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a b s t r a c t

Estimating the impact of transportation factors on environmental pressure is essential to find de-
carbonization pathways for the transportation sector. Existing research mainly focused on the eco-
nomic impact of transportation factors, the environmental impact is not fully involved. To identify the
coupling effect of transportation factors, this study explored the spillover effects of multiple factors on
CO2 emission using the panel data of 30 administrative regions in China. A hybrid model combining
expanded Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) and
Spatial Durbin Model (SDM) was used to estimate spillover effects of population, economic, technological
and transportation factors on CO2 emissions. And CO2 emission was calculated by the carbon emission
from fossil fuel consumption (coal, oil and gas) and cement production according to the Intergovern-
mental Panel on Climate Change (IPCC) accounting method. The estimation results indicate the spatial
and time-lagged effects were both obvious for CO2 emission. In addition, transportation factors including
the railway factor and the road factor were both found to have significant positive effects on CO2

emission, 0.344% and 0.129% influence respectively. Based on research findings three main policy im-
plications were proposed including the joint decision-making, the cross-regional de-carbonization
evaluation and the integrated management. This study not only reveals important experimental prob-
lems but expands a rigorous model specification process.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

As one of the fundamental infrastructures, transportation
network has an enormous impact on local, national and interna-
tional environmental and economic system (Guimera et al., 2005;
Wandelt et al., 2017). With the rapid urbanization, more and
more transportation infrastructures were constructed to support
passenger and freight transport. According to the statistical data
from the Organization for Economic Co-operation and Develop-
ment (OECD), China's passenger turnover and freight turnover
volume ranked first in the world in 2015 (OECD, 2015). Huge
transport capacity not only brings challenges to transportation
network but impacts environmental conditions and economic ac-
tivities. CO2 emission is the main environmental negative output
during the expansion of transportation network coupling economic
development (Xie et al., 2017). The International Energy Agency
(IEA) estimates the transportation sector consumes approximately
19% global energy directly and accounts for 23% CO2 emission
related to energy (Van der Hoeven, 2012). And it is predicted that
CO2 emission in the transportation sector will increase by
approximately 50% by 2030 (IEA, 2009). In addition, it has been
proved that the transport infrastructure plays an increasingly
important role in the evolution of city networks (Jiao et al., 2017),
the human mobility (Lee et al., 2014) and the city accessibility
(Shaw et al., 2014). Therefore, exploring the socio-environmental
impacts of the transportation network is essential for under-
standing the role of the transportation network and finding sus-
tainable pathways for the transportation sector.

Existing researches have been paid attention to the significant
contribution of transportation factors to CO2 emission in the miti-
gation and sustainability research. Andmultiple variables related to
transport activities have been selected to as transportation factors
such as energy consumption of freight and passenger transport (Li
et al., 2013), the length of transportation infrastructure (Wang et al.,
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2017) and the capita length (Meng and Han, 2018). In addition,
existing researches have explored that different transportation
modes contribute to CO2 emissions in the long term or short term
(Li et al., 2017). Compared with other transportation modes, the
road network contributes to more CO2 emissions because of the
traffic emission (Li et al., 2016). And the number of vehicles is the
main representative of the road factor. However, there are still
some research gaps that need to be filled. Firstly, although road
infrastructure contributes to more CO2 emission from the
perspective of the traffic system, the impact of the railway is
important to be addressed (Meng and Han, 2018). The railway
network plays an importation role in human mobility, economy
and technology development because economic activities pro-
moted by railway expansion generate emissions indirectly. In
addition, some studies have focused on the environmental impact
of transportation activities, especially road transportation, but the
coupling effects of different modes have not been studied clearly.
Therefore, according to the occupancy and significance, the road
factor and railway factor were both used to account for the trans-
portation factors in this study. Notably, airline transport was not
considered in this paper because the spillover effect in this paper
mainly focuses on the effect of adjacent regions and the transport
proportion of airline transport is smaller relatively than that of
railway or road transport.

Apart from the transportation factor, socioeconomic factors are
also the main variables to estimate CO2 emissions. It has been
proved that affluence, population and technology levels are the
main driving factors (Liu, et al., 2015a; Zhou and Liu, 2016). From
the perspective of the coupling factors, existing studies have shown
that the transportation infrastructure contributes to CO2 emission
in two perspectives: the construction and the continued produc-
tion of devices release CO2 into the atmosphere directly; the pro-
motion to economic activities emits CO2 indirectly (Davis et al.,
2010; Wang, et al., 2011; Wang, et al., 2011). In details, the first
category calculates the road traffic emission which is a bottom-up
analysis (Bellasio et al., 2007). This approach is often used to
analyze the vehicle emissions related to the transport sector in the
city level (Dallmann et al., 2013; Sider et al., 2013). But this method
restricted to the quantity and quality of collected data. The second
category is usually based on index analysis to identify significances
of CO2 emission factors which is the up-bottom analysis.

In order to explore the combined impact of transportation and
socioeconomic factors, many common methods were used
including index decomposition analysis (IDA) (Torvanger, 1991),
structural decomposition analysis (SDA) (Su and Ang, 2012) and
stochastic impacts by regression on population, affluence, and
technology (STIRPAT)model (Dietz and Rosa,1994). Compared with
the other two methods, the extended STIRPAT model allows for the
expansion of more factors and less data limitation (Xie et al., 2017).
This model has been used to explore factors' relationship driving to
CO2 emission and the role of transportation infrastructure in
different magnitudes with a range of different data (Xu and Lin,
2015; Wang et al., 2017; Xie et al., 2017). Although existing
research has focused on and estimated the impact of different
factors on the environment, the spillover effects of factors have not
been introduced to evaluate the significances of factors. It has been
proved that the spillover term is a well-recognized concern for
observational data related to geographical distribution (Yu et al.,
2013). Three kinds of general econometric model, namely spatial
lag model (SLM), spatial error model (SEM) and spatial Durbin
model (SDM) are often used to analyze factors’ relationships
considering spatial term (Elhorst, 2014b).

The coupling among infrastructure, social, environmental and
economic systems has the obvious network and spatial character-
istics (Han and Liu, 2009; Wang et al., 2015a). In details, the
development of a city or region mainly based on the infrastructure
network and social network among regional places, economic ac-
tivities and people (Camagni and Salone, 1993). In order to explore
the impact factors and spatial characteristics of the transportation
network, the extended STIRPAT model is combined with the SDM
model. A lot of studies used time series or cross-sectional data to
estimate CO2 emission. But it has beenwidely recognized the panel
data are better than time series or cross-sectional data on the esti-
mation results (Kasman and Duman, 2015;Wang et al., 2015b). So in
this study, the panel data over the period of 1996e2015 was used to
study the spatiotemporal effect of transportation network on CO2
emissions. The results obtained in the paper indicate the transport
factors including railway factor and road factor have obviously sig-
nificant direct and spillover effects on CO2 emissions. In doing so,
this study makes contributions from both experimental and theo-
retical perspectives. First, the finding shows spatiotemporal factors
should be well-recognized for the observational data related to the
geographical distribution or time series. Next, the results indicate
the significant role of the transportation factor to reduce CO2
emission to achieve sustainability. In the future, to find the specific
sustainable pathway for the transportation sector, the prediction of
the transportation factor's impact on the environment is necessary
to support the traffic management and infrastructure expansion.

