a way that
section II gives the literature review of formerly proposed
related work and describes the intention for this research.
NFV architecture and scope is discussed in section III to
understand the operations and importance of NFV. Section
IV is the main part of this paper, constitute the proposed
system design for load balancing using vSDN controller
as VNF. This section step by step describes the followed
strategy. Section V and VI shows the experimental setup and
obtained results respectively. Finally, section VII concludes
the complete work.

II. RELATED WORK
There are some related works on load balancing of SDN
controller, some of these are mentioned here. In OpenFlow
descriptions, the switch configuration including flow table
entries can be altered only via master c-node proposed in
[20]. This master c-node is responsible for equalize the flow
of incoming and outgoing messages at varying number of
switches to increase the scalability. For load balancing in
SDN-enabled networks, a technique called BalanceFlow was
proposed in [21], in which a super controller is deployed
among distributed controllers to handle uneven traffic load
problem. A decision-maker controller node gathers the in-
formation about all other controller nodes and then resolves
a load balancing issue by considering the load variations
of all controllers. Limitations of this approach includes (i)
performance compromises due to exchange of frequent con-
trol messages and limited resources like memory, bandwidth
and CPU power (ii) load information is obtained with delays
which do not portray the real load conditions, due to two
network transmissions (sending commands and collecting
loads) and (iii) Entire load balancing operation can be down
if central controller collapses.

Dynamic and adaptive algorithm (DALB) proposed in
[22], enabled all slave SDN controllers for local decisions
just like master controller. This algorithm allows scalability
and availability of distributed SDN controllers and need
one network transmission for gathering load. Consequently,
decision delay reduced because all controllers do not collect
the load information too frequently. While considering the
network resources, integration of SDN and NFV introduced
in [11] to enhance the network protocol and functions pro-
grammability. NFV paradigm supports the dynamic adjust-
ment of network resources and gives the concept of virtu-
alized network control functions for tenant networks. This
way, control function software instances can be dynamically
deployed and migrated if need for efficient utilization of
available resources.

Previous work on load balancing rely on physical SDN
resources whether consider SDN controller in central or
distributed mode. Through NFV, all the resources can be
virtualized and further vSDN controllers can be added for
load balancing in case of increased uneven traffic load in
vSDN-enabled networks. A copy vSDN can be configured
dynamically to share the load and to perform same tasks as
of original vSDN. So, first issue here exist is when we need to
create a copy of vSDN controller and the other issue is how
nodes will know about the existence of secondary controller?
Our work novels in a sense that we enhance the functionality
of SDN/NFV integration and introduce IP load balancing
functionality in virtual SDN controller-enabled networks by
utilizing NFV paradigm so that network resources would be
save with improved performance.

III. NFV FRAMEWORK & SCOPE
European Telecommunications Standards Institute (ETSI)
defines a three-layer NFV framework consisting of Network

VOLUME 4, 2016 3

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2909356, IEEE Access

Sikandar et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function.

Function Virtualization Infrastructure (NFVI), NFV Man-
agement and Orchestration (NFV-MANO) [23] and Virtual
Network Functions (VNFs). These high-level architectural
functional blocks are illustrated in Figure 2. This section
describes these three elements [23] [24].

A. NFV INFRASTRUCTURE
The NFVI make the environment where VNFs are em-
ployed, responsible for holding both software and hardware
resources. These physical resources comprise of commercial-
off-the-shelf (COTS) computation components, network and
storage resources which offers processing, storing and con-
necting links to the VNFs. Here abstraction of physical
computing, network and storage resources is known as virtual
pool of resources. A hypervisor-based virtualization layer
decouples the underlying hardware resources from virtual
resources to achieve abstraction. Virtual networks are de-
ployed from virtual links and nodes like VTNs while com-
pute and storage can most likely be categorized as multiple
Virtual Machines (VMs) in cloud environment. Virtual node
is created by employing either hosting or routing as software
component enclosed in a VM [10] while virtual link provides
a logical connectivity between two or more virtual nodes
but gives the impression of a direct physical interconnection
having dynamically varying properties [25]. NFVI includes
diverse amount of physical resources which can be virtual-
ized along with the support for execution of VNFs.

FIGURE 2: NFV Architectural Framework [26]

B. VIRTUAL NETWORK FUNCTIONS (VNFS)
NFs are functional wedges in a network framework con-
sisting of definite interfaces and functionalities [23]. They
can be IP network based, EPC/LTE network control or Path
Computation Element (PCE). Consequently, a VNF is im-
plementation of NFs as software instances which is obtained
by deploying a NF on virtual resources namely a VM and
capable of operating over a NFVI. A single VNF may be im-
plemented over several VMs because it can contain multiple
components inside and hence each VM would host a solitary
component of that VNF [26]. One or more VNFs make
up services that TSP offers [10], virtualized and placed on
multiple VMs but act like one service. NFV gives opportunity

of same service provisioning regardless the functions running
on dedicated hosts or on VM resources.

