
0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2890626, IEEE
Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Increasing the Reliability of Software Timing
Analysis for Cache-Based Processors

Suzana Milutinovic, Enrico Mezzetti, Jaume Abella, and Francisco J. Cazorla

Abstract—Real-time systems are witnessing a significant increase in critical software’s size, complexity, and performance needs,
which can only be satisfied with high-performance hardware features. Cache memories, pervasively used to improve average
performance, complicate Worst-Case Execution Time analysis: cache placement (i.e., how software objects are mapped to cache)
during the testing phase does not only critically affect the observed performance, but also proves to be arduous to control and preserve
up to operation. The probabilistic variant of Measurement-Based Timing Analysis (MBPTA) responds to this challenge by deploying
time-randomized caches that naturally explore a different random cache placement in each run, relieving the user from producing tests
that intercept relevant Cache Conflict Placements (CCP). Yet, to meet an adequate probabilistic CCP coverage, the user is required to
collect a minimum number of measurements. We present two mechanisms, CCP-RM and CCP-hRP, to identify CCP with relevant
probability of occurrence and large impact on execution-time, for the random modulo (RM) and hash-based random placement (hRP)
policies. CCP-RM and CCP-hRP enable a reliable application of MBPTA by computing the number of runs R′ necessary to meet the
desired CCP coverage. We exhaustively evaluate CCP-RM and CCP-hRP, showing their effectiveness on well-known benchmarks and
a railway case study, on top of an accurate simulator and a concrete RTL implementation.

Index Terms—Embedded real-time systems, cache memories, timing validation and verification.

F

1 INTRODUCTION

In critical-embedded real-time systems [34] software contin-
ues to be in charge of providing most innovative services,
making it instrumental in increasing products’ competitive
edge in the market [23]. Software is also increasingly driving
the decision making process over a huge amounts of data of
diverse types, which not only increases its complexity but
also complicates timing validation and verification (V&V).
The latter focus on providing evidence that system functions
perform timely: to that end, timing analysis methods are
used to estimate the worst-case execution time (WCET) of
tasks. WCET estimates must be reliable, according to the
level of confidence defined in the relevant safety standards,
and as tight as possible, to minimize the provisioning of
hardware resources. Timing V&V is further challenged by
the use of performance-accelerating hardware (e.g., caches)
to provide the unprecedented rise in performance needs for
critical software’s, expected to be as high as 100x in the next
years in the automotive domain [1].

Increased hardware and software complexity reduces the
confidence that can be placed on WCET estimates derived
by measurement-based timing analysis (MBTA), the most
used timing analysis technique in critical real-time embed-
ded systems [44]. In particular, increased effort is needed
on the user to concoct stressing execution scenarios during
the (analysis-time) test campaign as a means to capture bad
scenarios that can arise during system operation [18].

• S. Milutinovic is with the Barcelona Supercomputing Center (BSC) and
the Universitat Politecnica de Catalnyna, Barcelona (Spain).

• E. Mezzetti and J. Abella are with BSC, Barcelona (Spain).
• Francisco J. Cazorla is with BSC and IIIA-CSIC, Barcelona (Spain).

Manuscript received Month dd, yyyy; revised Month dd, yyyy.

Complex hardware/software platforms exacerbate the
inherent variability in the execution time of a program,
leading to timing distributions with arbitrary variance
and shape. This has motivated the use of statistical tech-
niques to derive bounds to execution time distributions. In
particular Measurement-based probabilistic timing analysis
(MBPTA) [3], [8], matured in recent years, delivers a prob-
abilistic WCET (pWCET) function that upper-bounds the
(probabilistic) execution time distribution of the program
(pETd) at any exceedance probability, see Figure 2. MBPTA
has been successfully applied to industrial case studies [43]
and its impact on certification has been addressed [42].

MBPTA has been complemented with solutions that
inject randomization in program’s timing behavior to relieve
the user from controlling those jittery resources affecting
the execution time variability of a program. Randomiza-
tion makes that all potential behaviors that a given jittery
resource (e.g. caches) can exhibit, are naturally (and ran-
domly) explored in every new test, enabling the derivation
of probabilistic guarantees. In the case of caches, cache-
placement randomisation breaks the dependence between
memory mapping and cache location, typical of conven-
tional modulo-placement caches. As will be detailed later,
this prevents incremental software integration from having
any repercussion on cache behavior, thus not requiring the
end user to exercise any control over memory mapping [12].
Randomization has been implemented at hardware level
(e.g. random arbitration policies and random placement/re-
placement techniques) that are now part of a commercial
product for the space domain [6]; and with software-only
techniques (e.g. compiler level) [26]. We focus on hardware-
randomized cache placement.

To properly account for the timing behavior of caches
– one of the on-chip processor resources with the high-

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2890626, IEEE
Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

est impact on average and worst-case performance – tim-
ing V&V requires capturing Conflictive Cache Placements
(CCP) during the test campaign. Under a CCP the number of
addresses mapped to a cache set exceeds its associativity W .
Having W +1 or more addresses mapped to the same cache
set will cause a notable increase in the number of misses
and, eventually, in the execution time [2]. A concern for
timing V&V arises when the CCP occur with a sufficiently
high probability, deemed relevant by the corresponding
safety standard, but low enough not to be observed in the
measurements at analysis time [2], [31], [39]. For instance,
for a program accessing 5 addresses, the probability that
all of them are randomly mapped to the same set in a
32-set 4-way cache is 10−6 ≈ 32/325 = (1/32)4, which
is considered to be relevant for avionics and automotive
products1. With random cache placement, when R=1, 000
runs are performed – a reference value typically used by
MBPTA – the probability that at least one run captures the
execution-time impact of the cache placement of interest
(i.e., five addresses mapped to the same set) is very low
(≈ 10−3), and hence, highly unlikely to be captured by
MBPTA. Thus, MBPTA faces the challenge of deriving an R
guaranteeing that relevant CCPs of time-randomized caches
(TRc) are captured with sufficiently high probability.

High values of R increase the probabilistic coverage of
CCPs, but also increase the application costs of MBPTA,
drastically reducing its overall benefit/cost ratio. In this
paper, we provide means to quantify the probability (risk)
of not capturing CCPs, and the increased cost of performing
more runs. This provides the system engineer a mechanism
to take an informed decision on the number of measure-
ments to collect, properly balancing the time/effort avail-
able for the analysis, the criticality of the software being
analyzed, and the corresponding safety requirements in the
reference application domain.

We focus on the two TRc existing designs, namely,
Random Modulo (RM), already implemented on a
commercially-available processor [6] with competitive re-
sults in comparison to standard (modulo placement)
caches [22]; and hash-based Random Placement2 (hRP) that
provides lower performance though it imposes fewer con-
straints in hardware designs, thus offering a different and
valuable tradeoff [27]. In particular, the main contributions
of this work are as follows:

We analyze RM and hRP to shed some light on how
CCPs emerge in a different manner under those designs. We
show that the particular set of W + 1 or more addresses
that when mapped to the same set cause a CCP are different
under RM and hRP. Further, both the miss counts and the
number of CCP decrease under RM, which in turn reduces
the number of runs required. This motivates the necessity of
different design-specific techniques to intercept CCPs.