2. Mechanism analysis

Transportation demands including the transportation of people,
goods and information drive to the development of the transport
infrastructure, conceptualized as the circle of nodes, networks and
the demand (Rodrigue et al., 2016). The fundamental and spatial
characteristics of transportation networks determine its influence
on CO2 emission in multiple ways. For the direct impact, the con-
struction of infrastructure emits CO2 embodied in stocks of cement
and other materials (Muller et al., 2013). And the expansion of road
infrastructure contributes to the occupancy of vehicles and in-
creases traffic density which promotes CO2 emissions (Bellasio
et al., 2007). From the perspective of indirect impact, trans-
portation network increases emissions by promoting the economic,
population and technological factors. First, the development of
transportation infrastructure directly reduces the production cost
and promote the gross domestic product (GDP). Many empirical
studies have proved that transportation infrastructure promotes
the economic growth by the migration of production factors (Yu
et al., 2013), increased resources availability (Pradhan and Bagchi,
2013) and improved market access (Donaldson and Hornbeck,
2016). Economic growth means frequent economic activities,
which inevitably leads to CO2 emissions.

For the coupling effect with population factor, the expansion of
transportation network enhances the accessibility and human
mobility which impact the form of urban population (Andrienko
et al., 2017; Martí-Henneberg, 2017; Tong et al., 2015). The con-
centration or spread of population further affects the development
of urbanization and industrialization by the change in the labor
accessibility. Therefore, the population scale effect always is iden-
tified as one of the coupling factors on the region's carbon emission.
In addition, with the population expansion and economic growth,
the transportation infrastructure enhances the spread of knowl-
edge and technologies which is an important impact factor of
innovation capacity (Lambooy, 2010). Improved technological
innovation capacity is an effective way to reduce carbon emission
and intensity (Xie et al., 2017). In conclusion, all of these impacts
are not alone. The production and development of them are
coupling and interactional which drives to both positive and
negative impacts. Thus, apart from the transportation factor, the
significant socio-economic factors should be considered to identify
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Fig. 1. Coupling impacts of transport system.
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their relationships with CO2 emissions. The interactive impact
mechanism of the transport system on the environment coupling
economic and social impacts is shown in Fig. 1.

In addition, the spillover effect has been widely regarded as s
significant concern for the observational data related to the
geographical distribution (Yu et al., 2013). As a cumulative climate
impact factor, intra-regional and inter-regional carbon emissions
are all necessary during the identification of the environmental
driving factors (Zhang, 2017). According to the autocorrelation
analysis in section 4.2, CO2 emission shows significant spatial cor-
relation and distribution effects during the period. Both theoretical
and empirical perspectives indicate that direct and spillover-
feedback effects should be considered in the empirical model.
The spatial economic model involves endogenous interaction ef-
fects among the dependent variable, exogenous interaction effects
among the independent variables and interaction effects among
the error terms (Elhorst, 2014b). Thus, in this study, three different
kinds of spatial economic models were used to analyze these
endogenous effects and exogenous intersection effects.

The selection of specific transportation factors is mainly based
on the spatial attributes, occupancy and importance of the different
factor. As the main cross-regional carrier, the transportation infra-
structure provides the material basis and motivation for the
movement of populations and economic factors among different
regions. Especially for the road and railway infrastructure, the
former contributes to the increase in the number of vehicles which
is the main source of emissions, the latter is the determining factor
of the urbanization, sustainability and industrialization, particu-
larly in China (Meng and Han, 2018). And these two transport
modes account for most of the passenger and freight trans-
portation. Notably, airline transport was not considered in this
paper because the spillover effect in this paper mainly focuses on
the effect of adjacent regions. Therefore, in this paper, railway and
road factors were used as the main transportation driving factors
the spatial spillover effects of carbon emissions.
3. Methods and data

3.1. Model specification

The IPAT model proposed by Ehrlish and Holdren explores
factors driving environmental pressure which is described by
I¼PAT (Ehrlich and Holdren, 1971). Here, I is the environmental
factor, P is the population, A is average affluence and T is the
technology factor. In 1994, Dietz and Rosa updated the IPAT model
to STIRPAT model which further allow for decomposing various
factors (Dietz and Rosa, 1994), which is as follows:

Ii ¼ aPb1
i Ab2

i Tb3
i εi (1)

where i represents regional unit, Ii, Pi, Ai, and Ti represent the
environmental, population, economic and technological variables
respectively in region i, a is a constant term, b1, b2 and b3 are
estimated parameters and ε is the random error. In general, the
logarithmic form is used to the empirical analysis, which is as
follows:

InIi ¼ Inaþ b1InPi þ b2InAi þ b3InTi þ Inε (2)

In this form, b1, b2 and b3 represent percentage changes related
to environmental factor caused by 1% change in other driving fac-
tors (Stock andWatson, 2015). In this study, transportation network
factors were added to extend the STIRPAT model and improve the
identification of environmental driving factors. And the urbaniza-
tion level and industrialized level are all main impact factors
related to CO2 emissions (Xie et al., 2017). So the STIRPAT model is
decomposed as follows:

InIit ¼ Inaþ b1InPit þ b2InAit þ b3InTit þ b4InUit þ b5InINit
þb6InRoVeit þ b7InRaNDit þ Inεit

(3)

where i represent a province, t is year, a is the constant term, bi is
the parameters and εit is an error term. Iit is CO2 emissions, Pit is
population size, Ait is affluence, Tit is technology level, Uit is ur-
banization level, INit is industrialized level, RoVeit is the road factor
and RaNDit is the railway factor, εit is the error term. And the se-
lection and description of factors are shown in the data section.
Additionally, according to the Moran's I statistic results shown in
section 3.2, the data were affected by spatial autocorrelation. So the
spatial factor is necessary to be considered in the econometric
model. Three kinds of general econometric model, namely spatial
lag model (SLM), spatial error model (SEM) and spatial Durbin
model (SDM) are often used to analyze the spatial lag term and the
error term. And The SDM is the reduced form of amodel with cross-
sectional dependence in the errors (Mur and Angulo, 2006). The
selection of the model specification depends on multiple statistics
test. In the panel data, Hausman test can help to choose between
fixed effects model and a random effects model (Mutl and
Pfaffermayr, 2011). If the model is tested as the fixed effects
model, the likelihood ratio (LR) test can be used to compares the fit
of different kind of models including the spatial fixed model and
the time fixed model. Additionally, Elhorst proposed the Wald test
is one of the efficient criteria to determine whether the SDM can
simplify the SLM and SEM models (Elhorst, 2014a). In details, the
hypotheses of Wald test are: 1) H0: q ¼ 0, SDM model can be
reduced to SLM model; H1: qs0, SDM model is preferred to SLM
model; 2) H0: q þ lb ¼ 0, SDM model can be reduced to SEM
model; H1: q þ lbs0, SDM model is preferred to SEM model. If
both null hypotheses 1) and 2) are rejected, SDM is the idealistic
model for the study. Table 1 shows the test results of model se-
lection and it is clear that the SDM with spatial and time period
fixed effects is more suitable for the panel data in this paper.