C. NFV MANAGEMENT AND ORCHESTRATION
(NFV-MANO)
MANO framework proposed by ETSI enables NFV-MANO
[27] to provide the required serviceability of VNFs and as-
sociated operations including deployment and configuration
of the VNFs. NFV-MANO looks for life cycle management
and orchestration of hardware and/or software resources
with support of infrastructure virtualization. Moreover, it
deals with the databases that stores the deployment and life
cycle data models and information about functions, their
services, and available resources. All necessary virtualization
and management related tasks in NFV framework are the
concerns of NFV-MANO. Interfaces for communication be-
tween different NFV-MANOs and coordination with legacy
network management systems such as Business Support Sys-
tems (BSS) or Operations Support Systems (OSS) allow the
management of VNFs together with the functions running on
traditional equipment [10].

D. SCOPE
NFV offers realization of service provisioning to the stake-
holders independent of vendor-specific hardware and soft-
ware and so familiarizes in several differences with non-
virtualized networks [9] [10] [26]. Major differences include:

1) Decoupling of Resources
As evolution of hardware and software resources is self-
determining from each other. NFV enables both hardware
and software to work autonomously and restrain the need of
integration of hardware and software entities.

2) Dynamic Functionality of VNFs
Performance of VNFs can be scaled in more flexible and
diverse way with finer granularity due to presence of instan-
tiable software components when functionality of network
functions is decoupled. Based on current network settings,
network operators can scale NFV efficiency on grow-as-you-
need basis.

3) Flexible Emplacement of Network Functions
Presence of pool of infrastructure resources makes network
function instantiation automated. These instances may de-
liver dissimilar functions and services at different time in dis-
tinct data centers. This encourages the quick and intelligent
deployment of new services over the corresponding physical
framework.

IV. SYSTEM DESIGN AND IMPLEMENTATION
NFV offers effective dealing of VNFs and associated services
in dynamic network infrastructures. When using vSDN as
a VNF, we have this opening that we can further add more
identical VNFs for the same task to share the traffic passing

4 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2909356, IEEE Access

Sikandar et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function.

through underlying network. In case of increased uneven
traffic load, a secondary vSDN can be created for load
balancing in vSDN-enabled networks. Since all the resources
(switches, routers and connection etc.) are utilized virtually
under NFV, so we need to assign/add hardware resources
as per requirement. Need for a secondary vSDN controller
is determined and a copy of vSDN controller created with
exactly same configurations as original vSDN which work
accurately and shares traffic load. Both vSDN controllers
independently placed in cloud with transparency assuring
that every client in network is familiar with the existence of
the newly created secondary vSDN controller. In this section
we present the proposed model for traffic load balancing in
tenant networks using SDN controller as VNF. The strategy
we follow is represented in Figure 3 in the form of flow
diagram.

FIGURE 3: Flowchart for the Proposed System

A. PROVISIONING OF VSDN CONTROLLER
A network hypervisor aggregates or/and partitions the phys-
ical transport network resources in virtual resources and
then provide connectivity to form multiple end-to-end VTNs.
Each VTN may possess a different VNT topology and may
co-exist with the same physical infrastructure [11]. This hy-
pervisor discovers the network by representing the abstracted
topology of each VTN and provisions an independent tenant
SDN controller for remote control of that VTN. It creates,
modifies and delete connections for VTNs and allocated
resources dynamically. On application demands, a network
hypervisor can create, modify and delete VTNs dynamically
in response concluded from a matrix relating resource re-
quirement and connections [28]. Usually, the SDN controller
of each tenant network (physical or virtual) deployed at phys-
ical server, but through SDN/NFV orchestration and manage-
ment, network control functions namely SDN controller can

also be virtualized (create vSDN) and moved into the data
centers of cloud [29] to implement independent controller
prototypes dynamically within minutes. This way, vSDN
controllers operate as Virtual Network Functions (VNFs) in
cloud.

NFV Infrastructure (NFVI) is comprise of transport net-
work hardware resources (compute, storage and network)
interconnecting distributed servers in data centers. A NFVI
virtualization layer is there on top of the physical resources
which is based upon a NFVI manager, namely, Virtualized
Infrastructure Manager (VIM), sometimes referred as cloud
controller in NFVI-MANO. VIM is in charge for managing
and provisioning of Virtual Machines (VMs). Next layer con-
sists of some VNF managers [30] that oversee the VNF's life
cycle supervision (i.e., create, configure, and remove). When
using SDN controller as a VNF, particularly the virtualized
SDN controller managers - vSDN managers are deployed
which supervise the creation of SDN controller-enabled VMs
in cloud Figure 4.

FIGURE 4: vSDN Manager Architecture

Finally, the orchestrator for SDN-enabled tenant networks
provides a generic network abstraction mechanism and over-
see the entire process from creation of new vSDN controllers
(placed into the cloud), deployment of VTN, and connections
between that VTN and the vSDN controllers. SDN/NFV
orchestration architecture by deploying vSDN controller as
VNF is displayed in Figure 5.

