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h i g h l i g h t s

• We refer to a distributed environment consisting of nodes connected in an arbitrary network topology.
• We consider the problems of the distribution, verification, review and revocation of access privileges for memory segments or segment parts

(subsegments).
• We propose a form of protected pointer that includes the name of a node, the identifier of a segment or subsegment in that node, a set of access rights

and a password.
• A protected pointer is valid if the password descends from a primary password associated with the node by application of a universally-known

parametric one-way function.
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a b s t r a c t

With reference to a distributed environment consisting of nodes connected in an arbitrary network
topology, we propose the organization of a protection system in which a set of subjects, e.g. processes,
generates access attempts to memory segments. One or more primary passwords are associated with
each node. An access to a given segment can be successfully accomplished only if the subject attempting
the access holds an access privilege, certified by possession of a valid protected pointer (p-pointer)
referencing that segment. Each p-pointer includes a local password; the p-pointer is valid if the local
password descends from a primary password by application of a universally known, parametric one-way
generation function. A set of protection primitives makes it possible to manage the primary passwords,
to reduce p-pointers to include less access rights, to allocate new segments, to delete existing segments,
to read the segment contents and to overwrite these contents. The resulting protection environment is
evaluated from a number of viewpoints, which include p-pointer forging and revocation, the network
traffic generated by the execution of the protection primitives, the memory requirements for p-pointer
storage, security, and the relation of our work to previous work. An indication of the flexibility of the
p-pointer concept is given by applying p-pointers to the solution of a variety of protection problems.

© 2018 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let us consider a protection system in which a set of active
entities, the subjects S0, S1, . . . , generates access attempts to a
set of protected, passive entities, the objects B0, B1, . . . [23,45]. A
subject can be a scheduled computation (a process), or, in an event-
driven environment, a processing activity causedby the occurrence
of an event, e.g. a hardware interrupt [30]. The system associates
a set of access rights with each object; each access right makes it
possible to access the object in a specific mode. Thus, a subject is a
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unit of computation that may possess access rights, and an object
is a unit to which specific access rights may be applied [26]. In a
classical model, the protection system takes the form of an access
matrix AM , featuring a row for each subject and a column for each
object [34,37,45]. Element AMi,j of the access matrix specifies the
access privilege, i.e. the set of access rights, held by subject Si on
object Bj.

An important problem in the implementation of a protection
system is how to represent the accessmatrix inmemory. A solution
is to associate a set of passwordswith each given object. Each pass-
word corresponds to an access privilege for that object. A subject
that holds a given password can access the object to carry out
the actions permitted by the access rights in the access privilege
associated with this password.
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1.1. Password proliferation

Passwords tend to proliferate. For each given object, we have
one password for each significant access privilege. For instance, for
two access rights,wemay have up to three passwords, correspond-
ing to each access right separately, and the two access rights in
conjunction. These passwords will be stored as part of the internal
representation of the object; for small objects, the memory area
reserved for password storage can be a significant fraction of the
total. Alternatively, we may define only two passwords, one for
each access right. In this case, a subject that is granted both access
rights owns the two passwords, and an action requiring full access
privileges will be permitted by presenting both these passwords.
This is an undue complication in access privilege management. Of
course, the problem is exacerbated for objects supporting more
access rights.

1.2. Password reduction

A further important issue is that of access privilege reduction.
Let us consider a subject S0 that holds a password p corresponding
to a given access privilege for object B. S0 can grant this access
privilege to a different subject S1 simply by transmitting p to S1.
So doing, S1 acquires all the access rights associated with p. Let
us now suppose that S0 is aimed at transmitting only a subset of
these access rights. In this case, S0 sends p to a component of object
B, which we shall call the password manager PMB. The password
manager returns a password for the reduced access privilege to
S0. If this password does not exist, the entire procedure must be
supported by an ad hoc ability of PMB to create new passwords.
If this is indeed impossible, PMB returns a negative acknowledge-
ment to S0, and the access right reduction request fails. Of course,
this procedure is an undue complication of the whole password
management process. In a distributed system, network costs and
delays are associated with the necessity to communicate between
S0 and PMB, if they reside in different nodes.

Wemay conclude that amechanism is desirable, allowing a sub-
ject that holds a password for a given object to create passwords for
reduced privileges autonomously, without incurring the costs and
complications connected with requests to a password manager.

1.3. Password review and revocation

In the access matrix model, revocation of an access privilege
means to eliminate this access privilege fromone ormore elements
of thematrix. Revocation can be carried out by column, i.e. it applies
to all, or part of, the subjects that hold a privilege for a given
object, or by rows, i.e. we revoke the access privileges held by a
given subject, for all, or part of, the objects to which these access
privileges apply. Revocation by row is especially interesting in a
distributed system, for instance, to limit revocation to the access
privileges held by a subject in a specific node.

A characteristic of password environments is the ease of access
privilege distribution [17,21]. A subject that receives a copy of a
password acquires the same access privilege of the subject that
grants this password; in fact, the copy is indistinguishable from the
original. The recipient subject is free to transmit the password fur-
ther. This means that copies of the same password tend to spread
throughout the system, and it is hard, if not impossible, to keep
track of their position. Even worse, in a distributed environment,
the copies can be stored in different nodes. A related problem is
that of password revocation [9]. After a password has been revoked,
it is no longer possible to use that password for successful object
access.

If we modify the internal representation of an object to replace
a given password with a new password, we revoke the corre-
sponding access privilege from all the subjects that hold the old

password. In a distributed system, revocation is independent of the
network location of these subjects. A revocation can be followed by
a distribution of the new password. Suppose that we are aimed at
revoking an access privilege from a subset of the subjects, e.g. the
subjects being executed in a given node. We can change the pass-
word, and distribute the new password to the subjects in the other
nodes. An approach of this type has high costs in terms of network
traffic, it induces considerable delays due to network propagation,
and is an undesirable complication of the whole process of access
privilege management.

1.4. Protected pointers

In this paper, we present solutions to the problems, outlined
above. We refer to a distributed system consisting of nodes con-
nected by a local area network. We make no hypothesis on the
internal architecture of the nodes, the only exception being the
provision for the two traditional modes, a kernel mode, and a user
mode with memory access limitations. In each node, the primary
memory is partitioned into a privatememory area, which hosts the
protection system and can be accessed only from within the node,
and a shared memory area, which can also be accessed from the
other nodes, albeit in a strictly controlled fashion.

The shared memory is segmented. A segment is a contiguous
memory area completely defined by an identifier, a base and a
limit. Identifiers are local to the given node. They are assigned
to segments in the order of their creation. The base of a given
segment is the address of the first storage unit of this segment. The
limit expresses the segment size. Segments can overlap, partially
or totally. This means that a memory cell can be part of two or
more segments. Segments can have subsegments. A subsegment
of a given segment occupies a contiguous memory area, entirely
confined within the boundaries of that segment. The subsegment
is completely defined by an identifier, a base within the original
segment, and a limit that expresses the subsegment size. Subseg-
ment identifiers are relative to segments; for every given segment,
its first subsegment is identified by 1 (as will be shown later,
subsegment 0 is reserved).

Segments are the basic unit of information protection and shar-
ing between the nodes. Four access rights are defined for a seg-
ment, the read access right that makes it possible to read the
segment contents, the write access right that makes it possible
to overwrite these contents, the new access right that makes it
possible to create subsegments within the segment, and the delete
access right thatmakes it possible to delete the segment. An access
privilege can be expressed in terms of any combination of the four
access rights.