We propose CCP-RM and CCP-hRP that identify the
CCP for a given sequence of addresses, along with their
probability and impact on execution time, for RM and hRP

1. Depending on the criticality level, acceptable per-hour failure rate
probabilities range from 10−6 to 10−9.

2. Whereas the CCP-hRP mechanism and its evaluation have been
already published in [33], the CCP-RM mechanism, the analysis of RM
and hRP caches and the comparison of CCP-RM and CCP-hRP are
strictly novel contributions.

respectively. For a given configurable coverage probability
threshold Pcth, CCP-RM and CCP-hRP determine whether
CCP’s impact is captured in the default R runs performed
by MBPTA. Otherwise, more runs need to be carried out
until the probability of not observing one of the random
CCP is below Pcth.

We evaluate CCP-RM and CCP-hRP on a cycle-accurate
timing simulator where we provide evidence of their ben-
efits on reference EEMBC automotive benchmarks. The
simulator experimental setup allows building controlled
scenarios in which we can exhaustively derive all cache
placements and show how CCP-RM (CCP-hRP) capture the
actual set of conflictive cache placements. This information
can be used as evidence for certification.

We assess CCP-RM and CCP-hRP on a real setup with
a case study, representative of the railway domain, running
on real implementations of RM and hRP on an FPGA board.
Results show that CCP-RM and CCP-hRP identify CCP with
limited burden on the user side (in terms of effort and time)
and derive the number of observations R′ that needs to be
collected to ensure that the probability of not capturing a
relevant CCP is below acceptable levels.

The rest of this paper is organized as follows. Section 2
presents basic background on timing Validation and Verifi-
cation. Section 3 shows the main differences in terms of CCP
between hRP and RM. Sections 4 and 5 detail our CCP-
RM and CCP-hRP proposals respectively, which are then
thoroughly evaluated in Sections 6 and 7, on simulated and
FPGA platforms respectively. Finally, Section 8 covers the
most relevant related works whereas Section 9 draws the
conclusions we derive from this work.

2 TIMING V&V, CERTIFICATION, AND STANDARDS

Timing Faults and Safety Standards. A common miscon-
ception in real-time systems is that a program overrun
(timing fault) necessarily causes a failure at system level.
In reality, a safety process factors in the impact that timing
faults can have on the overall system failure rate. Taking
as a reference the ISO26262 [24] standard in the automotive
domain, the safety life cycle defines safety goals (and their
associated Automotive Safety Integrity Level or ASIL) for
each system element. If those goals are reached, the residual
risk of failure is deemed as sufficiently low. The safety
process also defines the safety requirements on the hard-
ware/software to reach the safety goal. Proper measures
are put in place to reduce the probability that a fault in
a hardware/software element can contribute to the viola-
tion of its safety requirements – and hence the safety goal
– beyond an established threshold. For instance, random
hardware residual faults are considered acceptable if their
rate is below a given threshold and the diagnosis coverage
– i.e. the mechanisms detecting whether this type of fault
can occur for a given hardware block – is below a given
target. For instance, for the highest safety level (ASIL-D) the
maximum allowed failure rate is 10−8 per hour of operation
when the diagnosis coverage reaches 99%.

MBTA and evidence for certification. For complex hard-
ware and software, industry will continue to use MBTA as
the main analysis approach. This has not only been directly
acknowledged by automotive representatives [38], but also,

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2890626, IEEE
Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

in recent industrial works, OEM/Tier1 teams and static
timing analysis (STA) tool providers increasingly resort to
measurement-based analysis to derive timing bounds for
processor architectures like the NXP P4080 [14], and ARM-
based SABRE Lite multicore system [11]. The reason is that
STA does not scale to handle the complexity of hardware
and software: STA aims at delivering evidence for timing
V&V models building on formal proofs that are meant to
show the soundness of the application of the analysis steps.
While this can be agreed to be scientifically sound, the
confidence on STA results still builds on the fragile and
increasingly unrealistic assumption of correctness of the
underlying timing model, which is expected to faithfully
represent the behavior of the real hardware being analyzed.
The extraordinary complexity of multicore platforms and
the lack of sufficient technical details in manuals cause
the above assumption to be poorly sustainable in practice,
which in turn drives the industrial practice to build on
empirical evidence (measurements) as the main element
to show adherence to timing requirements. In this line,
most recent industrial approaches to handle the timing
of complex hardware [5] build on requirements that, for
the same reasons above, can only be assessed empirically.
This includes, for instance, the identification of interference
channels, which necessarily requires an extensive set of tests
showing the processor resources in which tasks affect each
other’s timing behavior.

Furthermore, empirical evidence and heuristics are widely
used in hardware testing processes. For instance, ISO26262
defines different failure rate thresholds for different ASIL
levels according to the diagnostic coverage w.r.t. residual
faults (see clause 9.4.3.6 in ISO26262 Part 5). Fault models
used for assessing diagnostic coverage are in many cases
restricted to models that can be tested at appropriate ab-
straction levels. For instance, stuck-at faults can be easily
assessed at gate-level, where the model of the hardware
is precise enough, and engineers have full controllability
and observability of the circuit. In the absence of ‘complete’
fault models to assess diagnostic coverage, heuristics are
used to generate a sufficiently low number of tests with
sufficiently high diagnostic coverage. For instance, tests are
normally generated with Automatic Test Pattern Generators
(ATPG) [7], [16], which build upon heuristics (including
guided search algorithms). Target test coverage can be as
low as 90% even for the highest criticality levels (ASIL-D in
automotive), thus leaving up to 10% of the design untested
against relevant faults. Overall, evidence for certification
builds upon measurements obtained with heuristics due to
the inability to afford exhaustive explorations.

MBPTA. The quality of WCET estimates is hard to as-
sess, especially for increasingly complex systems. The main
concern in MBTA lies in the construction of tests cases for
the test campaign that exhaustively (and simultaneously)
capture the worst-case behavior of jittery resources (jres).
MBPTA applies to timing analysis the ISO26262’s philos-
ophy to handle hardware faults: MBPTA derives tasks’
probabilistic distributions, representing the probability that
one task execution overruns a given budget, as shown
in Figure 2. For example, assuming a budget of 7 time units,
the probability that a task exceeds its deadline (potentially
causing a timing failure) is below 10−10. By multiplying

Fig. 1. Probability range of interest

the target probability by the frequency of execution of
the analyzed task per hour, MBPTA derives the probabil-
ity of timing failures per hour of operation, hence fitting
ISO26262.