For provisioning of the new vSDN controller, orchestrator
appeals to the vSDN manager and specify the required SDN
controller distribution (e.g., OpenDaylight, ONOS, POX or
Floodlight etc.). Then the vSDN manager forwards this re-
quest towards the VIM which forms a new VM containing
pre-installed desired SDN controller. This vSDN contained
VM is deployed in a host server near to the corresponding
tenant network so that latency would be minimized. vSDN
manager informs orchestrator and replies with IP address of
up and running vSDN controller. Then, the second appeals
that an orchestrator makes is of connectivity. It calls for the
provisioning of flow between the vSDN controller and the
corresponding tenant network. After creation of connection,
orchestrator requests the network hypervisor to form VTN
with desired topology graph and given IP address of vSDN
controller. This topology graph is a combination of virtual

VOLUME 4, 2016 5

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2909356, IEEE Access

Sikandar et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function.

FIGURE 5: SDN/NFV Orchestration using vSDN Controller as VNF

nodes and links which represents VNT as a single virtual
node or VNT as a set of virtual links as a connection
through the physical nodes. At time when the entire process
is successfully completed, vSDN starts its functionality and
a tenant network is controlled and managed SDN controller
located in the cloud [31]. The entire process is demonstrated
in Figure 6.

B. CONGESTION DETECTION
A vSDN controller act as a strategic control point and man-
ages flow control of the switches and routers through south-
bound APIs in deployed transport networks. The forwarding
functionality of controller concerns with the decision making
for incoming flows i.e. what to do with each incoming
packet, where a flow defines a group of packets transmitted
from one network endpoint or multiple endpoints to other
endpoint or multiple endpoints. Whenever flow reaches to a
certain limit and controller utilization reaches to a threshold
limit, congestion detection component of controller notifies
about congestion. The threshold decision is determined by
using the parameters like CPU, RAM and network conges-
tion/throughput. Here three components, topology creation
component, host management component and congestion
detection component of the controller work together. Topol-
ogy creation component discovers and stores link status to
form current network topology. This component sends Link
Layer Discovery Protocol (LLDP) packet on all ports for
identification of links and then switches replies with required
information. The current network topology is stored, and this
information is accessible and helpful for further use of the
controller [32].

Host management component manages all discovered
hosts in network by storing the necessary information to-

gether with MAC and IP addresses of source host and
destination host, OpenFlow switches IDs, connected nodes
and number of available ports of OpenFlow switches. This
information is reserved for next step so that the proper route
and shifting on secondary vSDN controller for large flow
would be done if congestion occurs in the network. The
main component in this entire method is congestion detection
component, which sets periodic queries and stores statistics
from all OpenFlow switches. Obtained statistics are utilized
to identify large flows and then compute load on various links
so that whenever a flow reaches the threshold limit, it would
be detected immediately. For congestion detection, vSDN
controller gathers statistics per table, per port and per flow
by polling request of STATS_REQUEST message given to
PORT, TABLE and FLOW in network after fixed intervals.
As a response, switches in topology replies the controller
with STATS_REPLY message [32].

LTrans =
Lc − Lthr

Lthr
(1)

The vSDN controller observes the transmitted data bytes
at the ports of every switch periodically. At time when the
transferred data bytes get 70% greater than that of the link
capacity, it is supposed to reach the threshold and congestion
conditions come to occur in the controller. From Equation 1,
overload transferred bytes can be determined, where Lc de-
notes the current load bytes, Lthr is the threshold load value of
controller and Ltrans is increased portion of transferred load.
Upon identification, the large flow which induces congestion
are reserved and control of that flow is inferred to shift on
secondary vSDN controller for load balancing.

Equation 1 gives overloaded data bytes that pass over the
70% threshold of the link capacity. This identification is

6 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2909356, IEEE Access

Sikandar et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function.

FIGURE 6: vSDN Provisioning Workflow

supposed as the fulfillment of congestion conditions. Need
for creation of a secondary vSDN is verified here. As vSDN
controller is aware of the congestion and works as a VNF,
it notifies orchestrator about this congestion. At this time,
orchestrator and vSDN manager come into play. Orchestrator
requests the vSDN manager for creation of a new vSDN
manager. Primary vSDN doesn’t selects the subsequent con-
trollers. This selection is responsibility of vSDN manger
that creates another SDN controller-enabled VM from avail-
able network resources with exactly same configurations as
original one and that involves the same operating system,
configurations and flow table entries.

While performing simulations 2 controllers are used, since
vSDN is taken as VNF and its creation and termination
are dynamic which makes our proposed method scalable, so
there may be third one or up to N if needed. Even so, we
believe that one vSDN controller and a supporting secondary
vSDN controllers are enough for handling of increasing load
and corresponding network functions until an unexpected
load is observed which may approach the threshold of both
the controllers. Load is distributed among all the other con-
trollers which is greater than the capacity of each previously
created controller. For instance, the load more than threshold
of first controller will be shifting to second controller, if there
is need of third one, then extra load of second controller will
be shifted to third and so on. On the other hand, decrease
in load will lead to the removal of each newly created next
in line controller, to prevent the underutilization of network
resources.