Based on LeSage and Pace (2010), the SDM contains a spatial
lagged dependent variable and spatial lagged independent vari-
ables and it is formulated as follow (LeSage and Pace, 2010):



Table 1
Model selection.

Test Type Statistics Model specification

Hausman Test 31.985*** Fixed effects
LR test LR_spatial_lag 29.572** Spatial and time period effects

LR_spatial_error 49.183***

Wald test Wald_spatial_lag 29.747** SDM
Wald_spatial_error 47.897***

**means significant at confidence level 5%, ***means significant at confidence level
1%.
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yit ¼ rwyit þ xitbþwxitqþ mi þ lt þ εit
i ¼ 1;…;N; t ¼ 1;…; T

(4)

where yit are dependent variables, xit are independent variables, xit
is the independent variables which have spatial effects, r is the
spatial autocorrelation coefficient, w is the spatial weight matrix, b
and q are regression coefficient estimates, mi represents the fixed
spatial effect, lt represents the time fixed effect, εit is the error term.
The spatial lagged terms related to dependent and independent
variables contribute to the identification of interaction effects
among these variables. For identifying the variable autocorrelation
in space and time, the dynamic SDM was presented to analyze the
lagged term shown as follow (Elhorst, 2014b):

yit ¼ tyi;t�1 þ hwyi;t�1 þ rwyit þ xitbþwxitqþ mi þ lt þ εit

(5)

where yi;t�1 is the dependent variable with time lagged term,
wyi;t�1 is the dependent variable with space and time lagged terms,
t and h are their corresponding coefficients. According to themodel
specification, the theoretical model based on static SDM model can
be rewritten as:

InIit ¼ r
XN

j¼1

wijInIjt þ b1InPit þ b2InAit þ b3InTit þ b4InUit

þb5InIDit þ b6InRoVeit þ b7InRaNDitþ
q1

XN

j¼1

wijInPit þ q2
XN

j¼1

wijInAit þ q3
XN

j¼1

wijInTitþ

q4
XN

j¼1

wijInUit þ q5
XN

j¼1

wijInIDit þ q6
XN

j¼1

wijInRoVeitþ

q7
XN

j¼1

wijInRaNDit þ Inmi þ Inlt þ Inεit

(6)

Similarly, the theoretical model based on dynamic SDM model
can be rewritten as:

InIit ¼ tInIi;t�1 þ h
XN

j¼1

wijInIj; t�1þ

r
XN

j¼1

wijInIjt þ b1InPit þ b2InAit þ b3InTit þ b4InUit þ b5InIDit

þb6InRoVeit þ b7InRaNDitþ
q1

XN

j¼1

wijInPit þ q2
XN

j¼1

wijInAit þ q3
XN

j¼1

wijInTitþ

q4
XN

j¼1

wijInUit þ q5
XN

j¼1

wijInIDit þ q6
XN

j¼1

wijInRoVeitþ

q7
XN

j¼1

wijInRaNDit þ Inmi þ Inlt þ Inεit

(7)

where j represents the nearby province of I, wij is the elements of
spatial weight matrix and other variables, b1;…; b7 and q1;…; q7
are regression coefficient of seven independent variables without
spatial term and with spatial term and other parameters are
defined before. In this paper the spatial weightmatrix was based on
first order contiguity matrix which indicates whether spatial units
share a boundary or not.
3.2. Data

In this study, the panel data consists of observations of 30
administrative regions during the period of 1997e2015 in China.
The data are collected fromChinese official sources, including China
Statistical Yearbook and China Energy Statistical Yearbook. The data
of CO2 emission cannot be collected from existing sources. Thus, the
emissions were calculated based on energy consumption and
cement production data, according to emission coefficients derived
from the Intergovernmental Panel on Climate Change (IPCC)
(Eggleston et al., 2006).

The independent variables in this model include transportation
factors, the population factor, the affluence factor and the tech-
nology factor. The measurements of these factors are as follows:
region population at the end of the year represents the factor P, GDP
per capita measures the factor A and energy consumption per unit
of GDP accounts for the factor T. For the transportation factor,
capital stock and public investment are often used to represent the
development of transportation infrastructure (Xie et al., 2017).
However, for showing network and spatial characteristics the
transportation network density was used to describe trans-
portation factor (Wang et al., 2017). Among the four kinds of
transportation network (railway, road, airline and inland
waterway), railway and road factors play significant roles in pas-
senger and freight transport. And they all have a significant positive
or the negative impact on CO2 emission (Li et al., 2017). So railway
network density (RaND) and the number of civil motor vehicles
(RoVe) were used to represent the transportation factor commonly.

The dependent variable in this model is CO2 emission. CO2
emissions in China mainly result of fossil fuel combustion (90%) in
which 68% from coal consumption, 13% from oil and 7% from gas
and cement production (10%) (Liu, 2016). These three types of en-
ergy could represent the main trend of CO2 emission (Li et al., 2015;
Liu, et al., 2015b), so this paper chose coal, oil and natural gas to
account for the regional environmental factor. According to the
IPCC guidelines for greenhouse gas inventories, the calculation for
energy-related CO2 emission is as follows (Eggleston et al., 2006):

IE ¼
X3

i¼1

Ei � fi �
44
12

(8)

where IE is CO2 emission related to energy consumption, i is the
three type of energy (coal, oil and natural gas), Ei is the amount of
energy consumption, fi is the carbon emission coefficient. Similarly,
CO2 emission from cement production can be calculated using:

IC ¼Q � f (9)

where IC denotes CO2 emission related to cement production, Q
represents the quantity of cement production and f is CO2 emission
coefficient of the cement production process as shown in Table 2.
And Table 3 summarizes the descriptive statistics associated with
all independent and dependent variables.
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4. Results and discussions

4.1. Data pre-test

Before the model estimation, it is necessary to do the data pre-
test including the panel unit root test and the panel co-integration
test to examine data stability to avoid the spurious regression.
Panel unit root test is an effective approach to examine the data
stability. This study applied four types of panel unit root tests,
namely Levin-Lin-Chu (LLC)(Levin et al., 2002) which is based on
common root test, Im-Pesaran-Shin (IPS) test(Im et al., 2003),
Fisher-ADF test and fisher-PP test which are based on individual
toot tests. The results shown in Appendix 1 indicate that most
variables cannot reject the null hypothesis which means most data
were not stationary at level. However, their first difference series
are stationary. Thus, panel co-integration test was used to identify
the co-integration relationship between dependent variable and
independent variables. Pedroni test was used to assess the results
shown in Appendix 2. It can be seen that the null hypothesis of no
co-integration is rejected at the confidence level of 1%. This means
there is a long-run integration relationship between CO2 emission
and other dependent variables during the study period.
4.2. Spatial autocorrelation analysis