MBPTA controls the impact on execution time of jres
during the test campaign. It does so by either enforcing
jres that cause low execution-time variation to work on
their worst latency (so their impact on execution time is
upperbounded in analysis-time runs) or by randomizing the
timing behavior of those jres that cause high execution-time
variation (such that bad timing behavior is captured with
a quantifiable increasing probability as more measurements
are taken). As a result, the analysis time pETd (ApETd) is an
upperbound of the operation time pETd (OpETd) (see Fig-
ure 2). On the other hand, MBPTA simplifies the process of
collecting observations during the test campaign by deploy-
ing statistical techniques such as Extreme Value Theory [29]
(EVT). EVT models program’s execution time probability
distribution based on a limited number of measurements
(e.g. 1000), see pWCET distribution in Figure 2. Further,
EVT transparently derives the combined probability that
the bad behavior of different jres occur simultaneously in a
single run, provided that the bad behavior of each single jres
has been captured in the collected runs. As a consequence,
triggering the bad timing of all jres individually suffices
for a trustworthy WCET estimation with MBPTA. This is
in contrast to MBTA that requires all bad behavior to be
triggered in a single run.

The quality of WCET estimates obtained with MBPTA
depends on the representativeness of the measurements col-
lected at analysis w.r.t. the timing behavior of the system
during operation. In analysis-time measurements, bad tim-
ing behavior of each jres needs to be exercised and fed to
EVT, which is then responsible for modelling the combined
behavior of several jres. For low-variability jres, which are
enforced to work at their highest latency at analysis, a
single measurement is sufficient to capture bad behavior.
For high-variance jres, which are instead meant to be time-
randomized, all relevant (random) events need to be captured
by carrying out enough runs.

Relevant (random) events, see Figure 1, are all those
occurring with a probability above a threshold that relates
to the corresponding safety standard in the domain (e.g.
Prel = 10−9). The probability of not observing a relevant
random event at analysis (Pnobs) is a function of the num-
ber of measurements taken (R) and the event probability
(Pnobs = (1− Pevent)

R). See Table 1 for the definitions used
throughout the paper. For example, let us assume that R =

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2890626, IEEE
Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

TABLE 1
Definitions used in this paper.

Term Description
Pevent; Prel Probability of ‘event’ (e.g.CCP); Threshold probability

separating relevant from non-relevant events
Pnobs; Pcth Probability of missing event at analysis; Coverage

threshold probability dictated by safety standard

P̃guilty Probability of the address of interest to be evicted
guilt Measure of the contribution of a given address to the

P̃guilty of the address of interest
K Cardinality of (number of addresses in) a combination
Qi = {AX

j , ...} Sequence of accesses, A is the memory addresses, j the
number of times A has been referenced in the sequence
and X is the cache segment A belongs to

@(Qi) ; |@(Qi)| Set of unique addresses in Qi and Number of unique
addresses in it

memaddrX Any of the accesses in sequence to memory address
memaddr belonging to the segment X

U Number of unique addresses in a sequence
Xi Sequence of accesses between 2 accesses to the same

address
q No. of distinct addresses in a sequence Xi

s No. of distinct cache segments in a sequence Xi

m1(m2) Local variables used to compute Pguilt−seg (guilt)
R (R′) Number of measurements to collect determined by

MBPTA (CCP-aware mechanism: CCP-RM/CCP-hRP)
T Number of conflictive combinations
S; W Number of cache sets; Number of cache ways

10,000 measurements are taken during the test campaign at
analysis. The events with per-run probability of occurrence
equal to Pevent may be not be properly covered (i.e. missed)
with negligible probability, Pcth, if (1−Pevent)

10000 ≤ Pcth.
For instance, for Pcth = 10−7 events with a probability
Pevent ≥ 0.00162 are captured with a probability higher
than 1− 10−7. To capture events with lower probabilities of
occurrence with enough confidence, more runs are needed.

3 UNDERSTANDING CCP UNDER RM AND HRP
For RM and hRP, the relevant random events to track are the
CCPs, corresponding to those random cache mappings that
cause the number of program addresses mapped to the same
set to exceed the cache associativity W [2]. Those addresses
compete for the same set, increasing the number of conflict
misses. Otherwise, i.e. when W or fewer addresses within a
loop are mapped to the same set, after some initial misses
due to random replacement, the addresses will eventually
end up fitting in their assigned cache set [2]. We define
two distinct procedures, CCP-RM and CCP-RP, that derive
the CCP probability (i.e. Pevent) on RM and hRP caches
respectively; they also determine whether the probability
(Pnobs) of not observing CCP with the default number of
measurements R is below a given user-provided coverage
threshold (Pcth). If Pnobs > Pcth, CCP-RM and CCP-hRP
request the user to perform more runs R′ until Pnobs < Pcth,
i.e. the probability of not capturing CCP is below the user-
defined threshold. Hence, CCP-RM and CCP-hRP offer the
user a mechanism to balance testing time and providing
evidence for certification on timing budgets according to
the target integrity (criticality) level.

3.1 Time-Randomized Cache (TRc) Implementations

TRc breaks the dependence between address location in
memory and its cache set position. As a result, during
the test campaign, users do not need to control program’s

Fig. 2. Randomization (and upperbounding) of jittery resources cause
the analysis time pETd (ApETd) to upperbound that at operation
(OpETd). Building on a sample (of for instance 1,000 elements) from
ApETd, MBPTA derives a probabilistic WCET distribution.

code/data memory placement – which is very sensitive to
environmental execution conditions that may change across
software integration steps – but only need to adjust the num-
ber of measurements to perform. Further, TRc favor incre-
mental software integration in that, unlike traditional caches,
TRc cause that changes in the memory layout of a module,
occurring when new modules are integrated, do not affect
the set of CCPs. Hence, while with traditional caches new
memory layouts invalidate the WCET estimates previously
derived under a different layout (software integration) [12],
this is not the case for TRc.

Hash-Based Random Placement (hRP) hashes addresses
with a random number to derive the cache set in which to
place the address. The random number is changed at the
beginning of each execution, such that addresses change
placement across sets. Under hRP any two addresses3 can
be mapped to the same set with a probability 1/S [=S/S2],
where S is the number of sets. The main disadvantage of
hRP is that it exhibits cache conflicts even in the scenarios
where all data (or the subset of most-accessed data) is
largely below cache capacity since all addresses can be
potentially placed in the same set.

Random Modulo placement (RM) groups the addresses
sharing the same memory page into cache segments and en-
sures that all addresses from the same segment are mapped
to distinct sets. Randomization is achieved by using the
random number (changed across executions) and some ad-
dress bits to drive the permutation of index bits to the bits
denoting the set where to map the address. By avoiding
conflicts among consecutive memory addresses (those in
the same page), RM better exploits spatial locality in a
similar manner as modulo placement, and outperforms hRP
in terms of both average and worst-case performance. Note
that RM requires that page alignment does not change upon
integration. Otherwise, WCET estimates obtained under the
assumption that some contents reside in the same page (and
hence cannot conflict in cache), would be no longer valid if
those contents move to separate pages. Thus, RM improves
performance w.r.t. hRP, but also poses some additional
constraints. RM preserves the properties needed by MBPTA
(independence of actual memory addresses) as long as the
page size is equal (or a multiple) of the way size. If the page
is smaller, then hRP must be implemented instead of RM.