C. VSDN CONTROLLER DUPLICATION AND MIGRATION
vSDN controller duplication becomes unavoidable on valida-
tion of congestion detection. In this regard, vSDN controller
informs orchestrator about need of a secondary vSDN con-
troller so that congestion would be eliminated, and network
performance would not be compromised. As vSDN con-
troller works as a VNF, so on this notification, orchestrator
requests the vSDN manager for dynamic creation of another
SDN controller-enabled VM with exactly same configura-
tions as original one, namely secondary vSDN controller
(duplicate or create copy of primary vSDN controller with
same operating system, configurations and flow table en-
tries). Consequently, whole process of vSDN provisioning
is repeated which is described earlier, takes a short time
duration for getting up and running. This VNF instance is
also moved into the cloud to ensure transparency to the users.
In view of this, two identical virtual appliances control the
same tenant network without any break in ongoing services.

D. TRAFFIC LOAD BALANCING USING VSDN
CONTROLLER
As newly created secondary vSDN controller gets the list of
all clients connected to primary controller and knows about
the topology and network connections, so it broadcasts its
existence by sending a FEATURE_REQUEST message to
all the hosts and wait for reply so that all hosts register
secondary vSDN as their controller. As a reply, hosts update
their flow tables and register with secondary vSDN controller
and provide feature information for instance, the data-path
ID (DPID) and list of ports etc. So previously unaware

VOLUME 4, 2016 7

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2909356, IEEE Access

Sikandar et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function.

FIGURE 7: Proposed System Design for Traffic Load Balancing by Utilizing vSDN Controller

hosts of vSDN controller simultaneously connect to multiple
controllers in network.

wk = Σn
i=1

Lo

co
+ Σn

i=1

Li

ci
(2)

For load balancing, excessive load is shifted to the sec-
ondary vSDN controller and then on the bases of gathered
statistics by congestion detection component, it determines
the minimum burdened shortest paths among available set of
shortest paths. Equation 2 gives the total cost of each path,
here one path is defined as wk εS, wk represents path and S
represents the set of available paths. Li and ci denotes the
link load and link capacity respectively. Initially, all the paths
have predefined fixed load L0 and capacity c0. The Li and
ci are estimated from statistics after threshold reaches and
a gradual change occurs in both the parameters. The path
with minimum wk is selected from S and current flow table
is updated by a OFP_FLOW_MOD message. Finally, the re-
routing process re-routes the traffic on alternative paths.

β =
1
kΣk

i=1Li, ..., Lk

Lmax
(3)

The load balancing rate is defined in Equation 3, where
Li,..,Lk represents the load of entire system including con-
troller. The value of βvaries between 0 and 1. When βis close
to 0, it means that there is no need of load balancing oper-
ation. While when βcrosses the 0.7, load balancing works
and load is distributed based on (2). One more important
thing is realized here, that is, whenever traffic load decreases

from the specified value (value of βgoes less than 0.7, β<0.7)
and it seems like there is no need for the secondary vSDN
controller, vSDN manger can request VIM for the deletion of
secondary vSDN-enabled VM and restoration of resources
accordingly. Figure 7 shows the functional blocks for pro-
posed system including secondary vSDN controller for load
balancing. The algorithms used during research work are
provided below. Algorithm 1 is used for Creation of SDN
Controller. Algorithm 2 is used for establishing Connection
between the newly created SDN Controller and the hosts. For
detecting and minimizing Congestion Algorithm 3 is used.

Algorithm 1 SDN Controller Creation

1: CreateSDN()
2: {
3: i=1
4: ZQ:
5: GetNewMessage Message

(i)=SDNManager(OD,ONOS,POX);
6: CloudCtrl ctrlMsg =message(i);
7: Create VM(i);
8: VM(i)=New SDNCtrl(PredefinedParameters);
9: vSDN= VM(i);

10: if β < ω then
11: hostServerS == vSDN(i)
12: else
13: GOTO ZQ;
14: end if}

8 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2909356, IEEE Access

Sikandar et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function.

Algorithm 1 is used for creation of secondary SDN
controller. The process is initiated by the existing SDN Con-
troller, when it detects that the traffic load exceeds threshold
it notifies the SDN Manager. SDN Manager then sends a
ctrlMsg to the Cloud Controller for the creation of another
SDN Controller. The Cloud Controller creates a VM and
assigns a copy of existing SDN Controller with exact same
parameters to the newly created VM. This creates a Virtual
SDN Controller (vSDN) identical to the existing Controller
as a Secondary SDN Controller.

Algorithm 2 Connection Creation

1: CreateConnection() {
2: newConnection = vSDN(i);
3: getIP IP = vSDN(i);
4: getTGraph GP = vSDN(i)
5: new VTN = VTN (IP,GP);
6: startFlow newFlow(VTN) }

After creation of Secondary SDN Controller the next step
is to establish connection between the newly created con-
troller and the hosts in the network. Algorithm 2 starts its
working and introduces the controller to the hosts. This is
done by creating a new connection for the newly created
vSDN Controller. The vSDN Controller then gets IP address
and Graph of the network while combining these two to
create its own Virtual Tenant Network (VTN). Finally, the
vSDN Controller disseminates its newly established Flows to
the network hence making introducing itself to the hosts.