Spatial autocorrelation is a well-recognized concern for obser-
vational data related to geographical distribution in general
(Rousset and Ferdy, 2014). It is necessary to analyze the spatio-
temporal characteristics of emissions. In this paper, CO2 emissions
of 30 provinces in China were calculated based on energy con-
sumption and cement production from 1997 to 2015. Fig. 2 shows
the regional distribution of CO2 emissions in four selected years. It
is found that emissions of many provinces remained increasing
trend over time. And there are also some administrative region
showed decreasing trends during the study period such as Beijing.
The obvious reason for this trend is that as the capital Beijing has
the bigger policy supports which also drives the imbalanced
development. In contrast, Shandong province experienced the
largest increase, rising from 328.34Mt in 1997 to 1,406.18Mt in
2015, while Qinghai province experienced the smallest increase,
increasing from 16.67 to 59.46Mt respectively. The different trends
result from degrees of energy consumption and cement production
in different regions.

Notably, there is a significant region-concentrated trend as
shown in four maps of Fig. 2. With the continuous increase of CO2
emissions, during the study period the higher emitter mainly
located in central and Eastern regions. And it is clear that adjacent
areas have obvious similar trends, for example in central and
eastern coastal regions have similar higher emissions. This clus-
tering trend became increasingly obvious from western to eastern
areas. Additionally, in four administrative regions, namely Beijing,
Tianjin, Shanghai, Chongqing, the emission levels are significantly
lower than their neighbors. Urban roles and policy priority are
possible reasons. As the municipalities, these cities play important
roles in the political, economic and cultural aspects and they have
higher policy priority and autonomy. These factors drive the
Table 2
Carbon emission coefficient (IPCC, 2006) (t C or CO2 per t coal, oil, cement and per
1000m2 gas).

Energy Coal Oil Gas Cement

Carbon emission coefficient 0.713 0.828 0.521 0.106
CO2 emission coefficient 2.614 3.036 1.910 0.389
promotion of economic and technological levels. Therefore, the
environmental performances in these municipalities may be better
than their neighbors. Although the map of CO2 emission shows the
spatial distribution from the perspective of geography, it is neces-
sary to estimate the specific spatial autocorrelation of variables.

Moran's index (Moran's I) developed by Patrick Alfred Pierce
Moranwas used as an indicator to assess the spatial autocorrelation
of variables (Li et al., 2007). Spatial autocorrelation is characterized
by a correlation in some aspects such as economy, social and
technology among nearby locations in space. The calculation of
Moran's I is as follow:

Moran I ¼
Xn

i¼1

Xn

j¼1
wij

�
Yi � Y

��
Yj � Y

�

S2
Xn

i¼1

Xn

j¼1
wij

i ¼ 1;…;n; j ¼ 1;…; n

S2 ¼ 1
n

Xn

i¼1

�
Yi � Y

�2

Y ¼ 1
n

Xn

i¼1

Yi

(10)

where i respects the region and j represents its adjacent region, n is
the number of regions Yi is the observation value of i region, andwij
is the spatial weight matrix between i and its neighbor j, S2 is the
variance and Y is the mean of Yi. The range of Moran's I is [-1, 1].
The results of the autocorrelation analysis shown in Fig. 3 indicate
there is significant autocorrelation of CO2 emissions during the
period of 1997e2015. The statistic results including E(I), Mean,
sd(I), Z-value and P-value are shown in Appendix 3. As shown in
Fig. 3, theMoran's I fluctuated from 0.22 to 0.34 at the confidence of
5% or 1% during the study period which means the existence of
spatial dependence. And the temporal dynamics of this index
reflect the weakness or strengthens of the emission agglomeration.
After 2008, the Moran's I has been declining, except for the slight
increase in 2013. Therefore, it is clear that the autocorrelation
became weaker gradually after 2008.

To represent the autocorrelation of different units, Fig. 4 shows
the scatter distributions of Moran's I in four selected years. Four
clusters have different autocorrelation meanings: HH represents
high-valued points surrounded by similar points, LH represents
low-valued points surrounded by high-valued points, LL means
low-valued points surrounded by similar points and HL means
high-valued points surrounded by low-values ones. It can be seen
that most points concentrated in clusters HH and LL which is
another evidence of spatial autocorrelation. This spatial autocor-
relation of the variable has an important impact on model esti-
mation. Thus, it is necessary to consider the spatial factors to
econometric model in this study.
4.3. Model estimation

Before the model estimation, tests of the model selection and
the model specification are necessary to ensure the described
ability of the model. In this section, the results of both the non-
spatial model and the spatial model are provided to test the
spatial lag term and the spatial error term. SDM with different ef-
fects were estimated to test whether if it can replace the SLM and
SEM. The main test methods of the model specification include the
Lagrange Multiplier (LM) test and the roust LM test, the Wald test
and the likelihood ratio (LR) test. Additionally, to identify the
spillover effect of different factors, the direct and indirect effects
estimations of SDM are provided. When the spatial autocorrelation



Table 3
Descriptive statistics of variables.

Variables Definition Unit Mean Std. Dev Min Max

CO2(I) CO2 emission Mt 222.09 183.03 5.31 1,406.18
Population(P) Regional total population 104 persons 4,324.54 2,613.29 496 10,849
Affluence(A) Per capita GDP CNY 24,269.87 21,152.2 2250 107,960
Technology(T) Energy intensity t/104 CNY 1.65 1.59 0.20 14.63
Urbanization(U) Urbanization rate % 46.39 16.05 14.04 89.6
Industry(IN) Industrialization rate % 38.82 8.05 12.65 53.03
Railway(RaND) Railway density km/104 km2 192.76 169.72 10.81 838.92
Road(RoVe) The number of civil motor vehicles 104 6,064.93 4,436.14 192.80 20,818.55

Fig. 2. Spatial distributions of CO2 emission (104 t).
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factor is considered in the model, the ordinary least squares
regression (OLS) is no longer appropriate because of the inconsis-
tency generated by the lagged endogenous variables (Tientao et al.,
2016). The maximum likelihood estimation is the widely used
method for the model with spatial autocorrelation term (LeSage
and Pace, 2009). The main results of model specification and esti-
mation are presented in Tables 4e6. In addition, since the SDMwas
used to estimate relationships among variables, the dependent
variables also include the average of these variables from neigh-
boring regions which was labeled byW*, such asW*lnI as shown in
Table 5.