3. For the sake of simplicity we assume that the addressable unit
matches the size of a cache line.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2890626, IEEE
Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

3.2 State-of-the-Art on CCP Detection

Cache placement plays a key role in the amount of con-
flict misses experienced, becoming a central element for
several average- and worst-case cache optimization ap-
proaches [17], [21], [30], [36]. These approaches, whose focus
is on modulo placement, build on deriving the number of
cache conflicts by either statically analyzing or profiling a
program under a heuristically determined subset of cache
placements. This information is later used to select the cache
placement (among those observed) that produces the mini-
mum number of conflicts. These approaches, however, build
on the unlikely assumption that a cache layout is robust
against program variations and incremental system inte-
gration, widely spread in automotive and avionics among
other domains. Our interest in CCPs is not in finding an
optimal one (which is indeed a fragile concept) but rather in
providing guarantees that relevant CCPs are covered in the
analysis test campaign.

The need to identify CCPs, and their probability of
occurrence, in the scope of MBPTA was first shown in [2],
which propose a mechanism for hRP that determines the
number of measurements R to carry out as a function of
the number of program addresses and the probabilities
that more than W of them reside in the same set. Such
approach assumes private and partitioned caches, which are
normally deployed in critical real-time systems, for the sake
of time-predictability. However, the proposed approach is
only suitable when all addresses have a similar impact on
execution time, while in general access patterns and access
counts across different addresses are arbitrary.

ReVS [32] is a theoretical evaluation framework pro-
posed for hRP, but that can be adapted for all TRc. It
builds on Monte-Carlo simulations to explore the impact
of a relatively large set of random cache placements. From
these simulations the authors evaluate the miss impact in a
cache simulator of all potential CCPs. ReVS time overheads
are unaffordable in the general case as the number of cache
placements to be considered is a function of the number of
different (unique) addresses in the program: with address
counts as small as 20 the number of simulations to perform
already reaches the order of billions, dismissing ReVS as a
valid general solution. Instead, ReVS can be used in con-
trolled experiments with reduced number of addresses, to
assess the accuracy of computationally-tractable techniques
(as CCP-RM and CCP-hRP) to capture CCP.

To the best of our knowledge, (1) no technique allows
deriving the minimum number of runs required for hRP
with affordable computational cost, and (2) no solution has
been proposed for higher-performance RM caches.

3.3 Difference between RM and hRP

RM and hRP cause CCP to be triggered differently, which
motivates having two different CCP detection techniques.
As an illustrative example, Figure 3 shows how 4 addresses
could be mapped to a 4-set cache in different runs. We see
that, since the addresses belong to the same memory page,
they cannot be mapped to the same set under RM and hence,
cannot incur CCP. Instead, with hRP every single address
can be mapped to any set, and possibly trigger CCP.

Fig. 3. Small example for a 4-way hRP and RM cache. For RM the CCP
arises across different memory pages.

In order to better understand the differences between
RM and hRP let us assume the address sequence Q0.

Q0 = {A0
1B

0
1C

1
1D

1
1C

1
2D

1
2C

1
3D

1
3A

0
2B

0
2

A0
3B

0
3C

1
4D

1
4C

1
5D

1
5C

1
6D

1
6A

0
4B

0
4}

Each element is a memory address with the superscript
denoting the memory page (cache segment) it belongs to,
and the subscript the number of times that address has been
referenced. Further let us assume a 2-set direct-mapped
cache. With hRP, addresses have equal probability to be
mapped to a set. The same holds for RM with the exception
of addresses belonging to the same memory page that are
prevented from colliding in the same set. Consequently, the
set of possible cache placements generated by RM is always
a subset of the possible cache placements by hRP. For Q0,
Table 2 lists all possible placements. As it can be seen, among
all hRP placements, only two can arise with RM.

TABLE 2
Conflictive cache placements (CCP) for Q under RM and hRP

Placement hRP RM
{set0}{set1} or Misses CCP? Misses CCP?
{set1}{set0}
{ABCD} {-} 20 yes not possible
{AB} {CD} 20 yes not possible
{BCD} {A} 17 yes not possible
{ACD} {B} 17 yes not possible
{ABC} {D} 15 yes not possible
{ABD} {C} 15 yes not possible
{AC} {BD} 10 yes 10 yes
{AD} {BC} 10 yes 10 yes

hRP and RM produce different CCPs. hRP does not pre-
vent any addresses to coexist in a set, resulting in potential
conflicts among addresses in the same memory page. RM
placement, instead, avoids such behavior by design. More-
over, the CCPs with RM, in general, produce lower miss
counts compared to those of hRP, as illustrated in Figure 4,
reporting miss count and frequency for the bitmnp EEMBC
benchmark executed in our reference setup (later presented
in Section 6). RM incurs similar miss counts as hRP only
when addresses of the sequence causing conflict misses
belong to different memory pages.

4 THE CCP-RM MECHANISM

CCP-RM derives the minimum number of runs needed to
ensure that all relevant cache events (i.e. CCP) have been
observed with sufficiently high probability for an RM cache.
For a given cache setup, CCP-RM analyzes the sequence of
memory accesses of the program (considering instruction
and data accesses separately). From these inputs, CCP-RM:

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2890626, IEEE
Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Fig. 4. bitmnp behavior in first level instruction hRP and RM caches.

1) first creates a list of those address combinations that,
if placed in the same set, can result in high cache
miss counts (Section 4.1).

2) derives for each combination its impact in miss
count and probability of occurrence (Section 4.2).

3) assesses whether for a probability threshold 1−Pcth

the number of runs typically required by MBPTA
(R) already captures these combinations and, oth-
erwise, iteratively requests further runs (R′) until
those combinations are not observed with a maxi-
mum probability below Pcth (Section 4.3).

CCP-RM is heuristic centric to make it computationally
tractable. Our results show that, in practice, the actual CCPs
are captured in the top 3 address combinations identified
by CCP-RM. Further, those address combinations classified
as the top ones by CCP-RM, but which do not correspond
to the actual CCP, have in fact, similar impact to the actual
CCP.

4.1 Deriving Relevant Address Combinations
A necessary characteristic of CCP address combinations is
that their cardinality (i.e. number of addresses) exceeds
the number of cache ways W (e.g. for a 2-way cache, all
address combinations of 3 or more addresses are potentially
conflictive). CCP must also have a probability of occurrence
sufficiently high to be considered relevant by the corre-
sponding safety standard.

For each address count K > W , CCP-RM derives a
list of addresses (combinations) expected to generate many
misses if they are randomly mapped to the same set. CCP-
RM focuses on those combinations whose probability of
occurrence is above a safety-standard defined probability
(e.g. 10−9). It stops exploring K values when the probability
that K addresses are mapped to the same set falls below
that threshold. Such probability is analytically derived as
(1/S)K−1, (C3:) the multiplication of the number of avail-
able sets S and individual probabilities to be mapped to
the selected set 1/S, for each of the K addresses). CCP-
RM sets a maximum size (T) for the list of most relevant
combinations to be considered for a given value of K.
As detailed later, those T combinations, once evaluated,
provide information of at least T address combinations but,
due to the way we select them, often represent many more
than T combinations.