Algorithm 3 Congestion Control

1: CongestionControl() {
2: SDN newMsg;
3: newMsg=STATS_REQUEST(PORT,TABLE,FLOW);
4: Y=newMsg;
5: if Y >= 70% then
6: SecvSDN = newvSDN(i+ 1);
7: vSDN(i+ 1) = vSDN(i);
8: vSDN(i + 1) =
messagemsg(FEATUREREQUEST);

9: HostList = vSDN(i+ 1);
10: i=i+1;
11: end if}

Algorithm 3 lets the SDN Controller work as a congestion
detector in the system. This is done by creating a newMsg
by SDN Controller. This specific message is used to read
statistics of the data being transmitted between the hosts.
When this message starts consuming more the 70% resources
of the network, as discussed in this section previously, the
SDN Controller sends request for creation of another SDN
Controller to the SDN Manager. The SDN Manager then
creates secondary vSDN Controller and divides the traffic
load on both the controllers for the sake of load balancing.
This whole process allows the SDN Manager to manage
traffic load throughout the network efficiently.

V. EXPERIMENTAL VALIDATION
Mininet has been used to perform experimental validation of
the proposed methodology, as Mininet can create realistic
virtual network topology with application code with SDN
support on a single machine in seconds. We used Fat-Tree
topology as representative data center network infrastructure
because Fat-Tree has identical bandwidth at any bisections,
depicted in Figure 8. In our topology, switch IDs are in
decimal and hexadecimal to avoid conversion complications.
For traffic generation, we have considered iPerf since it
provides active measurement of link utilization. iPerf is open
source and useful for the assessment of the traffics which
is generated over TCP and UDP with the support of sev-
eral types of measurement scales including throughput, link
utilization and data rate. When using iPerf, the data packets
with definite size and rate are conveyed in a specific number
of hosts. This method generates 56-byte TCP data packets at
a rate of 120Kbps at 8-pairs of VMs with a straightforward
Python script and executing in the proper network namespace
created in Mininet.

This emulated setting works on a solitary Intel i7 2.4GHz
CPU, 16GB RAM, running Ubuntu 16.04. The generated
traffic rate has kept relatively tolerant, but it doesn’t affect the
validity of our experiments. VMs are created in VirtualBox
hypervisor containing Ubuntu 16.04 installed with allocation
of 8GB memory to the virtual system and left the CPU
allocation default. In large infrastructures, like in real data
center environments, the communication between hypervi-
sors and one SDN controller can slow down the performance
of the controller and the network, so to avoid these kind of
scenarios, we prefer the use the remote-control plane. Along
with this setup, Wireshark is used for capturing packets &
graphs related to packets size, bandwidth utilization and
load-balancing. We used OpenDaylight controller as SDN
controller [33] which acted as the main controller throughout
the experiments. OpenDaylight is java based open source
SDN controller. The aim of OpenDaylight controller is to
provide a functional SDN platform which allows users to
directly deploy SDN controller virtually. Figure 8 shows the
topology used during experiments, consist of eight terminal
hosts and ten switched. Switch IDs are shown here in figure
next to each switch while port numbers are shown near the
links. The port numbers may vary when code is executed in
mininet.

VI. RESULTS & DISCUSSIONS
In our experiment we first deployed a single remote vSDN
controller namely OpenDaylight controller Beryllium distri-
bution and connected it with an abstract Fat-Tree topology
in Mininet emulator. Initially, connectivity information is
achieved, such as information about all connected hosts,
their connected switches, their IP addresses, MAC addresses
and port mapping etc. Then statics about links are gathered
periodically so that it would be notified whenever traffic
load reaches to threshold limit. At time when the transmitted
traffic is 70% higher than that of the link capacity, secondary

VOLUME 4, 2016 9

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2909356, IEEE Access

Sikandar et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function.

FIGURE 8: Network Topology used During Experiments

vSDN is deployed for the same topology. At this stage
network topology is controlled by two identical controllers.
Route/path availability information between two hosts is ob-
tained using Dijkstra in a way limiting the search of shortest
paths to the only one section of Fat-Tree topology where
load balancing has to be performed. Requests are made to
calculate total cost of links for all the paths between two hosts
in terms of transmitted data. The packet flows are shaped by
considering the minimum transmission cost of links at the
current time and the best path is determined, and static flows
are moved to the other controller and to every switch which
lies in the given best path. Substantial information such as
source IP, source MAC, destination IP, destination MAC,
in-port, and out-port is provided to all flows. The program
periodically updates this information after minute in so doing
make it dynamic. Wireshark was used to capture and analyze
the connectivity between hosts when controller is running
and connected to the topology created in Mininet.