A subject can access a given segment only if it owns an access
privilege certified by possession of a protected pointer for this seg-
ment (p-pointer from now on, for short). A p-pointer for a segment
in the shared memory of a given node includes the node name, the
segment identifier, an optional specification of an access privilege,
and a local password. The p-pointer is valid if the local password is
valid. If this is the case, the p-pointer grants the specified access
privilege for that segment. If the access privilege specification is
lacking, the p-pointer grants a full access privilege, i.e. all the four
access rights.

Of course, if we associate a password with each existing seg-
ment and each access privilege, the number of passwords grows
unacceptably. This is a undesirable flaw that we are aimed at
avoiding. Instead, we maintain a small number of passwords in
each node, in the private memory area reserved in that node
for the protection system. These passwords are called the pri-
mary passwords. Each primary password has an identifier (order
number) and a value. Each p-pointer includes the identifier of a
primary password. The p-pointer is valid if the local password
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results from the application of a password generation mechanism
to that primary password. This mechanism is based on application
of a universally-known generation function. The number of primary
passwords in each given node is related to the possibility to revoke
access privileges selectively. If a form of selective revocation is not
required, a single primary password is sufficient.

The rest of this paper is organized as follows. Section 2 intro-
duces our protection model, with special reference to p-pointer
generation, validation, and revocation. Section 3 presents a set
of primitives, the protection primitives, which form the subject
interface of the protection system. The actions involved in the
execution of each primitive are described. Primary passwordman-
agement, segment allocation and deletion, and remote segment
access are considered in special depth. Section 4 presents a few
examples of practical applications of p-pointers to the solution of
a variety of protection problems. This section is especially aimed
at giving an indication of the flexibility of the p-pointer concept.
Section 5 discusses the proposed protection system from a number
of viewpoints, which include p-pointer forging and revocation, the
network traffic generated by the execution of the protection prim-
itives, the memory requirements for p-pointer storage, security,
and the relation of our work to previous work. Section 6 gives
concluding remarks.

2. The protection model

2.1. Protected pointers

Function f is one-way if, given a value x, it is easy to compute
f (x), but given a value y, it is computationally infeasible to find
a value x such that y = f (x) [3,18]. One-way functions can be
constructed starting from a good cryptosystem, to minimize the
design and implementation efforts [25,32]. In a common approach,
a publicly known constant c is encrypted using x as the key,
i.e. f (x) = Ex(c) [35]. Function fc(x) is a parametric one-way function
if, given a value y and a parameter c , it is computationally unfeasi-
ble to find a value x such that y = fc(x) [38]. Thus, a parametric one-
way function is a family of one-way functions, one for each value
of the parameter. It can be implemented starting from f (x) = Ex(c),
using c as a parameter [35].

As anticipated in Section 1.4, our mechanism for p-pointer
generation takes advantage of a parametric one-way function, the
generation function, which we shall denote by f . A p-pointer that
references a segment is called a simple pointer (Table 1). Let s0 :
(b0, t0) denote a segment in the shared memory of node D, where
s0 is the segment identifier, b0 is the base, and t0 is the limit. A
simple pointer P that references s0 has the form P = (D, pid, s0, p0),
where pid is the identifier (order number) of a primary password of
node D, and p0 is the local password. We have p0 = fs0 (p), where
argument p is the value of pid (Fig. 1a). P references s0 with a full
access privilege.

Let us now consider a subject S0 that holds simple pointer P .
S0 is in the position to grant a full access privilege for segment s0
to another subject S1, being possibly executed in a different node,
simply by transmitting a copy of P to S1. Now suppose that S0 is
aimed at granting subject S1 only a subset of the access rights for s0.
To this aim, S0 preventively transforms P into a reduced pointer RP .
We have RP = (D, pid, s0, a0, p′0), where a0 specifies the effective
access privilege granted by RP , and password p′0 is given by relation
p′0 = fa0 (p0) (Fig. 1b). Quantity a0 is called the access privilege
specifier. It consists of four bits, corresponding to the four access
rights, in the order new, delete, read, and write; an asserted bit
includes the corresponding access right. In the following, we shall
use an abbreviated notation to specify access privileges enclosed
in square brackets, e.g. a0 = [r] includes a single access right, read,
and stands for the binary 0010; and a0 = [ndrw] includes all the
four access rights, and stands for the binary 1111.

Table 1
Protected pointers.
Simple pointer P = (D, pid, s0, p0)

D: node name
pid: identifier of a primary password
s0: a segment in the shared memory of D
p0: local password
p0 = fs0 (p), where p is the value of pid
access privilege: full

Reduced pointer RP = (D, pid, s0, a0, p′0)
p′0 = fa0 (p0) = fa0 (fs0 (p))
access privilege: a0

Subpointer SP = (D, pid, s0, a0, s1, p1)
s1: a subsegment of s0
p1 = fs1 (p

′

0) = fs1 (fa0 (fs0 (p)))
access privilege: a0

Reduced subpointer RSP = (D, pid, s0, a0, s1, a1, p′1)
p′1 = fa1 (p1) = fa1 (fs1 (fa0 (fs0 (p))))
access privilege: a1 ∧ a0

As anticipated in Section 1.4, in our protectionmodel a segment
can have subsegments. A subsegment of s0 : (b0, t0) is denoted
by s1 : (b1, t1), where s1 is the subsegment identifier, b1 is the
base of s1 within s0, and t1 is the limit of s1. Thus, the absolute
addresses of the first and the last storage units of s1 are given
by b0 + b1 and b0 + b1 + t1 − 1, respectively. The subsegment
must be completely included within the boundaries of s0, thus we
have the inclusion condition b1 + t1 ≤ t0. Reduced pointer RP can
be transformed into a subpointer SP that references s1. We have
SP = (D, pid, s0, a0, s1, p1), where password p1 is given by relation
p1 = fs1 (p

′

0) (Fig. 1c). The effective access privilege granted by SP
is a0.

In turn, subpointer SP can be transformed into a reduced sub-
pointer RSP that specifies less access rights for the same subseg-
ment s1. We have RSP = (D, pid, s0, a0, s1, a1, p′1), where a1 is an
access privilege specifier, password p′1 is given by relation p′1 =
fa1 (p1), and the effective access privilege granted by RSP is a1 ∧ a0,
i.e. the access rights in a1 that are also included in a0.

Now suppose that a subject received a reduced pointer RP for
segment s0, and is aimed at transmitting this pointer with less
access rights. This is indeed possible by taking advantage of the
fact that, in a subpointer, subsegment 0, called the null subsegment,
indicates the original segment. Thus, both reduced pointer RP and
reduced subpointer RSP = (D, pid, s0, a0, 0, a1, p′′1) reference s0,
but the access privilege in RSP is restricted by access privilege
specifier a1. We have p′′1 = fa1 (f0(fa0 (p0))), where f0 corresponds
to the null subsegment, and the effective access privilege is a1∧a0.

We wish to point out that p-pointers granting the same access
privilege may have different passwords. For instance, consider
subpointers RSPA = (D, pid, s0, aA, s1, aB, p′1,A) and RSPB = (D, pid,
s0, aB, s1, aA, p′1,B). These subpointers reference the same subseg-
ment, s1, and the access privilege is aA ∧ aB in both cases, but the
passwords are different. We have p1,A = faB (fs1 (faA (fs0 (p)))) and
p1,B = faA (fs1 (faB (fs0 (p)))).