Next, we describe how to produce the lists (for each
value of K). We accompany the explanation with examples
in which we assume a 2-way set-associative cache.

4.1.1 Guilt Estimation
We introduce an estimator (loosely based on the probabil-
ities of address misses) called guilt that, for each address
AX in a program, classifies the other addresses with respect
to how many evictions of AX they will cause if randomly
mapped to the same set. The guilt attribute is later exploited
to calculate the predicted impact of a group of addresses,
which in turn is used to rank the address combinations
based on the increase of the overall number of cache misses
caused by these addresses placed together in the set. To es-
timate guilt, CCP-RM analyzes the access sequence between
consecutive accesses to the same address.

Notably, under RM only addresses belonging to different
segments can evict each other. Hence, CCP-RM ignores ad-
dresses belonging to the same segment. For example, in the
sequence Q1 = (A100

1 , B100
1 , C100

1 , A100
2), A100

2 is necessarily
a hit, since all intermediate accesses, i.e. those between A100

1

and A100
2 , belong to the same segment.

Also with RM, addresses mapped to a set necessarily
belong to different segments. Therefore, an address can only
conflict with exactly one address from every other segment,
but all addresses from that segment are equally probable
to conflict. For example, in Q2 = (A100

1 , B102
1 , C102

1 , A100
2),

addresses B102 and C102 both can be mapped with the same
probability 1/S to the same set as A100, but only one of them
will be actually mapped (i.e. either B102 or C102). Hence,
the number of addresses accessed in-between two accesses
to the considered address (A100) that can be placed in the
same set is at most the number of different cache segments
accessed in between, denoted by s.

For each memory access AX
j , we define P̃guilty as the

likelihood of AX being evicted due to the conflicts with
other addresses, see Equation 1. Since in RM caches, con-
flicts can only happen between addresses mapped to differ-
ent cache segments, s in Equation 1 represents the number
of distinct cache segments accessed in between two accesses
(AX

j−1 and AX
j) to the same address AX .

P̃guilty(A
X
j)=1−

(
W − 1

W

)m1

m1 =

 0, if s<W
s, if W ≤s<K
K−1, otherwise

(1)

The fraction W−1
W represents the probability of a cache

line to survive an eviction, whereas m1 relates to the number
of evictions occurring. When s is smaller than W , the
intermediate accesses would fit in a cache set, so misses
may only be produced due to random replacement, whose
impact is already captured with the default number of runs
of MBPTA [2]. Hence, we assume that AX

j hits, so the guilt of
intermediate accesses is 0. For values of s larger or equal to
W , we assume s evictions, but bounding that number up to
K − 1 since we inspect different address group cardinalities
(K) iteratively and for a given K value at most K − 1
addresses can conflict with the address in focus.

Equation 1 captures the case when the number of distinct
segments accessed between AX

j−1 and AX
j is higher or

equal to W (i.e., s ≥ W). Conflicts can also occur under
other address interleavings. For example, in the sequence
Q3 = (A100

1 , B101
1 , A100

2 , C102
1 , A100

3), A100
3 is likely to suffer

misses, even though the estimator would predict hits be-
cause s < W . In this case, we may have misses because hits

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2890626, IEEE
Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

do not alter cache state4 so that they can be stripped out of
the access sequence conceptually (e.g. A100

2)), thus making
other accesses (e.g. A100

3) likely miss due to evictions caused
by B101

1 and C102
1 . To account for this, when deriving P̃guilty

of an access, CCP-RM searches for the previous access to
the same address with derived P̃guilty value higher than
0. The access is predicted to hit only if s is strictly lower
than W also in the subsequence between those two accesses.
Otherwise, the access is considered a miss and the computed
P̃guilty value is distributed over the subsequence. In the
example, A100

1 is a miss (the first access to an address is
always a miss) and A100

2 is a hit (s = 1 < W). When
assessing A100

3 , CCP-RM searches for previous accesses until
reaching A100

1 (A100
2 is ignored as it is predicted not to

change cache state) and evaluate that A100
3 may miss since

s = 2 ≥W due to accesses B101
1 and C102

1 .

4.1.2 The Guilt Table
Each eviction of an address in a program under a conflictive
placement, which occurs with estimated probability P̃guilty ,
is caused by a set of addresses. The share of responsibility of
each of these addresses on causing the eviction is quantified
with their guilt value. While guilt describes the pair-wise
relation between addresses, the predicted impact of the
group of addresses will depend on the relation between
each pair of addresses in a group. Computed guilt values
are stored in the Guilt Table (GTAB), which is later queried
(either by inspecting exhaustively all possible address com-
binations or a subset of them as proposed in Section 4.1.3)
to derive predicted impacts of address groups.

The GTAB is organized as a matrix. For each address
Aseg(A) in a program, the GTAB keeps track of:

• The overall likelihood of that address to miss due
to conflicting with other addresses under CCP
(GTAB[Aseg(A)].P̃guilty). It is to the accumulated
P̃guilty values of each access to address Aseg(A).

• The overall guilt of each other address on poten-
tial evictions of address Aseg(A). For instance, cell
GTAB[Aseg(A)].guilt[Bseg(B)] keeps guilt values of
address Bseg(B) w.r.t. misses of all accesses to ad-
dress Aseg(A) during the execution of the program.

To populate GTAB, CCP-RM iterates through the se-
quence of memory accesses and computes their P̃guilty

value. If for a given access to address A
seg(A)
i P̃guilty 6= 0,

then this value is added to GTAB[Aseg(A)].P̃guilty and dis-
tributed among the different segments in-between A

seg(A)
i

and the previous access to Aseg(A), i.e. Aseg(A)
i−1 , as shown

in Equation 2, using m1 value computed in Equation 1.
Then, the guilt assigned to a segment is added on top
of the GTAB[Aseg(A)].guilt of each intermediate accessed
address that belongs to that segment. This is done because
each address in a given segment can be placed in the same
set as the analyzed address with identical probability. For
example, let us consider the access A100

2 in the sequence
Q4={A100

1 , B102
1 , C100

1 , D103
1 , B102

2 , E102
1 , A100

2 }, with W=2
and the group cardinality K = 3. The number of distinct
cache segments accessed after A100

1 is s = 2 (segments

4. This assumption holds for TRc (the scope of this work) which
deploy random replacement policy.

TABLE 3
Relevant fields of GTAB to derive predicted impact of an address

combination [A100, B102, D103, F 104].