Figure 9 to Figure 13 present the results achieved prior to
and after load balancing. We present the results in Figure 9
to Figure 11 including load rate, pinging and link capacity in
Gbps for Host1 to Host4 & Host2 to Host6 as a sample in our
topology, but these results can be acquired for any host in the
network.
Figure 9 illustrates Load Variation on a Link from Host 1
to Switch S1 between Host1 to Host4 & Host2 with Switch
S1 between Host2 to Host6 with variation in time on x-
axis. Without load balancing, the load increases with the
passage of time. However, in case of proposed method that
load on a single link decreases after load balancing because
load get distributed on alternative paths. At start the load of
the proposed system is high, it is because of the number
of hosts and the amount of data they are communicating
with each other. However, this high load at start does not

affect the performance badly, because enough resources are
available at the start of simulation for each VM. In case
of no load balancing, the load increases with time and the
scarce resources also start to decrease which may result in
availability or decrease in performance of VM.

FIGURE 9: Load Variation on a Link between Host1 to Host4

Figure 10 shows improvement in iPerf pinging prior to
and after the load balancing for Host1 to Host4 & Host2 to
Host6. This figure clearly depicts that the Round Trip Time
(RTT) has decreased significantly due to the proposed load
balancing scheme. When there were 40 packets, the average
ping time for scheme which does not uses any load balancing
system i.e. existing SDN was 0.35 seconds. However, for the
same number of packets (load), the proposed scheme reduced
the average ping time to 0.15 seconds which is more than
50% improvement. This decreased ping time is due to the
fact that the proposed load balancing distributed the load.

10 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2909356, IEEE Access

Sikandar et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function.

FIGURE 10: Pinging between Host1 to Host4

Figure 11 gives the idea of bandwidth enhancement after
load balancing for the same hosts. It can be seen from
figure that average link capacity of the links has improved
as compared to the existing system. Also, the average link
capacity is not decreasing at the same rate with the passage
of time as it is decreasing for the existing solution. This
decrease rate is very slow, which tells that the proposed load
balancing is a solution that will stabilize the network and will
not decrease its performance over the passage of time.

FIGURE 11: Average Available Link Capacity between
Host1 to Host4

Figure 12 indicates the throughput at different time inter-
vals while keeping the load percentages stable. Again, the
throughput is improved with the proposed load balancing
scheme.

Considering the Figure 13, average delay can be seen if
packet size varies in the range of 8 to 56 bytes. At start, when
the load was 8 the delay for both schemes is same. However,
as the load (packet size) increases the average delay in micro
seconds increases with a high pace for existing scheme as

FIGURE 12: Throughput Considering Different Time Inter-
vals

compared to the proposed load balancing scheme. At load
of 56, the average delay of existing scheme was 1400 micro
seconds. When the proposed load balancing was applied, the
average delay is reduced to 825 micro seconds for the same
load. This shows 41% improvement in average delay.

FIGURE 13: Average Delay with Increase in Load

Statistical and graphical comparison shows a signifi-
cant improvement in average load rate, pinging, bandwidth,
throughput and delay. So, it is realized that proposed ap-
proach enhances the network performance in terms of above
mentioned parameters. Virtualization of control functions
and use them as an VNF comes with saving of resources and
better performance of network to the user satisfaction.

Most of the time, the proposed methodology in any re-
search work turns out to be as much relatable to the problem
statement as the researchers wanted. But, there are also
some limitations in every research work. Our proposed work
may also have some limitations, which may provide future
research direction to the researchers. Following are the few

VOLUME 4, 2016 11

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2909356, IEEE Access

Sikandar et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function.

limitations of the proposed methodology, discussed below:
The complexity of proposed technique is somehow high due
to the consuming of multiple controllers. It may increase with
the number of controllers. Another limitation of our work is,
it does not mention the challenges of energy consumption
and carbon emission. These issues can be independently
analyzed and discussed. So, when it comes to determining
the effectiveness of load balancing mechanism in terms of
energy consumption and carbon emission.

VII. CONCLUSION
In this paper we presented the traffic load balancing mech-
anism using SDN controller as VNF in SDN-enabled net-
works. The proposed system allows the provisioning of a
vSDN controller which is acting as a VNF service. Whenever
traffic load reaches to a certain threshold, a secondary vSDN
controller with exact same configuration as original can be
added in the same network to share the load and tasks of
original vSDN controller ultimately balancing load on both
controllers. Since, all the hosts know the existence of both
the controllers so exceeded load would be shifted to the
secondary vSDN controller which switches the load and
balances the flows among connected hosts. We performed
the experiment using Fat-Tree topology as representative data
center network infrastructure with OpenDaylight as SDN
controller on Mininet emulator for load balancing. We found
accurate working of two controllers and a rise in average
pinging of hosts, transfer rate and link capacity after load
balancing was witnessed. This refers to the improvement in
network performance. In future, we aimed to deploy more
IP network functionalities as VNF services and direct our
research towards virtualization of EPC/LTE network control
functions.

REFERENCES
[1] E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer, and

O. Koufopavlou, “Software-defined networking (sdn): Layers and archi-
tecture terminology,” Tech. Rep., 2015.

[2] O. N. F. (ONF), “Sdn architecture 1.0,” Open Networking Foundation
(ONF), https://www.opennetworking.org/images/stories/downloads/sdn-
resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf , 2014,
vol. 1, no. 1.0, pp. 1–68, 2014.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[4] O. N. F. (ONF), “Sdn architecture for transport networks,” Open
Networking Foundation (ONF), https://www.opennetworking.org/wp-
content/uploads/2014/10/SDN_Architecture_for_Transport_Networks_TR522.pdf
, 2016, vol. 1, no. 1.0, pp. 1–10, 2016.