2.2. Access validation

Let us now consider a subject B that holds simple pointer P =
(D, pid, s0, p0) referencing segment s0 : (b0, t0). When B issues an
access attempt to s0 by using P , e.g. to read the contents of this
segment, or to overwrite these contents, the access terminates
successfully only if P is valid, that is, password pid exists, and
p0 = fs0 (p). For a reduced pointer RP = (D, pid, s0, a0, p′0), an access
attempt to s0 terminates successfully only if a0 includes the access
right that is necessary to accomplish the access, and RP is valid,
that is, pid exists, and p′0 = fa0 (fs0 (p)).
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Fig. 1. Generation of: (a) the local password p0 of a simple pointer referencing segment s0 , with a full access privilege; (b) the local password p′0 of a reduced pointer
referencing segment s0 , with access privilege a0; (c) the local password p1 of a subpointer referencing subsegment s1 of s0 , with access privilege a0; and (d) the local
password p′1 of a reduced subpointer referencing subsegment s1 , with access privilege a1 ∧ a0 .

For a subpointer SP = (D, pid, s0, a0, s1, p1) referencing subseg-
ment s1 : (b1, t1), an access attempt to s1 terminates successfully
only if a0 includes the access right that is necessary to accomplish
the access, and SP is valid, that is, pid exists, and p1 = fs1 (fa0 (fs0 (p))).
For a reduced subpointer RSP = (D, pid, s0, a0, s1, a1, p′1), an access
attempt to s1 terminates successfully only if quantity a1 ∧ a0
includes the access right that is necessary to accomplish the access,
and RSP is valid, that is, pid exists, and p′1 = fa1 (fs1 (fa0 (fs0 (p)))).

Finally, for a reduced subpointer RSP = (D, pid, s0, a0, 0, a1, p′′1)
defined in terms of the null subsegment, an access attempt to
segment s0 terminates successfully only if quantity a1∧a0 includes
the access right that is necessary to accomplish the access, and RSP
is valid, that is, pid exists, and p′′1 = fa1 (f0(fa0 (fs0 (p)))).

2.3. Access privilege revocation

If we delete a segment, all the p-pointers referencing this
segment are revoked; it will be no longer possible to use these
p-pointers to access memory. As seen in Section 1.4, two or more
segments can overlap in memory. If we delete one of these seg-
ments, the validity of the p-pointers referencing the other seg-
ments is unaffected by the deletion. Similar considerations can be
made for subsegments. If we delete a subsegment of a given seg-
ment, all the subpointers referencing this subsegment are revoked,
but the validity of all the subpointers referencing any overlapped
subsegment is unaffected by the deletion.

P-pointers can also be revoked by replacing the value of a
primary password with a new value, or by deleting a primary
password. Let pid denote a primary password of node D. If we
change the value of pid, we revoke all the p-pointers defined in
terms of the old value, independently of the node where these
p-pointers are stored. In fact, the validation of these p-pointers is
destined to fail (see Section 2.2).

Consider two p-pointers referencing the same segment s0, and
defined in terms of different primary passwords, e.g. PA =

(D, pid,A, s0, pA), and PB = (D, pid,B, s0, pB), where pA = fs0 (pA), pA
is the value of pid,A, pB = fs0 (pB), and pB is the value of pid,B. In a
situation of this type, if we replace the value of pid,A with a new
value, we revoke PA, which is defined in terms of pid,A; however,
the validity of PB, defined in terms of pid,B, is not affected by the
replacement. After revocation, it will be possible to access segment
s0 by using PB, but this is no longer the case for PA.

3. The protection system

3.1. Protection tables

Each given node D contains a password table PTD in the private
memory area reserved for the protection system. This table fea-
tures an entry for each primary password generated in that node.
The entry for a given primary password contains the identifier
of that password and the password value. A simple method to
assign identifiers to primary passwords is a sequential assignment.

Each node maintains a password counter, which is initialized to 0
when the node becomes part of the system, and is incremented
by 1 when a new primary password is generated. The identifier
of the new primary password is given by the contents of the
password counter.1 Primary password values will be generated at
random. They will be sparse and large, according to the security
requirements of the system.

As will be shown shortly, when a new segment is allocated, a
primary password is used to create a simple pointer for that seg-
ment. We say that the segment is linked to this primary password.
In the private memory area of node D, a segment table STD features
an entry for each segment in the sharedmemory area of that node.
The entry for a given segment contains the identifier s0, the base
b0, and the limit t0 of that segment, together with the identifier pid
of the primary password to which that segment is linked. For each
segment, a subsegment table is reserved to contain the identifier s1,
the base b1, and the limit t1 of each subsegment of that segment.

3.2. Access rights

When a node D is added to the system, a primary password, the
root password pid,R, a segment, the root segment sR, and a simple
pointer, the root pointer PR, are created in that node as part of the
node initialization procedure. The identifier, the base and the limit
of sR are all equal to 0. Memory space is not reserved for sR. The
root pointer PR references sR with full access privileges. It has the
form PR = (D, pid,R, 0, pR), where pR denotes quantity f0(pR), and pR
is the value of pid,R. Of course, PR can be transformed into a reduced
root pointer containing less access rights; a result of this type will
be obtained by taking advantage of the usual procedure for simple
pointer reduction (see Section 2.1).

Access right read for the root segment sR of a given node D
allows us to create new primary passwords in D (Table 2). Access
rightwrite allows us to replace the value of the primary passwords
with new values. Access right delete is necessary to delete the
primary passwords. Access right new makes it possible to create
new segments in D. For a segment, access right new makes it
possible to create new subsegments in that segment. Access right
delete allows us to delete the segment. Access rights read andwrite
make it possible to access the segment to read its contents, and
to overwrite these contents, respectively. For subsegments, access
right new is undefined.

1 The generation of primary password identifiers based on a password counter
in each node implies that in different nodeswemayhave primary passwords having
the same identifier. In fact, in a p-pointer, the primary password is actually specified
by pair (D, pid), that is, the name of the node and the primary password identifier.
The name of the node determines the password table, and the primary password
identifier is used to select an entry in this table. The primary password value is
extracted from this entry and is used in p-pointer validation, as has been delineated
in Section 2.2.
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Table 2
Access rights.
Root segment sR:

new: to create new segments
delete: to delete the primary passwords
read: to create new primary passwords
write: to change the values of the primary passwords

Segment s0:
new: to create new subsegments
delete: to delete the segment
read: to read the segment contents
write: to overwrite the segment contents

Subsegment s1:
new: <undefined>
delete: to delete the subsegment
read: to read the subsegment contents
write: to overwrite the subsegment contents

3.3. Protection primitives

The subject interface of the protection system consists of a set
of primitives, the protection primitives. Table 3 summarizes the
actions involved in the execution of each primitive; the rest of
this section describes these actions in more detail. The protection
primitives are intended to be executed in the kernel mode. This is
required to access the protection tables, which are stored in the
primary memory area reserved for the protection system.

To simplify the presentation, we shall omit details concern-
ing the communication protocols between the network nodes,
e.g. message routing and message encryption. Furthermore, we
shall not consider the security issues that are relevant to these
communications, e.g. the prevention of forms of replay attack. In
the presentation, node D is the current node, i.e. the node where
the given protection primitive is executed.

3.3.1. Primary password management
Protection primitive pid ← newPrimaryPassword(GR) generates

a new primary password in the current node D, and returns the
identifier pid of this primary password. Execution is as follows:

1. Argument GR is validated; it should be a root pointer, or
a reduced root pointer specifying access right read. If the
validation is unsuccessful, execution fails.

2. The identifier pid and the value p of a new primary password
are generated, and are inserted into a free entry of the
password table PTD of node D. Quantity pid is returned to the
caller.