Table 4 shows estimation results when adopting the non-spatial
panel data model and model specification tests. First, the Hausman
test was used to differentiate between fixed effects model and the
random effect model. According to the result of the Hausman test
(109.39 with 15 degrees of freedom (df), p< 0.01), the null hy-
pothesis (random effects model) must be rejected. Thus, the fixed
effect is more suitable for the model in this study. Then, Table 4 also
shows the estimation results without spatial factors and the iden-
tification of SLM or SEM by LM test (Anselin, 1988) and robust LM
test (Anselin et al., 1996) based on residuals of the OLS model.
According to the results of classic LM test and the robust LM test,
the null hypotheses of no spatially lagged dependent variable and
no spatially auto-correlated term can be rejected at 1% of 5% sig-
nificance. Additionally, it is important to consider the spatial and/or
time-period effects. And the likelihood ratio (LR) test provide re-
sults of spatial fixed effects (877.49, 30df, p< 0.01) and time-period
fixed effects (64.84, 19df, p< 0.01) which means these two kinds of
fixed effects must be considered in the model. The two results
indicate the spatial error model considering spatial and time-
period fixed effects is appropriate. But LeSage and Pace (2009)
recommended the SDM to replace apply one of two models, the
SLM or SEM (LeSage, 2008). According to all the testing results
below, this study chose SDMwith the spatial and time-period fixed
model to estimation the significance of all effect factors.

To verify the result of the model selection further, the estima-
tions of SLM, SEM, SDM and dynamic SDM are compared as shown
in Table 5. According to the results of R2 and s2, it is clear that the
interpretation ability of SDM is better. In addition, Table 5 not only
shows the estimation results of SDM but provides results of the
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Fig. 3. Moran's I of CO2 emissions.
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Wald test and the LR test to justify the model selection further
(Hayashi, 2000). In details, the results of Wald tests and LR test
indicates the null hypothesizes (SDM can be simplified to SLM and
SEM) can be rejected at 1% or 5% confidence level which means the
SDM can replace the SLM and SEM models. Notably, the auto-
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Fig. 4. The scatter distributions of Moran
regression coefficient is 0.594 and significant which means CO2
emissions of neighboring provinces have a positive effect on one
province. This is consistent with the results of Moran's index.
Moreover, if the model contains both spatial and time-period fixed
effects, parameters need to be bias-corrected (Lee and Yu, 2010).
Thus, the compared results without bias correction and with bias
correction are shown in column 4 and 5. It is clear that there is little
difference for dependent variables and s2 among the two models
but the lagged dependent and independent variables show more
sensitive in the bias-corrected model. In general, bias correction is
the default option in panel data estimation and many studies have
shown the importance of bias correction for models (Bun and
Carree, 2005; Hahn and Moon, 2006). Additionally, to increase
the accuracy of model estimation, the results of dynamic SDMwere
shown in column 6 of Table 5. The goal of dynamic estimation is
identifying the serial dependence between the observations on
each spatial unit. Therefore, the dependent variable lnI(-1) lagged
in time and the dependent variable W*lnI(-1) lagged in both space
and time were added. It is clear that all testing results prove the
selection of model specification.

According to the results of the five models in Table 5, multiple
interesting findings are as follows:

(1) It is clear that the results of R2 are significant in threemodels,
SLM, SEM and SDM (estimates are 0.984, 0.974 and 0.984
respectively). The spatial auto-regression terms, the spatial
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's Indexes (points mean provinces).



Table 4
Estimation results without spatial interaction effects.

Variables/Model Pooled OLS Spatial fixed effects Time-period fixed model Spatial and time-period fixed effects

lnP 0.432*** (8.218) 0.302** (2.558) 0.495*** (8.797) 0.218* (1.658)
lnA 0.282*** (4.131) 0.534*** (8.887) 0.140** (1.904) 0.472*** (5.548)
lnT 0.497*** (13.509) 0.101*** (4.490) 0.514*** (13.796) 0.073*** (3.293)
lnRaND 0.064*** (3.261) 0.403*** (8.633) 0.091*** (4.516) 0.454*** (9.832)
lnRoVe 0.412*** (8.550) �0.093** (�1.694) 0.345*** (6.497) 0.094 (1.437)
lnU �0.168*** (�2.290) 0.210*** (3.986) 0.033 (0.390) 0.152*** (2.643)
lnIN 0.985 (13.901) 0.631*** (8.323) 0.976*** (13.913) 0.452*** (5.831)
Intercept �1.293** (�1.762)
s2 0.104 0.024 0.099 0.021
R2 0.875 0.900 0.844 0.898
LogL �160.052 261.431 �144.893 293.853
LM spatial lag 153.349*** 235.619*** 116.591*** 211.096***

LM spatial error 281.481*** 249.659*** 261.904*** 209.870***

Robust LM spatial lag 4.475** 17.561*** 0.899 11.070***

Robust LM spatial error 132.607*** 31.601*** 146.212*** 9.844***

Note: t-values are placed in parentheses under the coefficient values; *means significant at confidence level 10%, **means significant at confidence level 5%, ***means sig-
nificant at confidence level 1%.

Table 5
Estimation results of SDM with spatial and time-fixed effects.

Variables/Model SLM SEM SDM SDM with bias-correction Dynamic SDM

lnP 0.444***(4.128) 0.431***(3.225) 0.623***(3.721) 0.621***(3.618) 0.160** (2.095)
lnA 0.494***(7.107) 0.532***(6.435) 0.618***(6.961) 0.618***(6.797) 0.172***(3.639)
lnT 0.074***(4.089) 0.083***(3.548) 0.087***(3.300) 0.086***(3.197) 0.023*(1.739)
lnRaND 0.334***(8.764) 0.391***(8.747) 0.343***(6.563) 0.344***(6.440) 0.057***(2.982)
lnRoVe 0.092*(1.710) 0.135**(2.056) 0.131**(1.779) 0.129**(1.713) 0.049*(0.831)
lnU 0.092**(1.958) 0.142***(2.696) 0.134**(2.387) 0.135**(2.348) 0.042*(1.725)
lnIN 0.359***(5.654) 0.321***(4.427) 0.232***(2.970) 0.229***(2.854) 0.021(0.897)
lnI(-1) e e 0.861***(25.958)
W*lnI(-1) e e �0.191***(-2.818)
W*lnI/l 0.586***(16.10) 0.638***(17.206) 0.544***(12.731) 0.594***(12.677) 0.445***(6.900)
W*lnP �0.464(-1.443) �0.476(-1.446) �0.089(-0.744)
W*lnA �0.453***(-2.694) �0.473***(-2.749) �0.333***(-2.750)
W*lnT �0.010(-0.253) �0.015(-0.372) �0.043 (�1.463)
W*lnRaND �0.018(-0.156) �0.050(-0.407) �0.163**(-1.892)
W*lnRoVe �0.093(-0.659) �0.101(-0.697) 0.134 (1.597)
W*lnU �0.070(-0.550) �0.077(-0.585) �0.188***(-2.436)
W*lnIN 0.397**(2.312) 0.363**(2.067) 0.051***(1.107)
s2 0.014 0.013 0.013 0.013 0.004
R2 0.984 0.974 0.984 0.985 0.995
Corrected R2 0.389 0.389 0.415 0.412 0.851
LogL 333.344 328.77 340.464 340.429 682.061
Wald_spatial_lag 14.523** 14.485** 16.778**

LR_spatial_lag 14.217** 14.154** 89.015***

Wald_spatial_error 22.912*** 20.049*** 38.162***

LR_spatial_error 23.359*** 23.303*** 60.794***

Note: t-values in parentheses; *means significant at confidence level 10%, **means significant at confidence level 5%, ***means significant at confidence level.
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lagged term (W*ln(I)) and spatial error term (l) are signifi-
cant too (coefficients are 0.586 and 0.638) which indicate the
existing of spatial effects.