[5] “Understanding the sdn architecture : Sdn control plane & sdn data plane,”
https://www.sdxcentral.com/sdn/definitions/inside-sdn-architecture,
accessed: 2018-03-30.

[6] J. Matias, J. Garay, N. Toledo, J. Unzilla, and E. Jacob, “Toward an sdn-
enabled nfv architecture,” IEEE Communications Magazine, vol. 53, no. 4,
pp. 187–193, 2015.

[7] O. S. Brief, “Openflow-enabled sdn and network functions virtualization,”
Open Netw. Found, 2014.

[8] N. Operators, “Network functions virtualization, an introduction, benefits,
enablers, challenges and call for action,” in SDN and OpenFlow SDN and
OpenFlow World Congress, 2012.

[9] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtual-
ization: Challenges and opportunities for innovations,” IEEE Communica-
tions Magazine, vol. 53, no. 2, pp. 90–97, 2015.

[10] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 1, pp. 236–262, 2016.

[11] R. Muñoz, R. Vilalta, R. Casellas, R. Martinez, T. Szyrkowiec, A. Aut-
enrieth, V. López, and D. López, “Integrated sdn/nfv management and
orchestration architecture for dynamic deployment of virtual sdn control
instances for virtual tenant networks,” Journal of Optical Communications
and Networking, vol. 7, no. 11, pp. B62–B70, 2015.

[12] R. Vilalta, A. Mayoral, R. Munoz, R. Casellas, and R. Martínez, “Multi-
tenant transport networks with sdn/nfv,” Journal of Lightwave Technology,
vol. 34, no. 6, pp. 1509–1515, 2016.

[13] R. Vilalta, R. Muñoz, A. Mayoral, R. Casellas, R. Martínez, V. López,
and D. López, “Transport network function virtualization,” Journal of
Lightwave Technology, vol. 33, no. 8, pp. 1557–1564, 2015.

[14] R. Vilalta, R. Muñoz, R. Casellas, R. Martinez, V. Lopez, and D. Lopez,
“Transport pce network function virtualization,” in Optical Communica-
tion (ECOC), 2014 European Conference on. IEEE, 2014, pp. 1–3.

[15] A. A. Neghabi, N. J. Navimipour, M. Hosseinzadeh, and A. Rezaee, “Load
balancing mechanisms in the software defined networks: a systematic and
comprehensive review of the literature,” IEEE Access, vol. 6, pp. 14 159–
14 178, 2018.

[16] S. K. Askar, “Adaptive load balancing scheme for data center networks
using software defined network,” Science Journal of University of Zakho,
vol. 4, no. 2, pp. 275–286, 2016.

[17] J. Yu, Y. Wang, K. Pei, S. Zhang, and J. Li, “A load balancing mechanism
for multiple sdn controllers based on load informing strategy,” in Network
Operations and Management Symposium (APNOMS), 2016 18th Asia-
Pacific. IEEE, 2016, pp. 1–4.

[18] Y. Zhou, M. Zhu, L. Xiao, L. Ruan, W. Duan, D. Li, R. Liu, and M. Zhu,
“A load balancing strategy of sdn controller based on distributed decision,”
in Trust, Security and Privacy in Computing and Communications (Trust-
Com), 2014 IEEE 13th International Conference on. IEEE, 2014, pp.
851–856.

[19] T.-L. Lin, C.-H. Kuo, H.-Y. Chang, W.-K. Chang, and Y.-Y. Lin, “A
parameterized wildcard method based on sdn for server load balancing,”
in Networking and Network Applications (NaNA), 2016 International
Conference on. IEEE, 2016, pp. 383–386.

[20] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella, “Towards
an elastic distributed sdn controller,” 2013.

[21] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “Balanceflow: Controller
load balancing for openflow networks,” in 2012 IEEE 2nd International
Conference on Cloud Computing and Intelligence Systems.

[22] K. Hikichi, T. Soumiya, and A. Yamada, “Dynamic application load
balancing in distributed sdn controller,” in Network Operations and Man-
agement Symposium (APNOMS), 2016 18th Asia-Pacific. IEEE, 2016,
pp. 1–6.

[23] N. ETSI, “Gs nfv 003-v1. 2.1-network function virtualisation (nfv): Ter-
minology for main concepts in nfv,” publishing December, 2014.

[24] P. Quinn and T. Nadeau, “Service function chaining problem statement,”
draft-ietf-sfc-problem-statement-07 (work in progress), 2014.

[25] R. Mijumbi, J. Serrat, and J.-L. Gorricho, “Self-managed resources in
network virtualisation environments,” in Integrated Network Management
(IM), 2015 IFIP/IEEE International Symposium on. IEEE, 2015, pp.
1099–1106.

[26] S. Ejaz and Z. Iqbal, “Network function virtualization: Challenges and
prospects for modernization,” in Engineering and Emerging Technologies
(ICEET), 2018 International Conference on. IEEE, 2018, pp. 1–5.