In step 1, the local password inGR is comparedwith quantity f0(pR),
or, if GR is a reduced root pointer and a0 is the access privilege
specifier, with quantity fa0 (f0(pR)), where 0 is the identifier of the
root segment. The actions involved in this validation process have
been illustrated in Section 2.2. To simplify the presentation, from
now on these actions will be simply referred to as a p-pointer
validation. In step 2, the primary password identifier is taken from
the password counter of the current node, as has been illustrated
in Section 3.1. This guarantees that no consistency problem is ever
raised by concurrent executions of newPrimaryPassword taking
place in different nodes. On the other hand, the nature of modern
processors is that there is likely to be a great deal of possible
parallelism inherent within the given node. If distinct subjects
execute newPrimaryPassword in the same node, there is a concrete
possibility of concurrent accesses to the password counter, and
race conditions. An actual implementation of the primitive will
have to deal with situations of this type.We shall take advantage of
usual lock/unlock mechanisms, or other less demanding solutions,
more suitable for many-core architectures [1,31,43]. In the rest of
this section, the problems inherent in concurrent execution of the

protection primitives by different subjects in the same node will
not be considered at any further length.

Protection primitive changePrimaryPassword(GR, pid) changes
the value of primary password pid in the current node D. Execution
is as follows:

1. Argument GR is validated; it should be a root pointer, or
a reduced root pointer specifying access right write. If the
validation is unsuccessful, execution fails.

2. A new primary password value is generated, and is inserted
into the entry reserved for primary password pid in the
password table PTD of node D.

Execution in node D of protection primitive deletePrimary
Password(GR, pid) deletes both the primary passwordwhose identi-
fier is pid, and all the segments linked to pid. Execution is as follows:

1. Argument GR is validated; it should be a root pointer, or
a reduced root pointer specifying access right delete. If the
validation is unsuccessful, execution fails.

2. Segment table STD is accessed to delete the table entries
reserved for the segments linked to primary password pid.

3. Password table PTD is accessed to delete the table entry
reserved for pid.

3.3.2. Allocating new segments
Execution in node D of primitive P ← newSegment(GR, pid,

b0, t0) allocates a new segment in D, and returns a simple pointer
P referencing this segment. Arguments b0 and t0 are the base and
the limit of the new segment. An identifier s0 is assigned to the
new segment, and the segment is linked to primary password pid.
Execution is as follows:

1. P-pointer GR is validated; it should be a root pointer, or
a reduced root pointer specifying access right new. If the
validation is unsuccessful, execution fails.

2. Quantities b0 and t0 are considered. If the new segment
cannot be completely contained in the shared memory of
node D, execution fails.

3. The entry reserved for primary password pid in the password
table PTD of node D is accessed to extract the value p of this
primary password. If no such entry exists, execution fails.

4. The identifier s0 of the new segment is generated, and quan-
tities s0, b0, t0, and pid are inserted into a free entry of
segment table STD.

5. Quantity p and relation p0 = fs0 (p) are used to create simple
pointer P = (D, pid, s0, p0) referencing the new segment. P
is returned to the caller.

In step 4, a simple strategy for the generation of segment identifiers
is a sequential generation, supported by a segment counter in each
node. When node D is initialized, its segment counter is set to 0.
When a new segment is generated, the segment identifier is taken
from the segment counter, and then the value of the counter is
incremented by 1.

The RP ← reduceSimplePointer(P, a0) primitive returns a re-
duced pointer RP = (D, pid, s0, a0, p′0) derived from simple pointer
P = (D, pid, s0, p0) by using access privilege specifier a0. Execution
of this primitive uses generation function f to evaluate quantity
p′0 = fa0 (p0) (see Section 2.1).

A subsegment of a given segment s0 can be allocated by using
primitive SP ← newSubsegment(G, b1, t1). Arguments b1 and t1
are the base and the limit of the new subsegment. An identifier
s1 is assigned to the new subsegment. The primitive returns a
subpointer SP referencing s1. Execution is as follows:

1. Argument G is validated; it should be a simple pointer refer-
encing segment s0, or a reduced pointer referencing s0 with
access right new. If the validation is unsuccessful, execution
fails.
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Table 3
The protection primitives.
pid ← newPrimaryPassword(GR)

In the current node, generates a new primary password, and returns the identifier pid of this primary password. Argument GR should be a root pointer, or a reduced
root pointer specifying access right read.

changePrimaryPassword(GR, pid)
In the current node, replaces the value of primary password pid with a new value. Argument GR should be a root pointer, or a reduced root pointer specifying access
right write.

deletePrimaryPassword(GR, pid)
In the current node, deletes primary password pid , and all the segments linked to this password. Argument GR should be a root pointer, or a reduced root pointer
specifying access right delete.

P ← newSegment(GR, pid, b0, t0)
In the current node, allocates a segment having base b0 and limit t0 . An identifier s0 is assigned to the new segment. The segment is linked to primary password pid .
Returns a simple pointer P referencing s0 . Argument GR should be a root pointer, or a reduced root pointer specifying access right new.

RP ← reduceSimplePointer(P, a0)
Returns a reduced pointer RP derived from simple pointer P by using access privilege specifier a0 .

SP ← newSubsegment(G, b1, t1)
In the current node, allocates a subsegment having base b1 and limit t1 in the segment s0 referenced by p-pointer G, which should be a simple pointer, or a reduced
pointer specifying access right new. An identifier s1 is assigned to the new subsegment. Returns a subpointer SP referencing s1 and including all the access rights in
G.

RSP ← reduceSubpointer(SP, a1)
Returns a reduced subpointer RSP derived from subpointer SP by using access privilege specifier a1 .

deleteSegment(G)
In the current node, deletes the segment referenced by p-pointer G, which should be a simple pointer, or a reduced pointer specifying access right delete.

deleteSubsegment(G)
In the current node, deletes the subsegment referenced by p-pointer G, which should be a subpointer, or a reduced subpointer specifying access right delete.

readSegment(G, addr)
Copies the contents of the segment or subsegment referenced by p-pointer G into an area starting at address addr of the private memory of the current node. G
should specify access right read.

writeSegment(G, addr)
Replaces the contents of the segment or subsegment referenced by p-pointer Gwith quantities taken from an area starting at address addr of the private memory of
the current node. G should specify access right write.

2. Quantities b1 and t1 are considered. The new subsegment
should be completely contained within the memory area
reserved for s0, i.e. the inclusion condition b1+t1 ≤ t0 should
be satisfied. If this is not the case, execution fails.

3. The identifier s1 of the new subsegment is generated, and
quantities s1, b1, and t1 are inserted into a free entry of the
subsegment table of s0.

4. If G is a reduced pointer RP = (D, pid, s0, a0, p′0), then
subpointer SP = (D, pid, s0, a0, s1, p1) referencing the new
subsegment is generated by using relation p1 = fs1 (p

′

0).
If G is a simple pointer P = (D, pid, s0, p0), then we have
a0 = [ndrw], and p1 = fs1 (fa0 (p0)). In both cases, SP is
returned to the caller.

In step 3, a simple strategy for the generation of the subsegment
identifiers is a sequential generation, supported by a subsegment
counter for each existing segment.When a segment is allocated, its
subsegment counter is set to 1 (as seen in Section 2.1, subsegment
identifier 0 is reserved).

The RSP ← reduceSubpointer(SP, a1) primitive returns a re-
duced subpointer derived from subpointer SP by using access
privilege specifier a1. Let SP = (D, pid, s0, a0, s1, p1) and RSP =
(D, pid, s0, a0, s1, a1, p′1). Execution of this primitive uses genera-
tion function f to evaluate quantity p′1 = fa1 (p1).

Protection primitives newSegment and newSubsegment need to
access the protection table, and can only be used to allocate mem-
ory locally, in the current node. This is not the case for primitives re-
duceSimplePointer and reduceSubpointer. In fact, a subject is always
in the position to carry out a p-pointer reduction autonomously.
No assistance is needed of the node where the referenced segment
is stored, and the p-pointer transformation generates no network
traffic. This important result has been obtained by taking advan-
tage of generation function f , which is universally known.