Pguilty guilt.B guilt.D guilt.F guilt.A guilt.xxx MX

B102 550.0 0.0 150.0 20.0 15.0 365.0 20.0
D103 400.0 145.0 0.0 30.0 10.0 215.0 30.0
F 104 250.0 16.0 28.0 0.0 30.0 176.0 28.0
A100 235.0 15.0 5.0 30.0 0.0 185.0 15.0

102 and 103). Those segments together with segment 100
exceed the cache associativity. We compute P̃guilty(A

100
2) =

1 −
(
1
2

)2
=0.75 and add it to GTAB[A100].P̃guilty . Next,

we distribute 0.75 across s = 2 segments, such that
Pguilt−seg = 0.75

2 = 0.375. The guilt of all addresses be-
longing to segments 102 and 103 (GTAB[A100].guilt[B102],
GTAB[A100].guilt[D103] and GTAB[A100].guilt[E102]) is
then increased by 0.375.

Pguilt−seg =

{
P̃guilty

m1
, if m1 > 0

0, otherwise
(2)

A GTAB is derived for each cardinality K and is later
inspected to compute the predicted impact of address com-
binations. This is done in two steps:

First, for each address A in the combination under anal-
ysis, we sort all the other addresses in the combination by
their guilt on A, and take the value on the W th position and
keep it as MA. The reason is that address A needs to conflict
with at least W addresses to exceed the cache set space and
such scenario cannot occur more times than the number of
conflicts between address A and the least conflictive address
with A among W of them. In the example in Table 3, we
observe high guilt values between addresses B102 and D103,
but not among the rest of addresses. This happens when
those two addresses are interleaved together with other
addresses that do not interleave systematically with these
ones. In the table, guilt.xxx stands for the guilt values for
other addresses omitted in the example for clarity.

And second, the predicted impact of an address com-
bination is computed by applying the harmonic mean of
all MA values of addresses in a combination so to give
lower rank to combinations with low MA values, which
reflects that A cannot have many conflicts if one of the
other addresses cannot create many conflicts. Instead, CCP-
RM seeks address groups in which conflicts occur due to
the interaction among all of them. If a conflictive behavior
occurs because of the interaction of a subset of these ad-
dresses, such combination is already accounted by CCP-RM
for lower K values. For instance, in Table 3 the predicted
impact of the combination [A100, B102, D103, F 104] equals
the harmonic-mean5 of 20.0, 30.0, 28.0 and 15.0, which is 21.54.

4.1.3 Generation of Address Combinations
To derive a list of the conflictive combinations, CCP-RM
builds a GTAB for each K value. Next, it generates possi-
ble combinations of K addresses and derives their impact

5. The harmonic mean is a good estimator due to its sensitivity to
lower values, giving lower ranking to combinations in which at least
one address is not conflicting with others. Average mean, however,
promotes combinations with only a subset of addresses conflicting.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2890626, IEEE
Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Algorithm 1 Generation of Address Combinations
1: Input: K . number of addresses in a combination;

GTAB . address Guilt Table derived for K;
S . number of cache sets;

2: Output: List of <combination; prob.> pairs;
List of predicted impacts for each element in
pairs listPI;

3: sort GTAB row-wise by P̃guilty ;
4: N← nrows(GTAB);
5: for addr← 1:N do
6: if GTAB[addr].P̃guilty < 0.01∗GTAB[1].P̃guilty then
7: break;
8: end if
9: totalGuilty←

N∑
j=1

GTAB[addr].guilt[j];

10: addrSpace← [];
11: for m← (addr+1):N do
12: if (m 6∈ getSeg(addr) and

GTAB[addr].guilt[m]≥ Sth∗totalGuilty) then
13: addrSpace.add(m);
14: end if
15: end for
16: <combination; probability> pairs← [];
17: Segs← list distinct segments in addrSpace;
18: combsSeg← list all combinations of (K-1) segments

from Segs;
19: for all cs: cs ∈ combsSeg do
20: listA← [];
21: cntA← [];
22: for seg← cs[1]:cs[K-1] do
23: listA[seg]← [];
24: cntA[seg]← [];
25: for all g: distinct guilt values in seg do
26: listTmp← [];
27: for all a: a ∈ seg do
28: if (GTAB[addr].guilt[a] == g) then
29: listTmp.add(a);
30: end if
31: end for
32: listA[seg].add(address with the highest

P̃guilty in listTmp);
33: cntA[seg].add(number of addresses in

listTmp);
34: end for
35: end for
36: for all combinations < a1, a2,...,ak−1, addr>:

aj ∈ listA[j], where j=1,...,K-1 do

37: prob← S ∗ (1
S
)K ∗

K−1∏
j=1

cntA[getSeg(aj)][aj];

38: pairs.add(<< a1, a2,...,ak−1, addr>; prob>);
39: listPI.add(predicted impact of

< a1, a2,...,ak−1, addr>);
40: end for
41: end for
42: end for

as previously described. Ideally, CCP-RM would inspect
all possible combinations (discarding the ones in which
addresses from the same segment repeat). However, the
number of combinations grows exponentially with the num-
ber of addresses. Therefore, CCP-RM adopts an algorithm
(see Algorithm 1) to optimize this search by generating the
subset of all possible combinations of addresses expected to
be the most conflictive ones.

Rows in GTAB are sorted by their overall P̃guilty value.

TABLE 4
The relevant fields of GTAB to generate combinations of addresses

containing address A100

Seg 100 Seg 102 Seg 103
Pguilty guilt.A guilt.B guilt.E guilt.C guilt.D

A100 0.0 15.0 15.0 15.0 20.0
E102 72.500
C103 62.500
B102 58.750
D103 30.375

For each row, e.g. that for address Aseg(A), the algorithm
generates combinations of K addresses, containing Aseg(A),
belonging to addresses (rows) not yet inspected, i.e. with
lower P̃guilty . The search stops when P̃guilty of a row
address is below 1% of the highest P̃guilty in the table (lines
6-8), since potential combinations could only consist of low
impact addresses (each below the 1% threshold).

In each iteration, the algorithm considers the potential
conflictive addresses with Aseg(A) (lines 9-15). It excludes all
addresses belonging to the same segment and those whose
guilt value on the row address w.r.t. the total guilt on that
address is below the defined significance threshold Sth (1%
in our case). Next, the remaining addresses are grouped by
the segment they belong to into Segs, to account for the fact
that only one address from each group can belong to the
same combination. Our search derives all the possible ways
to select K − 1 addresses from Segs groups (lines 17-18).

Then we need to explore conflicts against all the seg-
ments in each combination (lines 22-35). In order to explore
all addresses of any given segment in Segs, we take into ac-
count their individual guilt on the address addr with which
we are generating combinations, and only consider one ad-
dress representative (with the highest overall P̃guilty value)
for those that have the same GTAB[addr].guilt value, since
their impact will be identical. When computing the prob-
ability of those combinations (lines 36-40), we account for
the number of combinations that could be produced with
addresses in that group (due to several of them having
identical guilt value) to multiply the probability of having
just one address. Considering a combination touching 3 seg-
ments: having 2 addresses with identical guilt value in a first
segment, 3 in a second one, and 3 in the other, will lead to 18
potential combinations with exactly one address from each
segment. Such probability is specifically computed in line
37. Still, multiplying probabilities without considering that
combinations may overlap (the latter would diminishing the
overall combined probability) leads to some pessimism. As
shown later, this could only lead to requesting more runs
than strictly required, thus not diminishing the confidence
of the method. On the other side, addresses from the same
Segs group, but with different guilt values, are considered
individually.