(2) By comparing the results of threemodel, it is clear that the R2

(0.984), corrected R2 (0.414), log-Likelihood (340.46) of SDM
are higher than other two models which mean the explan-
atory ability of SDM is stronger. This result is consistent with
the model tests before. Notably, the spatial dependent and
independent variables added in the SDMmodel lead to huge
changes to driving factors of CO2 emission.

(3) In the static SDM, seven dependent variables have positive
and significant impacts on CO2 emission which means pop-
ulation increase, economic development, technology
improvement, transportation network expansion, urbaniza-
tion and industrialization promote CO2 emission. Among all
impact factors, the biggest drivers are the population factor
(P) and the economic factor (A) and their coefficients are
0.621 and 0.618. This means the 1% increase in population or
GDP drives to 0.621% or 0.618% increase in CO2 emission.

(4) Apart from the population and economic factors, the trans-
portation factors have the more obvious impact on CO2
emission (coefficients of railway factor and road factor are
0.344 and 0.129 respectively) which means transportation
factor has become the significant driver contributing to the
emission. Notably, the effect of railway factor is much more
significant than that of road factor which drives to the
rethinking of the effect mechanism of railway network.

(5) According to the results of spillover impact, the W*lnA and
W*lnIN variables have significant impacts (the coefficients
are �0.473 and 0.363) which means the economic develop-
ment and industrialization have negative and positive im-
pacts on the emission of neighboring regions. Although not
all spillover effects of variables are significant, the autocor-
relations of the dependent variable and some independent



Table 6
Direct and Indirect effects estimates.

Variables Effects Spatial and time fixed effects Spatial and time fixed effects bia-corrected Random spatial and fixed-time period effects

lnP Direct 0.604***(4.030) 0.592***(3.822) 0.676***(7.267)
Indirect �0.272(-0.438) �0.229(-0.379) �0.654**(-2.116)
Total 0.331(0.703) 0.362(0.608) 0.022(0.075)

lnA Direct 0.597***(7.102) 0.601***(7.061) 0.496***(6.040)
Indirect �0.244(-0.806) �0.248(-0.748) �0.628**(-2.584)
Total 0.353(1.181) 0.352(1.019) �0.131(-0.553)

lnT Direct 0.093***(3.993) 0.094***(3.689) 0.098***(4.165)
Indirect 0.069(1.193) 0.076(1.024) 0.076***(1.200)
Total 0.163**(2.686) 0.170**(2.309) 0.175***((2.809)

lnRa Direct 0.371***(8.161) 0.375***(7.933) 0.336***(7.643)
Indirect 0.340(1.679) 0.351(1.477) 0.019(0.114)
Total 0.711***(3.502) 0.727***(3.077) 0.356**(2.173)

lnRo Direct 0.130**(1.814) 0.124**(1.818) 0.166**(2.666)
Indirect �0.041(-0.132) �0.036(-0.137) 0.072(0.331)
Total 0.089(0.354) 0.088(0.330) 0.239(1.089)

lnU Direct 0.133**(2.500) 0.133**(2.350) 0.123**(2.323)
Indirect �0.010(0.022) �0.005(-0.019) �0.122(-0.549)
Total 0.123(0.537) 0.128(0.440) 0.001(0.005)

lnIN Direct 0.323***(4.810) 0.331***(4.636) 0.398***(5.578)
Indirect 0.054***(3.407) 0.142***(3.319) 0.189***(4.277)
Total 0.377***(4.358) 0.473***(4.156) 0.587***(5.760)

Note: t-values in parentheses; *means significant at confidence level 10%, **means significant at confidence level 5%, ***means significant at confidence level 1%.

L. Wang et al. / Journal of Cleaner Production 234 (2019) 797e809 805
variables have important impacts on the estimation of
coefficients.

(6) Compared with the static SDM, results of the dynamic model
show that the coefficients of all variables without the space
term are smaller. However, the dependent variable lnI(-1)
lagged in time and the dependent variable W*lnI(-1) lag-
ged in both space and time indicate significant impacts on
CO2 emission. The coefficients of them are 0.861 and �0.191.
This means the existing of the time autocorrelation for the
dependent variable, CO2 emission.

Additionally, to investigate the accurate direct and spillover ef-
fects of different factors, the two-side effects are shown in Table 6.
The direct impacts of all variables are positive and significant which
is consistent with the results in Table 6. It is notable that the direct
effects are different from the coefficient estimates because of the
feedback effects from neighboring items. For example, the direct
effect of variable P is 0.592 and the coefficient estimate is 0.218,
which means the non-spatial model is underestimated by 37.4%. It
is clear that some estimations of lagged variables are not significant
which is limited to the data (Elhorst, 2014b). Only the coefficient IN
is positive and significant (the coefficient is 0.142) whichmeans the
1% improvement of industrialization of a region not only rise 33.1%
CO2 emission of his own but bring 14.2% increase of neighboring
region. Additionally, it is clear that the direct estimates are different
from the results of coefficient estimates in Table 6. For example, the
direct impact of P is 0.592 and its coefficient estimate is 0.621, thus
its feedback effect is �0.019 of the direct effect. This two-sided
estimation identifying the direct and indirect impact provide
more accurate spillover impact results which are consistent with
the results in Table 5.

The empirical findings are partly in line with previous studies
(Meng and Han, 2018; Xie et al., 2017), for example, the population,
economic, technological factors are the most important contribu-
tors to CO2 emission. Meanwhile, urbanization and industrializa-
tion levels also have significant abilities to explain this emission.
The economic growth, population mobility and technological
development generally put pressures on the environment. It is
necessary to estimate the significances of impact factors to support
the decision-making for economic sectors. In this study, the model
decomposes to transportation factors to estimate the role of
transportation infrastructure. And the results indicate the road
factor represented by the number of cars is the main contributor
because of the traffic emission. It is notable that the ignored railway
network is also an important factor driving environmental pres-
sure. Although existing studies show railway expansions leads to
long-term decreases in CO2 emission(Li et al., 2017), the integrated
impact between railway infrastructure and other factors, popula-
tion factor, economic factor or technological factor should not be
ignored. According to the estimation of SDM, the railway network
has a positive and significant impact on the carbon emission which
is higher than traffic emission. In China, although the rapid
expansion of railway network facilities the transportation mode
selection and people mobility, negative impacts such as emission
should not be neglected.