3.3.3. Deleting segments
The deleteSegment(G) primitive allows a subject running in

nodeD to delete the segment s0 referenced by p-pointerG inD, and

all the subsegments of this segment. Execution accesses segment
table STD to eliminate the table entry reserved for s0. The sub-
segment table associated with s0 is deleted. Execution terminates
successfully only if G is valid, and is a simple pointer, or a reduced
pointer including access right delete.

Similarly, the deleteSubsegment(G) primitive makes it possible
to delete the subsegment s1 of segment s0, which is referenced by
p-pointer G in D. Execution accesses the subsegment table of s0
to eliminate the table entry reserved for s1. Execution terminates
successfully only if G is valid, and is a subpointer, or a reduced
subpointer including access right delete.

When a new segment is allocated, or an existing segment is
deleted, the contents of the corresponding memory area are not
modified. This means, for instance, that if two or more segments
are defined for the same memory area, and we delete one of
them, the other segments are not affected by the deletion. Seg-
ment creation and deletion are restricted to the current node;
the protection primitives cannot be used to create or to delete
segments in the shared memory of a remote node. Thus, memory
management activities are confined within the node boundaries.
Remote memory accesses are only permitted to read the contents
of a remote segment, or to overwrite these contents.

3.3.4. Accessing segments
Every given segment can be accessed, to read or towrite, only by

presenting a p-pointer specifying the corresponding access right,
read or write. To this aim, the protection system includes two
communication primitives, called readSegment and writeSegment . If
used to access a segment in a remote node, both these primitives
cause the exchange of messages with that node. A message can
be a request message, a reply message, or a data message. A request
message specifies actions to be accomplished in the remote node,
a replymessage is used to return the results of these actions, a data
message is used to transmit the contents of a segment.

In the rest of this section, we shall describe the actions involved
in the execution of each communicationprimitive.We shall refer to
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the case of an access to a remote segment. The activities resulting
from an access to a segment in the local shared memory can be
easily imagined, and will not be detailed.

The readSegment(G, addr) communication primitive copies the
contents of the segment or subsegment s referenced by p-pointerG
into an area starting at address addr of the private memory of the
current node D. Let R denote the remote node where s is stored.
Execution is as follows:

1. Node D validates p-pointer G; it should specify access right
read. If this is not the case, execution fails.

2. NodeD sends a request message to node R. On receipt of this
message, R accesses segment table STR or, if s is a subseg-
ment, the subsegment table of the segment including s, as
specified by p-pointer G, to find the table entry reserved for
s. The base b and the limit t of s are extracted from this entry.
If the entry does not exist, s has been deleted; a negative
reply message is sent to D, and execution of readSegment
fails. Otherwise,

3. Node R uses quantities b and t to assemble a data message
d including t and the contents of s. This data message is
returned to D.

4. Node D copies the contents of s from data message d into a
local private memory area of size t , which starts at address
addr .

ThewriteSegment(G, addr) communication primitive copies the
contents of an area starting at address addr of the private memory
of the current node D into the segment or subsegment s referenced
by p-pointer G. Let R denote the remote node where s is stored.
Execution is as follows:

1. Node D validates p-pointer G; it should specify access right
write. If this is not the case, execution fails.

2. Node D sends a request message to node R. On receipt
of this message, R accesses segment table STR or, if s is a
subsegment, the subsegment table of the segment including
s, as specified by p-pointer G, to find the table entry reserved
for s. The limit t of s is extracted from this entry. If the entry
does not exist, s has been deleted; a negative reply message
is sent to D, and execution of writeSegment fails. Otherwise,

3. Node R assembles a reply message including quantity t . This
message is returned to D.

4. Node D assembles a data message d including the contents
of an area of size t , which starts at address addr of the local
private memory. This data message is sent to R.

5. Node R copies the contents of data message d into s.

In the execution of a communication primitive in a given node,
suppose that a p-pointer is validated, but a request for revoca-
tion is issued in that node (e.g. by using primitive changePrima-
ryPassaword) before the segment access has actually taken place.
This may well be the case, owing to the concurrent execution of
multiple subjects in the same node, if the processor of that node
exhibits an inherent form of parallelism. In a situation of this type,
execution of the communication primitive is allowed to continue
to termination. This form of a delayed revocation (as opposed to
an immediate revocation) is especially attractive as it not prone to
cause segment inconsistencies [11].

In fact, the protection primitives are intended to be executed
atomically. Execution of a given primitive is always allowed to
terminate before considering any further request for execution of
the same or a different primitive. This prevents interleaving of
actions inherent to different sources. Of course, multiple network
paths to the same destination node may lead to an ordering in
message delivery that depends on the network state. The resulting
dependencies should be taken into consideration at the application
program level.

4. Examples of applications

This section presents a few examples of practical applications
of p-pointers to the solution of a variety of protection problems.
In the first example, segments are used to form containers aimed
at storing both p-pointers and ordinary information items. Then,
we consider the implementation of hierarchical organizations of
security classes. Finally, we take advantage of subsegments to
support a protection paradigm based on access control lists. These
examples are by no means exhaustive; they are only aimed at
giving an indication of the flexibility of the p-pointer concept.

4.1. Containers

A container is a segment partitioned into two subsegments,
which we shall call the p-pointer subsegment (p-subsegment, for
short) and the data subsegment (d-subsegment). The p-subsegment
is aimed at storing p-pointers, the d-subsegment contains ordi-
nary information items. The p-pointers in the p-subsegment may
reference other containers, which can even be stored remotely,
in different nodes. In this way, containers can be organized into
arbitrary structures, according to the specific requirements of the
intended application. An example is given below.

We wish to point out that possession of a p-pointer for a given
container may grant access privileges stronger than that included
in the p-pointer itself. For instance, let us consider a container C
whose p-subsegment contains simple pointers. A subject S that
owns a reduced subpointer RSP referencing the p-subsegment of C
with access right read can acquire these simple pointers to access
the segments they reference, both to read and to write. In contrast,
if the access right in RSP iswrite, S can access the p-subsegment to
overwrite the existing p-pointers, and to delete these p-pointers;
however, S is not allowed to read these p-pointers to take advan-
tage of them to access the corresponding segments.

4.2. Hierarchical classes

Let us consider a hierarchical tree structure defined in terms
of security classes. Each class can have a single parent, and many
children. Each subject is assigned to a class. A subject in a given
class can access this class, and all the classes that descend from this
class, hierarchically. Thus, a subject in the class that is the root of
the hierarchy can access all the classes, and a subject in a leaf class,
at the lowest hierarchical level, can access only this leaf class.

A hierarchical structure of this type can be implemented by
reserving a container for each class. The p-subsegment of the con-
tainer associated with a given class stores reduced pointers, with
access right read, for the containers associated with the children
of that class. The d-subsegment will store the information items
relevant to the class. No container is reserved for a leaf class, at
the lowest hierarchical level, whereas the container for the class
which is the parent of one or more leaf classes will include a
d-subsegment for each of these leaf classes.

In this implementation, a subject S in a given class C owns a re-
duced pointer for the container associatedwith C , with access right
read. This reduced pointer allows S to access the d-subsegment
in this container, to read the information items relevant to C .
Furthermore, S is in the position to access the p-subsegment, to
acquire the p-pointers it contains. S can use these p-pointers to
access the containers reserved for the direct and indirect children
of C , recursively. If S is in a class at the penultimate hierarchical
level, it can use the reduced pointer for the container of this class to
access the d-subsegment for this class, and also the d-subsegments
for the children of this class. Finally, if S is in a leaf class, at the
lowest hierarchical level, it owns a reduced subpointer, with access
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right read, for the d-subsegment reserved for this class in the
container of the parent class.