Illustrative example. Next, we show the generation of
combinations of size K = 3 in one iteration. We inspect
the row containing address A100 and the set of potentially
conflictive addresses [E102,C103,B102,D103] with their cor-
responding values of guilt on A100: [15, 15, 15, 20] and
P̃guilty : [72.5, 62.5, 58.75, 30.375], as illustrated in Table 4.

Addresses are grouped in Segs 102 and 103. The only way

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2890626, IEEE
Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

to make a combination of K − 1 addresses is to select one
address from each segment. Segs 102 contains two addresses
with identical guilt value, thus it returns the address with
higher P̃guilty , which is E102 and marks that two addresses
share this behavior. Segs 103 returns addresses C103 and
D103 since they have different guilt value. If p is the proba-
bility that three addresses are mapped to the same set, then
the step will result in the next <combination; probability>
pairs: [A100,E102,C103; 2p] and [A100,E102,D103; 2p]. Here
2p is the probability of combining the 2 addresses in seg-
ment 102 with the specific address in segment 103.

Finally, the address combination search returns the list of
those T <combination; probability> pairs with the highest
predicted impact in listPI , where the list is derived as
shown in lines 36-40 of Algorithm 1 and predicted impact
computed as described in Section 4.1.2 (see example in
Table 3). While these combinations are expected to produce
the highest impact in terms of number of misses when
placed in the same set, their actual impact needs to be
determined since guilt and P̃guilty are estimators that are
used just to rank address combinations.

While we simplified Algorithm 1 for the sake of read-
ability, its implementation can be further optimised, which
we did in our experiments. We recommend the recursive
implementation to generate combinations (line 18). Finding
distinct segments of addresses (line 17) can be done while
iterating through addresses (lines 11 and 12) by storing
segments into a structure with non-repeated values (e.g. a
set). listA and cntA (lines 22-34) can be created in line 13,
where the user does not need to keep all the addresses with
the same guilt, but only K with the highest P̃guilty value.
For efficient searching of relevant data we recommend the
use of map structures (instead of lists/arrays).

4.2 Impact and Probability Calculation

The algorithm from the previous step derives a list of
<combination, probability> pairs, describing representative
address combinations and the probability of observing them
or any other with the same predicted impact. The impact in
terms of miss count of each representative address combi-
nation is evaluated with a cache simulator. The addresses in
the combination are mapped to the same set, while others
are randomly mapped. Several Monte-Carlo simulations
are performed and the impact of the given combination
is determined as the average impact across the different
Monte-Carlo simulations.

Next we map <combination, probability> pairs into the
<probability, misscount> domain by ordering the pairs per
derived impact, and computing the combined probability
and impact for the first pair, first two pairs, first three pairs,
and so on, until we cover all pairs in the list. Given a
number of first N address combinations, the combined miss
count (having one of them) is their average miss count, and
the combined probability is the union of their probabili-
ties. Since their individual probabilities do not have to be
necessarily disjoint, to determine the exact joint probability
one would need to determine the overlaps between all
groups of 2, 3,...,N combinations. However, to avoid the
inherent computational complexity of such activity, similar
to the previous step, we upperbound such probability as

Fig. 5. Illustrative application of CCP-RM and CCP-hRP.

the addition of their probabilities, which is generally a tight
upperbound. The individual probabilities of all combina-
tions of K addresses are identical, so determining the joint
probability becomes trivial.

4.3 Assessment Against the pWCMC Curve
Previous steps result in a pair <probability, misscount>
for each CCP , i.e. combination and group of combina-
tions deemed as conflictive. As next step, we generate a
probabilistic worst-case miss-count (pWCMC) by applying
Extreme Value Theory to the miss counts in a sample of
R randomly generated RM mappings. We check whether
the pWCMC distribution upperbounds all CCP (i.e their
miss count). If this is the case, the default number of mea-
surements R used by MBPTA suffices to derive trustworthy
WCET estimates. Otherwise, more runs are performed, until
pWCMC upperbounds all pairs. The obtained number of
runs R′ is finally returned as the number of runs to be
collected by the end user.

For instance, in Figure 5, the solid curve is the pWCMC
estimate and the black squares and crosses the miss counts
obtained for all CCP whose probability of occurrence is
above Prel. Black circles are those CCP below Prel and
hence, are not considered. Black squares are those CCP
whose miss count is covered by the pWCMC, while the
miss counts of the CCP marked with crosses are not. In this
example scenario, CCP-RM requires the user to increase the
number of runs from R to R′ such that the impact of those
combinations (black crosses) is properly upperbounded. We
also observe that when increasing the number of runs to
R′ runs (with R′>R) the resulting pWCMC curve captures
the impact of all relevant combinations (black squares and
crosses). Overall, this results in an increased number of runs
R′ for which the obtained pWCMC estimate reliably upper-
bounds the miss count of all combinations and therefore, the
pWCET estimate obtained with R′ runs also upperbounds
their timing impact.

4.4 Miss Count - Execution Time correlation
It could be the case that the pWCMC curve upperbounds
CCP systematically with the default number of runs R.
This can occur either because R is sufficient to capture
all CCP, or simply because the impact of CCP is lower
than that of other jres. In the latter case, as shown in [2],
other jres are expected to occur with a sufficiently high
probability to be captured with the default number of
runs of MBPTA. However, in general, miss counts have
a relevant impact (if not the highest impact) on execution

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2890626, IEEE
Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 5
Pearson and Spearman coefficients for NormMiss and NormET .

CCP-hRP CCP-RM
Pearson Spearman Pearson Spearman

a2time 0.997 0.992 0.976 0.970
aifftr 0.918 0.911 0.969 0.960
aifirf 0.960 0.956 0.988 0.986
aiifft 0.923 0.913 0.960 0.952
basefp 0.999 0.998 0.952 0.933
bitmnp 0.998 0.998 0.975 0.960
cacheb 1.000 0.970 0.992 0.988
idctrn 0.950 0.951 0.969 0.973
iirflt 0.997 0.979 0.977 0.997

time amongst the existing jres, and so techniques like CCP-
RM are needed. Whether execution time correlates with
miss counts has already been proven in many platforms.
In our particular case, we have quantitatively assessed the
correlation between miss counts and execution time in our
FPGA platform, whose specific setup is shown in Section 7.
To that end we used Pearson product-moment correlation
coefficient and Spearman’s rank correlation coefficient. The
former measures the linear dependence between two vari-
ables, while the latter measures the statistical dependence
between two variables by assessing to what extent those
variables can be modeled using a monotonic function. The
outcome of both methods is a value o ∈ [−1, 1]. For o=1
there is total positive correlation; for o = 0 no correlation is
found; and for o=−1 total negative correlation i reported.
In our experiments we use a 5% significance level (a typical
value for this type of tests [19]). We used normalised values
for qualitative assessment, where we plotted normalised
values of execution times/misses and compared the trends
by visual inspection. Table 5 shows that all EEMBC bench-
marks result in high values of correlation coefficients by
both methods confirming that miss counts and execution
times are highly linearly correlated, for both RM and hRP
(presented in next Section). The lower o values occur for
benchmarks with low miss count variations. Thus, other
sources of jitter, like those introduced by the store buffer,
have a relatively higher impact than for other benchmarks.