4.4. Robustness test

To test the consistency of our results, the CEADs public data is
used as the explanatory variable for the spatial model regression.
This database subdivides three main types of fossil fuel into 17
types from the perspective of the socioeconomic sectors (Shan
et al., 2018). And it follows the Intergovernmental Panel on
Climate Change (IPCC) emissions accounting method with a terri-
torial administrative scope, which is the same as the measurement
method in the original study. The specific results of this robustness
test are illustrated in Appendix 4. Before the regression, some
model tests also are used to model specification. The LR test results
including the spatial fixed effect (435.91, p< 0.01) and time fixed
effect (52.00, p< 0.01) indicate the spatial panel model should be
expanded the one with spatial and time fixed effect. According to
the LM test results, although the LM test for spatial lag and spatial
error are all significant at the 1% significance, the robust LM test for
spatial error is not significant. Therefore, the spatial lag model was
used to estimate the endogenous interaction effects among the
dependent variables in different regions. According to the model
estimation results shown in Appendix 4, the independent variables
are all positive and significant apart from the urbanization variable.
And the degrees of significance for all variables are consistent with
the original results. Notably, the transportation factors and the
lagged variable are all significant, which also verify the original
hypothesizes.

In addition, multiple endogenous problems have been consid-
ered in this paper. Most empirical studies are based on non-
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experimental data and basically faced endogenous problems (Lee
and Yu, 2016). Sources of these problems mainly include the
omitted variable, missing value bias, measurement error and
reverse causality between variables. Compared with traditional
econometric models, the spatial econometric model has unique
endogenous sources and treatments. This study mainly controls
endogeneity problems from two aspects, the variable selection and
the model estimation. For the first aspect, the extended STIRPAT
theoretical model was applied to identify the driving factors and a
large number of existing empirical studies have proven the validity
of this theoretical model. For the model estimation, the spatial
Durbin model (SDM) was used to account for endogenous inter-
action effects among the dependent variable and exogenous
interaction effects among the independent variables (Elhorst,
2014b). And the fixed effect model was used to control the
endogenous problem caused by unobserved factors that do not
change over time (Sun et al., 2016). Thus, the maximum likelihood
(ML) method was used to the parameter estimation to match the
non-strict exogenous explanatory variables. In addition, the dy-
namic spatial panel model has been identified one of the effective
tools to explain the endogenous problem (Yu et al., 2012) and the
dynamic SDM results consistent with the model without time-
lagged variable.

Although the spatial panel model in this paper explains and
controls the endogenous problems from several aspects, instru-
mental variables (IV) regression under the strict exogenous vari-
ables is an effective way to test the robustness and efficiency of
model estimation. Therefore, in this part, IV (2SLS) method was
used to the regression with possibly endogenous variables. As
shown in Appendix 5, the first-order lag railway factor and road
factor are introduced into the model as the instrumental variable
respectively to test the consistency. We can see that the instru-
mental variables are highly related to the endogenous variables
according to the results of LM and Wald F statistics. The indepen-
dent variables are all positive and significant similar to the original
SDM estimation. In particular, two transportation factors signifi-
cantly and positively influence the dependent variable in these
models, showing our original results to be robust.

5. Conclusions and policy implications

As one of the largest contributors to CO2 emissions, the trans-
portation sector has the responsibility to find a way to achieve
traffic reduction and sustainable transportation. The effect identi-
fication of the transportation factor on CO2 emission is a significant
pathway to understand the role of the transportation network.
Some studies have given evidence on the impact of the trans-
portation factor on the emission particular in the developing
countries. However, spatial and time-lagged impacts of different
factors have not been fully considered. In order to estimate the
significances of population, economic, technological and trans-
portation factor accurately, this study identified the model speci-
fication rigorously based on multiple testing indexes, such as
Hausman, LR and Wald tests. This study estimated the coefficients
of four models, SLM, SEM, SDM and dynamic SDM, based on the
panel data of 30 administrative regions in China. By comparing the
models’ results, the direct and spillover effect of transport factor on
CO2 emissions are proved. The direct and spillover effects of the
transportation network has been considered in many countries in
different research levels, the city, region and country. In this study,
apart from direct emissions from the road and railway factors, the
indirect impact was represented by the economic and technical
factors and the spillover effect by adjacent regions. And the spill-
over effects have been identified and proved for the dependent
variable and some independent variables. Notably, not only the
traditional traffic emission was identified as the main emitter, but
the railway network was proved the positive relationship with CO2
emission.

Based on the findings of this study, some policy implications are
presented as follows:

(1) The significant existence of spatial auto-correlation for CO2
emission implies that the decision-making unit of emission
reduction should expand from intra-regions to inter-regions.
From the perspective of the theory, when evaluating the
levels of CO2 emission the cross-regional impact should not
be ignored. In addition, the existence of spatial auto-
correlation for emission indicates the serial lagged impact
should also be considered when evaluating the level of re-
gions or their neighboring regions. Apart from the reduction
evaluation, the joint decision-making must be an efficient
way to achieve the whole reduction goal accompanying the
sub-goal achievement for each region.

(2) Apart from the population and economic factors, trans-
portation factors have positive and significant spillover ef-
fects on CO2 emissions based on the results of all models. In
particular, the railway network has more obvious impacts
than the road factor (the number of vehicles) which has been
ignored. The impactmechanism of the railway network is the
integrated impacts with other population, economic and
technological factors which have been proved in some
studies (Li et al., 2017). Thus, the sustainable evaluation or
policy plans of transportation sector should not only focus on
the road traffic but the expansion of the railway network. In
other words, the environmental impact of railway con-
struction should be importation decision factor during the
fast track of Chinese railway expansion. Because the goal of
the expansion is achieving the maximum of all economic,
environmental and social profits which means sustainability.

(3) As for indirect factors, especially the technology factor, there
are many improved potentials for the transport sector. Low-
carbon and efficient transportation technologies are the
main de-carbonization pathways. From the perspective of
the transportation network, optimizing mobility structure
could reduce the mobility cost and optimize the path selec-
tion for freight and passenger transportation. And now the
inter-mobility mode for freight transportation and mobility
as a service (MasS) for passenger transportation are the hot
topics. In addition, new energy vehicles including hybrid
electric, battery electric and fuel cell electric vehicles are also
a significant de-carbonization pathway.