Thus, a subject in a given class holds a single p-pointer. This
approach has significant advantages over the alternative, multiple
p-pointer approach, whereby each class corresponds to a data
segment. In this case, a subject in a given class possesses a simple
pointer for the data segment associated with this class, and a
simple pointer for the data segment of each descendant class.
The multiple p-pointer approach penalizes the subjects in the
most privileged classes, which have to handle more p-pointers [8].
Significant complications follow, for instance, in a dynamic access
control, i.e. the ability to add new classes to the class hierarchy, and
to eliminate existing classes from the hierarchy [7]. For instance,
the addition of a new class implies a new p-pointer distribution,
which involves all the subjects in the ancestor classes, whereas, in
the single p-pointer approach, we simply add a new p-pointer to
the p-subsegment in the container of the parent class.

4.3. Access control lists

The access matrix, introduced in Section 1, can be represented
in memory by columns. To this aim, in a classical implementation,
an access control list ACLj is associated with each given object
Bj [24,33]. ACLj consists of pairs (Si, ar), where ar specifies the set
of access rights owned by subject Si for Bj.

In our p-pointer system, ACLj can be simply implemented by
a data segment dj. This data segment is partitioned into subseg-
ments, a subsegment for each subject. The ith subsegment, cor-
responding to subject Si, consists of a single memory cell, which
encodes the access rights owned by Si for Bj. If the kth bit of this
cell is asserted, then Si owns the kth access right, ark.

In this approach, subject Si holds a reduced subpointer for the
ith subsegment of dj, with access right read. The internal repre-
sentation of object Bj includes a simple pointer for dj. This simple
pointer is used tomanage the access rights of each subject, bymod-
ifying the corresponding subsegment, to add new access rights, or
to eliminate the existing access rights. When Si attempts to access
Bj to execute a given operation, it presents the subpointer it owns
for dj. The operation will use this subpointer to read the contents
of the memory cell that forms the corresponding subsegment to
check whether the bits corresponding to the required access rights
are asserted. If this is not the case, the operation fails.

5. Discussion

As seen in Section 1, in a classical password-based solution
of the memory protection problem, one or more passwords are
associated with each object, and each password corresponds to an
access privilege. In contrast, in our system, the primary passwords
are intended to be associated with subjects. In a possible organi-
zation, when a node is initialized, a root subject SR is created. This
subject receives a root pointer PR referencing the root segment sR of
that node. When a new subject S is created in the same node, e.g. a
new process, the root subject takes advantage of the newPrima-
ryPassword protection primitive to generate one or more primary
passwords for S. Then, the primary passwords and the newSegment
primitive are used to create the segments that are necessary for
S, for instance, to communicate with other subjects across the
network. S will distribute p-pointers for these segments to these
remote subjects. S will preventively reduce these p-pointers to
eliminate the unnecessary access rights, e.g. only access right read
is required by a remote subject using a given segment to receive
data. Alternatively, subject S can create subsegments, and then
transmit subpointers for these subsegments.

5.1. Access privilege revocation

As seen in Section 1.3, in a password-based protection system,
a simple method to revoke an access privilege for a given object is
to replace the password associated with this access privilege. An
action of this type affects all the subjects that own this password,
independently of the nodes where these subjects are running. In
the access matrix model, a revocation approach of this type is
by columns: the revocation involves all the matrix elements in
the column corresponding to the object with which the revoked
password is associated.

In contrast, in our protection system based on p-pointers, an
access right revocation corresponds to the replacement of the
value of a primary password with a new value. An action of this
type revokes all the p-pointers defined in terms of the old value.
If we associate primary passwords with subjects, in the access
matrix model this revocation approach is by rows: the effect of a
revocation is to eliminate access privileges from the elements of
the matrix in the row corresponding to the subject with which the
revoked password is associated. The elements involved are those
of the objects referenced by the p-pointers expressed in terms of
that primary password. As seen in Section 1.3, revocation by rows
is especially interesting in distributed systems, to limit its effects
to a specific node. Consider a subject running in a given node, and
aimed at communicating with a few other nodes. For this subject,
we associate a primary password with each of these nodes. If the
value of a primary password is changed, the revocation is restricted
to the corresponding node.

In a different approach, the access privileges for a givenmemory
area are revoked by deleting a segment defined in terms of that
area. As seen in Section 1.4, we can allocate overlapping segments
corresponding to the same memory area, and deletion of one of
these segments has no effect on the others. This means that the
revocation is limited to a subset of all the subjects that hold access
privileges for that memory area (independent revocation [11]). A
subsequent creation of a new segment in the same memory area
has no effect on the p-pointers referencing the deleted segment;
these p-pointers will not be renewed. This is a consequence of the
mechanism for password creation, based on generation function f .
As seen in Section 2.1, thismechanismconsiders the segment name
rather than its base and limit. Segment names are never reused,
so the p-pointer for the new segment will have a different local
password.

Several mechanisms for access privilege revocation have been
proposed in the past, with special reference to capability systems
([20]; see also subsequent Section 5.5). Examples are a propaga-
tion graph associated with each access privilege, which records
the propagation of this access privilege throughout the system
[11,12]; a centralized reference monitor, which keeps track of all
the subjects that hold access privileges for each given object [36];
and temporary access privileges, whose validity must be renewed
periodically to avoid implicit revocation [19]. In a distributed sys-
tem, these mechanisms are prone to significant network traffic:
messages must be exchanged between the nodes, to update the
propagation graph, to interact with the centralized monitor, or to
renew the access privileges. In contrast, in our system, the activities
connectedwith access privilege revocation are confinedwithin the
boundaries of a single network node. This is true for revocations
based on primary password deletions, as well as for revocations
based on the segment deletions.

5.2. Network costs

As seen in Section 1.2, in traditional password systems, a pass-
word reduction implies the intervention of a password manager,
which receives the original password and returns the reduced
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Table 4
Memory requirements for p-pointer storage (in bits).

Simple
pointer

Reduced
pointer

Subpointer Reduced
subpointer

Format specifier 2 2 2 2
Node name D 10 10 10 10
Primary password
identifier pid

16 16 16 16

Segment identifier s0 28 28 28 28
Access privilege
specifier a0

– 4 4 4

Subsegment identifier
s1

– – 32 32

Access privilege
specifier a1

– – – 4

Local password p 128 128 128 128

Total 184 188 220 224

password. An action of this type is prone to generate network
traffic. Consider a subject that holds a password for an object stored
in a remote node. Messages will be exchanged with this node,
to send the original password and receive the reduced password.
In contrast, in our system, a subject running in a given node and
owning a p-pointer for a remote object is in the position to reduce
the p-pointer autonomously. In fact, execution of the reduceSimple-
Pointer and the reduceSubpointer protection primitives generates
no network traffic. We have obtained this important result by
taking advantage of the generation function, which is universally
known. The generation function can be used in any node to reduce
a given p-pointer, independently of the node storing the segment
referenced by this p-pointer.

In fact, the actions involved in the execution of each protection
primitive are confined within the boundaries of the node where
the call to this primitive has been issued; these actions generate
no network traffic. The only exceptions are the communication
primitives readSegment andwriteSegment, which producemessage
exchanges if they are used to access remote segments.

It is worth noting that the primary passwords of a given node
are confined within the boundaries of that node. These passwords
are never transmitted across the network; instead, they are only
used in the creation and the deletion of local segments.