[27] N. ETSI, “Gs nfv-man 001 v1. 1.1 network function virtualisation (nfv);
management and orchestration,” 2014.

[28] R. Vilalta, R. Muñoz, R. Casellas, R. Martínez, F. Francois, S. Peng,
R. Nejabati, D. E. Simeonidou, N. Yoshikane, T. Tsuritani et al., “Network
virtualization controller for abstraction and control of openflow-enabled
multi-tenant multi-technology transport networks,” in Optical Fiber Com-
munication Conference. Optical Society of America, 2015, pp. Th3J–6.

[29] R. Cziva, S. Jouët, D. Stapleton, F. P. Tso, and D. P. Pezaros, “Sdn-based
virtual machine management for cloud data centers,” IEEE Transactions
on Network and Service Management, vol. 13, no. 2, pp. 212–225, 2016.

[30] R. Vilalta, A. Mayoral, R. Muñoz, R. Casellas, and R. Martínez, “The
sdn/nfv cloud computing platform and transport network of the adrenaline

12 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2909356, IEEE Access

Sikandar et al.: Traffic Load Balancing Using SDN Controller as Virtualized Network Function.

testbed,” in Network Softwarization (NetSoft), 2015 1st IEEE Conference
on. IEEE, 2015, pp. 1–5.

[31] R. Muñoz, R. Vilalta, R. Casellas, R. Martínez, T. Szyrkowiec, A. Auten-
rieth, V. López, and D. López, “Sdn/nfv orchestration for dynamic deploy-
ment of virtual sdn controllers as vnf for multi-tenant optical networks,” in
Optical Fiber Communications Conference and Exhibition (OFC), 2015.
IEEE, 2015, pp. 1–3.

[32] M. Gholami and B. Akbari, “Congestion control using openflow in
software defined data center networks,” in 19th International ICIN
Conference-Innovations in Clouds, Internet and Networks, Paris, 2016, pp.
1–5.

[33] “OpenDaylight platform overview,” https://www.opendaylight.org/what-
we-do/odl-platform-overview, accessed: 2010-09-30.

SIKANDAR EJAZ is a Post-Graduate Researcher
at Dept. of Computer Science, University of En-
gineering & Technology, Taxila, Pakistan. He re-
ceived his Bachelor of Science degree in Telecom-
munication & Networking from COMSATS Uni-
versity Islamabad, Pakistan. His research interests
include Software Defined Networking & Network
Function Virtualization.

ZESHAN IQBAL is an Assistant Professor at
Department of Computer Science, University of
Engineering of Technology, Taxila. He completed
his PhD in Computer Engineering from UET Tax-
ila in 2013 and MS in Computer Engineering
from Center for Advance Studies in Engineer-
ing, Islamabad, Pakistan, 2006. His research in-
terests include: Software Defined Networks, Net-
work Function Virtualization, Information Centric
Networks, Routing Protocols Optimization and

Wireless Body Area Networks.

PEER AZMAT SHAH is Postdoctoral Researcher
at Erik Jonsson School of Engineering and Com-
puter Science, University of Texas at Dallas, TX,
USA. He is also an Assistant Professor at Depart-
ment of Computer Science, COMSATS University
Islamabad, Attock Campus, Pakistan. He Com-
plete his PhD in 2014 from Universiti Teknologi
PETRONAS, Malaysia. His research interests in-
clude: mobility management in wireless networks,
Future Internet, modelling and optimization of

network protocols and algorithms.

BILAL HAIDER BUKHARI is serving as Assis-
tant Professor since 2013 in COMSATS Univer-
sity Islamabad, Attock Campus, Pakistan. He is
a Ph.D. candidate in Computer Science at Bahria
University Islamabad Campus. Bilal Haider re-
ceived his degree of Master of Science in Com-
puter Science from Griffth College Dublin. He
also served as Manager Information System in
CIIT Attock Campus till 2017. His research in-
terests include Vehicular ad hoc Networks, Intel-

ligent Transportation Systems, Software Defined Networks.

ARMUGHAN ALI is an Assistant Professor in
Computer Science department of COMSATS Uni-
versity Islamabad, Attock campus. He is serving
in this entrenched institute for the last 10 years.
Along with extraordinary pedagogical skills he
also marked his name as one of the leading re-
searchers in the university. His research is pre-
dominantly in the field of Wireless Networks and
optimization of networks using Machine Learning
and Artificial Intelligence.

FARHAN ADIL is an Assistant Professor at De-
partment of Computer Science, COMSATS Uni-
versity Islamabad, Attock Campus. Farhan Aadil
received his B.S. degree in Computer Science
from Allama Iqbal Open University, Pakistan in
2005. He pursued a career in the computer science
for 4 years (2005 to 2009). He received his M.S. &
Ph. D degrees in Software Engineering and Com-
puter Engineering in 2011 and 2016 respectively,
from University of Engineering and Technology,

Taxila, Pakistan. His research interests include Vehicular ad hoc Networks,
Machine Learning, and Evolutionary algorithms.

VOLUME 4, 2016 13