This paper reveals the important experimental problems based
on solid theory and multiple test methods to select variables and
model specification. From the perspective of the methodology, the
results show that the spatial and time-lagged factors have signifi-
cant impacts on the estimation. Thus, the spatiotemporal factors
should be well-recognized for the observational data related to the
geographical distribution or regional analysis. Additionally, the
results obtained from this study indicate that transportation factors
play an increasingly important role in the reduction of CO2 emis-
sion. In particular, the significant impact of railway network
ignored before has to be considered as one of the driving factors to
the environmental pressure. This means the expansion plan of the
transportation network should integrate both economic and envi-
ronmental evaluation indexes. The significance identifications of
population, economic, technological and transportation factors are
the first step to find a way to reduce CO2 emissions to achieve
sustainable goals. In the future, the prediction of the transportation
factor's impact on the environment is necessary to support the



Appendix 4. Robustness test results with new data

Model Variables Coefficient t-stat z-probability

lnP 0.631 2.464 0.003
lnA 0.661 3.984 0.000
lnT 0.072 1.645 0.09
lnRaND 0.425 4.713 0.000
lnRoVe 0.083 0.650 0.005
lnU 0.174 1.544 0.122
lnIN 0.189 1.250 0.011
W*lnI/l 0.524 11.954 0.000
LM spatial lag 159.177 0.000
LM spatial error 145.781 0.000
Robust LM spatial lag 14.945 0.000
Robust LM spatial error 1.549 0.213
s2 0.080
R2 0.929
Corrected R2 0.160
LogL �147.900
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traffic management and infrastructure expansion. For the transport
sector, finding a sustainable development way is an urgent task.
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Appendixes
Appendix1. Results of panel unit root tests

Series LLC test (common root) IPS (individual root) ADF-fisher (individual root) PP-fisher (individual root)

N I I &T N I I &T N I I &T N I I &T

Levels lnI 13.4 �2.7*** 4.6 e 3.2 2.4 3.2 29.6 48.0 1.4 17.4 26.4
lnP 12.1 �13.5*** �3.9*** e �2.8*** �0.5 12.8 173.1*** 81.0** 6.4 171.0*** 58.3
lnA 22.5 �9.2*** 3.0 e �0.4 0.9 2.9 80.1** 45.2 0.0 30.1 33.7
lnT �1.8** 5.8 �0.2 e 10.6 3.4 85.1** 8.4 32.4 93.9*** 8.7 31.1
lnRaND 11.5 6.4 �3.5*** e 10.3 �1.1* 1.3 5.7 85.9** 1.0 7.4 103.4***

lnRoND 10.9 �4.1*** 0.9 e 1.6 2.3 1.1 45.5 27.9 0.8 32.2 33.9
lnU 13.1 �6.8*** �35.8*** e �3.0*** �8.8*** 4.8 118.7*** 77.9* 2.7 255.3*** 56.0
lnID 2.2 �1.5* 0.5 e 1.7 2.0 48.8 44.4 44.9 52.0 26.2 19.7

First difference lnI �8.5*** �6.9*** �8.3*** e �7.0*** �4.4*** 160.2*** 154.3*** 112.0*** 189.7*** 156.6*** 114.0***

lnP �5.8*** �11.9*** �13.5*** e �10.8*** �9.2*** 234.9*** 227.3*** 189.5*** 243.6*** 251.6*** 236.7***

lnA �4.2*** �4.7*** 0.8 e �3.4*** 6.2 65.1 89.3*** 29.5 62.1 85.5** 45.1
lnT �11.5*** �18.4*** �16.0*** e �14.6*** �12.4*** 264.8*** 295.6*** 245.1*** 314.9*** 365.9*** 364.6***

lnRaND �20.4*** �20.9*** �20.5*** e �17.1*** �16.2*** 424.3*** 352.0*** 307.3*** 427.6*** 822.6*** 467.1***

lnRoND �17.7*** �20.4*** �17.7*** e �15.0*** �12.5*** 361.8*** 302.2*** 236.1*** 368.8*** 307.7*** 277.5***

lnU �11.8*** �15.3*** �34.4*** e �12.7*** �20.6*** 272.4*** 268.7*** 277.4*** 280.4*** 273.1*** 317.0***

lnID �14.3*** �10.9 �9.0*** e �9.0*** �5.9*** 285.2*** 199.5*** 138.9*** 293.7*** 193.5*** 151.4***

*means significant at confidence level 10%, **means significant at confidence level 5%, ***means significant at confidence level 1%.

Appendix 2. Pedroni test for co-integration relationship

Statistic p-value

Modified Phillips-Perron t 8.5803 0.0000
Phillips-Perron t �7.3193 0.0000
Augmented Dickey-Fuller t �6.7382 0.0000

H0: No co-integration. Ha: All panels are co-integrated.

Appendix 3. Moran's Indexes of CO2 emissions

Variables I E(I) Mean sd(I) Z-value P-value

CO2_1997 0.264 �0.035 �0.0311 0.1165 2.5305 0.004
CO2_1998 0.249 �0.035 �0.0317 0.115 2.440 0.009
CO2_1999 0.291 �0.035 �0.0315 0.115 2.7934 0.007
CO2_2000 0.272 �0.035 �0.0388 0.1148 2.7029 0.009
CO2_2001 0.311 �0.035 �0.0327 0.1141 3.0111 0.003
CO2_2002 0.301 �0.035 �0.0324 0.1138 2.9279 0.004
CO2_2003 0.273 �0.035 �0.0415 0.1125 2.7988 0.004
CO2_2004 0.301 �0.035 �0.0408 0.1124 3.0419 0.003
CO2_2005 0.324 �0.035 �0.0413 0.1107 3.301 0.001
CO2_2006 0.309 �0.035 �0.0345 0.1100 3.185 0.001
CO2_2007 0.309 �0.035 �0.0417 0.1106 3.1697 0.001
CO2_2008 0.315 �0.035 �0.0418 0.1094 3.2626 0.001
CO2_2009 0.295 �0.035 �0.0364 0.1138 2.9107 0.001
CO2_2010 0.288 �0.035 �0.0342 0.1156 2.7881 0.003
CO2_2011 0.282 �0.035 �0.379 0.1133 2.8196 0.004
CO2_2012 0.262 �0.035 �0.0323 0.1129 2.6062 0.007
CO2_2013 0.263 �0.035 �0.0367 0.1114 2.6927 0.006
CO2_2014 0.244 �0.035 �0.0340 0.1167 2.383 0.007
CO2_2015 0.242 �0.035 �0.0335 0.1147 2.4025 0.008



Appendix 5. Robustness test results with IV regression

Variables Coefficient t-stat z-probability Coefficient t-stat z-probability

lnP 0.197 1.52 0.129 0.247 1.93 0.054
lnA 0.604 9.04 0.000 0.687 9.63 0.000
lnT 0.084 3.63 0.000 0.087 3.75 0.000
lnRaND 0.582 7.06 0.000 0.442 8.78 0.000
lnRoVe 0.205 3.06 0.002 0.245 3.69 0.000
lnU 0.267 4.25 0.000 0.277 4.48 0.000
lnIN 0.549 6.70 0.000 0.501 6.05 0.000
LM statistic 185.965*** 402.403***

Wald F statistic 288.673 1,881.168
Instrumental variable First-order lag lnRaND First-order lag lnRoVe
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