5.3. Memory requirements and execution times

In a p-pointer, a 10-bit node name D supports a large network
of up to 1024 nodes. If we associate primary passwords with sub-
jects, 16-bit primary password identifiers are suitable for a large
number of subjects, and can support repeated actions of access
privilege revocation obtained by primary password deletion (see
Section 5.1). 28-bit segment identifiers permit iterated actions of
segment creation and deletion, as is the case if access privileges
are revoked at segment level. Four bits are required in the access
privilege specifier to encode the four access rights. Finally, the
size of the local password is a function of the overall security
requirements, e.g. 128 bits.

As shown in Table 4, the resulting p-pointer size is in the range
from the 184 bits of a simple pointer to the 224 bits of a reduced
subpointer. If a single, 28-byte size is used for all p-pointers, a two-
bit format specifier will select the actual p-pointer format.

We can now compare these results with the memory require-
ments for password storage in a traditional, password-based
protection system. Here, each password is associated with the
identifier of the corresponding segment, i.e. a node name and a
local segment identifier. For 10-bit node names, 28-bit local seg-
ment identifiers, and 128-bit passwords, we have a total memory
requirement of 166 bits. The size increase we pay in our system
for p-pointer storage is compensated by the necessity to store

less passwords. In fact, in a traditional password system we have
several passwords for each object, one password for each access
privilege defined for that object. In contrast, in our system, only
the primary passwords need to be stored in each node. The local
passwords, corresponding to a specific object and a specific access
permission, are generated dynamically, starting from the primary
passwords, taking advantage of the generation function.

As for execution times, the number of applications of the gen-
eration function required to validate a given p-pointer varies, ac-
cording to the p-pointer type, from the single application that is
sufficient for a simple pointer, up to the four applications that are
necessary for a reduced subpointer. In a given node, let us now
consider a subject aimed at distributing an access privilege for
an area in the shared memory of that node. If the subject holds
a simple pointer for a segment that includes this memory area,
a solution is to use the newSubsegment protection primitive to
generate a subsegment, and a subpointer for this subsegment. If
the subject is a root subject, an alternative is to reserve a segment
for the area; the validity of a simple pointer for this segment can
be verified efficiently.

5.4. Forging p-pointers

Let us now consider a malevolent subject (attacker) that holds
a reduced pointer for a given memory segment, and is aimed at
amplifying the access rights in this reduced pointer, e.g. by forging
a simple pointer for the same segment. The attacker can take
advantage of node name D, primary password pid, and segment
identifier s0 in the reduced pointer to include them into the simple
pointer. The next step is to transform local password p′0 in the re-
duced pointer into local password p0 in the simple pointer. In fact,
p0 precedes p′0 in the password conversion procedure, illustrated in
Section 2.1, which starts from a primary password to generate the
password corresponding to the given p-pointer type (see Fig. 1).
This procedure takes advantage of generation function f , which is
one-way. It follows that is computationally infeasible to invert f
to evaluate p0 starting from p′0. An alternative for the attacker is
to use a password chosen at random. If passwords are large and
sparse, the probability of a casual match is virtually nil, and the
simple pointer forging attempt is destined to fail.

Similar considerations can be made for the transformation of
a subpointer into the corresponding simple pointer. In this case,
too, the attacker can extract quantities D, pid, and s0 from the sub-
pointer, but it will be computationally infeasible to evaluate local
password p0 in the simple pointer starting from local password p1
in the subpointer.

5.5. Related work

5.5.1. Capabilities
In a classical approach, the access privilege held by a subject

for a given object is expressed in terms of a capability [20]. This
is pair (B, ar), where ar is a set of access rights for object B. In
this approach, an important problem is capability segregation:
we should prevent a subject that holds a given capability from
modifying this capability, to add new access rights, for instance, or
to change the object identifier to forge a capability for a different
object.

Solutions to the capability segregation problem have been con-
ceived, and actually implemented in existing systems [40]. In a seg-
mented memory environment, special segments, which we shall
call capability segments, can be reserved for capability storage [16].
In this approach, the instruction set of the processor is augmented
by a set of special instructions, the capability instructions, aimed at
capability processing. An access to a capability segment terminates
successfully only if it uses a capability instruction. This approach is
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prone to segment proliferation, and is an undue complication to
object representation. Let us consider a simple data object consist-
ing of two data segments, for instance. A capability segment will
be necessary to store the capabilities for the data segments.

A different approach takes advantage of a taggedmemory [4,14,
42]. A 1-bit tag associatedwith eachmemory cell specifieswhether
this cell contains a capability, or an ordinary information item. A
cell tagged to contain a capability can be accessed only by using the
capability instructions. If an ordinary instruction is used, execution
fails; alternatively, the tag is cleared, thereby invalidating the ca-
pability [44]. This approach requires ad hoc memory devices aimed
at containing the cell tags; this is contrary to hardware standard-
ization. Complications ensue in the caches, which have to store the
tags, and in memory management, owing to the need to save and
then restore the tags as part of the usual page swapping activities
between the primary memory and the secondary memory.

PSOS [29] is an example of a capability-based operating sys-
tem using tags for capability segregation. In PSOS, the processor
includes two capability operations, to create a new capability and
to restrict the access rights in a given capability. The tagging system
prevents any other processor operation to be used successfully
to alter an existing capability. Tags are preserved throughout the
system, within the processor as well as in the primary and the
secondary memories.

The CHERI capability system [41,42] extends the 64-bit MIPS IV
architecture to include a capability coprocessor. The coprocessor
interacts with the processor pipeline by receiving instructions,
exchanging operands and sending exceptions. A capability is par-
titioned into a base field and a limit field that describe a memory
segment, and an access right field that specifies access rights for
this segment. Capabilities and ordinary data items can safely co-
exist in the same data structure owing to a form of tagged mem-
ory protection. A tag bit is associated with each 256-bit memory
location. If asserted, the tag bit specifies that the corresponding
location contains a capability. Any non-capability store clears the
tag. The coprocessor includes a set of special registers, called ca-
pability registers. A capability must be preventively loaded from
memory into a capability register to access the corresponding
memory segment. To this aim, an ad hoc capability instruction is
provided.

5.5.2. Password capabilities
Passwords are a significant alternative to capabilities, which

does not suffer from the segregation problem. As seen in Section 1,
in a password system, a set of passwords is associated with each
object, one password for each access privilege defined for that
object. If passwords are chosen at random, large, and sparse, the
probability that an attacker guesses a valid password to obtain
illegitimate access privileges is vanishingly low. A further require-
ment is that it should be impossible to invert any relation existing
between the value of a given password and the access privilege
granted by that password, to obtain the passwords corresponding
to amplified access privileges.

Password capabilities are a practical implementation of the
password paradigm that received much attention in the past [2,6,
13,15]. A password capability is a pair (B, p), where p is a password
for object B. A subject that holds a password capability referencing
a given object is granted the access privileges for this object that
are associated with the password [22].

Walnut [5,28] is an example of a system using password capa-
bilities for object protection. It was designed to be used in a tightly-
coupled multiprocessor as well as in a global distributed system.2
In Walnut, objects are stored in a virtual address space partitioned

2 In fact, the Walnut kernel was implemented on a personal computer; as such,
the implementation only demonstrates single processor operation.

into volumes. Each volume has a unique 32-bit identifier, which is
permanently associated with a specific fixed or removable storage
device. Objects can only exist within the boundaries of a single
volume; objects splitted across different volumes are not allowed.
Each object is associated with a 32-bit serial number, which is
combined with the identifier of a volume to form the unique
object identifier. A password capability is a 128-bit value including
an object identifier and a 64-bit password. An arbitrary num-
ber of capabilities can be associated with the same given object,
corresponding to specific access rights and different passwords.
The association of passwords with access rights is recorded in a
capability table within the boundaries of the protection system.
No computable relation exists between a password and the access
rights. When an object is created, a master capability is associated
with that object. A capability derivation mechanism makes it pos-
sible to create new capabilities with restricted access rights. The
resulting capability structure takes the formof an inverted tree that
describes the interdependencies between the master capability
and its derived capabilities. When a capability is destroyed, all its
derived capabilities are destroyed, too.When amaster capability is
destroyed, the corresponding object is deleted, as it can no longer
be referenced.

In the Annex system [12,30], password capabilities can only
reside within the kernel boundaries, to limit undue propagation.
Outside the kernel, a password capability can only be referenced by
using a handle, mapped to that password capability by the kernel.
A password capability consists of a 64-bit device name, a 48-bit ob-
ject name that univocally identifies an object on the target device,
a 16-bit capability name that univocally identifies the capability,
and a 256-bit password, assigned at random to prevent forging.
Capability revocation is based on a propagation graph, associated
with the given capability, and similar to that proposed in [11]. The
propagation graph is maintained by the kernel, and records the
propagation of the corresponding capability across the devices.

5.6. Considerations concerning security

An essential design requirement for a secure system is adher-
ence to the principle of least privilege [26,33,39]: at any given time,
each subject should be granted the minimum privilege that is
necessary for that subject at that time to carry out its job. In a least
privilege view of security control, each subject is granted access
to least possible objects, and we grant this access to least possible
subjects [27].

Traditional protection systems support forms of coarse-grained
memory protection whereby different virtual spaces correspond
to different applications. In contrast, capability systems are aimed
at supporting forms of fine-grained protection, exercised at the
level of a single object. The objects that a subject can access are
only those for which that subject holds a capability; for each given
object, the access is restricted to the access privilege included
in that capability. In a password capability system, a subject can
access only those objects for which it holds a password capability,
and the access privilege is that associatedwith the password. In our
protection model, a subject that holds a valid p-pointer can access
the segment or subsegment referenced by that p-pointer, and the
access privilege is specified by the p-pointer.

Let us now refer to a protection environment defining two
object operations, read and write. Each object is assigned a pri-
ority, which indicates the sensitivity of that object in terms of its
contents. Furthermore, each subject is assigned a priority, which
indicates the reliability of that subject [27]. A subject at a given
priority level can successfully accomplish read accesses to the
objects at the same or a lower priority level, and write accesses
to the objects at the same or a higher priority level. The two rules
are aimed at confining information at higher priority levels while
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preventing disclosures to lower levels. In an organization of this
type, the threat model is related to the possibility that an attacker
attempts to grant undue access privileges, e.g. the read privilege
for an object at a given level to a subject at a lower level.

In a capability system, a subject at a given level will be assigned
a capability with access right read for each object at the same or
a lower level, and a capability with access right write for each
object at the same or a higher level. Apparently, an attack simply
implies an action of a capability copy, e.g. the attacker copies a
read capability for an object at a given level to a subject at a
lower level. An attack of this type implies that capabilities can be
freely transmitted between subjects [27]. In fact, this is not the
case if capability segregation relies on capability segments, as has
been illustrated in Section 5.5.1. In this approach, the protection
system usually defines two supplementary access rights, which
we shall call c-read and c-write; they make it possible to read a
capability from a capability segment, and to write a capability into
a capability segment, respectively [10,20]. In a situation of this
type, a successful attack would require that the low level subject
possesses a capability with access right c-read for a capability seg-
ment in the domain of the attacker. But the attacker has no means
of transferring this capability to the low level subject. Alternatively,
the attacker should possess a capability with access right c-write
for a capability segment in the domain of the low level subject.
This is indeed impossible, as the low level subject has no means
of transferring this capability to the attacker.

In password capability systems, password capabilities cannot
be distinguished from ordinary data items. They can be freely
copied, and in fact, a copy of a password capability is indistinguish-
able from the original. In these systems, attacks will be hampered
by access privilege revocation. Suppose that an attack is detected
that involves a given object, e.g. the attacker copied a password
capability including the read password for an object at a given
priority to a subject at a lower priority. The consequences of this
attack can be hampered by changing the read password. This
approach implies that the new read password is distributed to all
the subjects that are legitimate holders of the read access privilege.
The object owner should keep track of the names of these subjects.
Significant complications in access privilege management ensue,
and this is especially the case in a distributed environment.

In our protection system, we take advantage of the possibility
to define overlapping segments. In the foregoing example of mul-
tiple priority levels, we generate one primary password for each
subject. Furthermore, for each shared object, we allocate several
overlapping segments corresponding to thememory area reserved
for that object, one segment for each subject that holds an access
permission for the object. In this way, in our threat model, suppose
that a subject is detected as being involved in a security attack,
which led that subject to possess unauthorized access privileges.
If we change the primary password of this subject, we revoke all
its access privileges, whereas the access privileges of all the other
subjects are not affected by the revocation. No new distribution
of access privileges is necessary to these other subjects, and no
supplementary computational costs are connected with the revo-
cation.

6. Concluding remarks

With reference to a distributed environment consisting of nodes
connected to form an arbitrary network topology, we have pro-
posed the organization of a protection system whereby subjects
generate access attempts to memory segments. In our approach:

• Segments are the basic unit of information protection and
sharing between the nodes. A subject can access a given seg-
ment only if it owns an access privilege certified by

possession of a p-pointer referencing this segment. Segments
can have subsegments.
• One or more primary passwords are associated with each

node. Each p-pointer includes a local password, which is valid
if it descends from a primary password by application of a
universally known, parametric one-way generation function.
The p-pointer may also include an optional access privilege
specifier, corresponding to less access rights.
• A set of protection primitives forms the subject interface of

the protection system. These primitives make it possible to
generate new primary passwords, to delete existing primary
passwords, and to change their value. Furthermore, they al-
low subjects to reduce p-pointers to include less access rights,
to allocate new segments, to delete existing segments, and to
access segments to read their contents or to overwrite these
contents.

The following is a summary of the main results we have ob-
tained:

• A subject that holds a simple pointer referencing a given seg-
ment is in the position to reduce the access privilege specified
by that simple pointer autonomously. An action of this type
can be completely accomplished locally, and generates no
network traffic, even if the segment is stored in a different
node.We have obtained this result by taking advantage of the
generation function, which is universally known.
• A reduced pointer can be transformed into a subpointer ref-

erencing a subsegment of the original segment. In this way, a
subject that holds an access privilege for a givenmemory area
can distribute an access privilege for a fraction of this area.
• Taking advantage of null subsegments, a reduced pointer can

be reduced further, to specify less access rights.
• A single primary password is sufficient in each node for all the

segments and subsegments allocated in that node. Local pass-
words within p-pointers are evaluated dynamically, taking
advantage of the generation function. This is in sharp contrast
with the traditional view of several passwords associated
with each protected object, one password for each access
privilege defined for that object.
• If passwords are chosen at random, large, and sparse, the

computational costs for a malevolent subject to forge valid
p-pointers by brute force attacks can be prohibitive. The non-
invertibility property of the generation function guarantees
that any attempt to amplify a given p-pointer to includemore
access rights is destined to fail. Similarly, it is computationally
impossible to convert a subpointer for a subsegment of a
given segment into a simple pointer referencing that seg-
ment.
• Twodifferentmechanisms support the reviewand revocation

of access privileges. By replacing the value of a given primary
password with a new value, we revoke all the p-pointers
defined in terms of the old value. If a primary password is
associated with a given subject, an action of this type revokes
all the access privileges held by that subject in terms of
that primary password. Alternatively, two or more segments
can be defined for the same memory area. If we delete one
of these segments, we revoke all the access privileges for
that memory area, which are expressed in terms of that
segment.
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