5 THE CCP-HRP MECHANISM

CCP-hRP is analogous to CCP-RM but with some critical
differences due to the different behaviour of hRP and RM.

5.1 Deriving Relevant Address Combinations

As in the case of CCP-RM, CCP-hRP produces, for each
K > W address count, a list of address combinations that, if
placed in the same set, produce high miss counts. Note that,
similar to CCP-RM, only T combinations are kept. To build
those lists, CCP-hRM builds upon the address Guilt Table
(GTAB), but P̃guilty and so guilt are computed differently to
the case of RM caches.

First, P̃guilty is obtained as described in Equation 3.
While the formulation is analogous to that of CCP-RM (see
Equation 1), there is a key difference. In the case of RM
caches, m1 is set based on the number of different segments
(s) accessed in between two consecutive accesses to a given

cache line. In the case of hRP caches, m2 is set based on the
number of different cache lines (q) accessed in between.

P̃guilty = 1−
(
W − 1

W

)m2

m2 =

 0, if q<W
q, if W ≤q<K
K−1, otherwise

(3)

For instance, in the example for RM, in the sequence
A100

1 , B102
1 , C102

1 , A100
2 we would have s=1, but q=2. This

reflects the fact that for hRP caches, A100, B102 and C102

can compete for the space in the same set, whereas for RM
caches B102 and C102 can never be placed in the same set.

5.1.1 Guilt estimation
When for an access Ai P̃guilty 6= 0, its value is ‘dis-
tributed’ among the intermediate accesses between A

seg(A)
i

and A
seg(A)
i−1 . Each accessed address is assigned a guilt value

w.r.t. address Aseg(A) computed as shown in Equation 4,
using P̃guilty and m2 as described in Equation 3. Note that
in this case guilt considers cache line addresses individually
rather than cache segments, as it is the case in Equation 2.

guilt =

{
P̃guilty

m2
, if m2 > 0

0, otherwise
(4)

For example, let us recall the previous example for
CCP-RM and consider the access A100

2 in the sequence
{A100

1 , B102
1 , C100

1 , D103
1 , B102

2 , E102
1 , A100

2 }, W = 2 and the
group cardinality K = 3. The number of distinct addresses
accessed after A100

1 is q = 4. Those addresses together with
A100 exceed the cache associativity. Since q ≥ K, we com-
pute P̃guilty(A2) = 1−

(
1
2

)2
= 0.75 using m2 = K − 1 = 2.

We distribute this to q = 4 addresses, such that guilt =
0.75
2 = 0.375. Guilt of all addresses in between (B102, C100

1 ,
D103 and E102) is then increased by 0.375. Note that the
addition of guilt assigned to intermediate accesses is bigger
than P̃guilty . The idea is that for K = 3, CCP-hRP (and CCP-
RM) constructs 3-address combinations that in this case can
be any of ABC , ABD, ACD, BCD, ABE, ACE, etc. In all
those containing A, we want to assign one half of the guilt
to each of the two intermediate accesses. That is, for ABC
one half of the guilt is assigned to B and another half to C.
At any moment only K − 1 accesses will be simultaneously
considered by CCP-hRP, so the guilt of a given access is
not decreased because of having other intermediate accesses
(more than K). As the value of K increases – as part of CCP-
hRP iterative process – those other intermediate accesses
will be considered simultaneously.

5.1.2 The Guilt Table
In the case of CCP-hRM, the GTAB has the same char-
acteristics as for CCP-RM: as many rows and columns as
different (cache line) addresses are accessed in the program
to store guilt values and one additional column to track
P̃guilty values. Cell GTAB[A].guilt[B] captures the guilt of
B on A, that is, a measure of to what extent misses of every
access Ai are caused by any access to Bj . The GTAB is built
for every value of K. From the GTAB we infer information
about the impact that each address has on the evictions of
each other address. However, that the actual values in each
cell of GTAB differ between CCP-hRP and CCP-RM, since
they operate on different formulations for P̃guilty and guilt.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2890626, IEEE
Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

5.1.3 Generation of Address Combinations
The approach to generate address combinations from GTAB
is very similar to that of CCP-RM, but with some key differ-
ences. For instance, when considering conflictive addresses
with the address of the corresponding row, we only consider
those addresses whose relative impact w.r.t. the total guilt
in the row is significant for the address of that row. Such
significance threshold Sth is 1% as for CCP-RM. Note that
whether addresses belong to the same or different segments
is irrelevant for CCP-hRP, since addresses can be randomly
placed in the same set regardless of their segment. In Algo-
rithm 1, the condition from line 12 becomes redundant.

We group addresses into buckets in each row of the
GTAB, grouping all the addresses with the same guilt value
w.r.t. the address of that row. The objective, as explained
next, is limiting the number of address combinations that
need to be considered. In case this originates too many
buckets, thus ending up requiring high computation time,
then the grouping criterion can be tweaked to tolerate small
differences between guilt values of addresses in the same
bucket, as a means to reduce their total count. In Algo-
rithm 1, buckets correspond to the listTmp, with a different
bucket created for each distinct guilt value in addrSpace (not
per segment), and listTmp are global variables.

Then, we generate the combinations of K elements for
each row by making all possible combinations with the
address corresponding to that row and K − 1 elements
from different buckets (and modify line 36 in the algorithm
accordingly). For instance, assuming K=4 and 2 buckets
(b1 and b2), we make all combinations of 4 addresses using
the one of the row and three addresses from the buckets: 3
from b1, 2 from b1 plus 1 from b2, 1 from b1 plus 2 from
b2, and 3 from b2. We always choose those addresses with
the highest P̃guilty in each bucket. We take into account the
size of the bucket by computing how many combinations
are expected to have the same impact of the representative
ones. For instance, if b1 and b2 contain 4 and 5 addresses
respectively, when picking 2 addresses from b1 and 1 from
b2, we determine that there are 30 different combinations
meeting those constraints. This is used to set the probability
of the pair <probability, misscount> if these combinations
have a sufficiently high impact to deserve to be explored by
simulation (line 37 of Algorithm 1). The probability equals
to the probability of an individual address combination,
S ∗ (1/S)K , times the number of different combinations that
can be produced with the addresses of a bucket.

5.2 Impact and Probability Calculation
When all addresses have been analyzed and the list with
T = 20 combinations6 for a particular value of K is
obtained, we perform cache simulations to determine their
miss counts. In the case of addresses in a bucket, we sim-
ulate only those with the highest P̃guilty and assume the
same impact for other combinations that could be gener-
ated with other addresses in the bucket. While this may
lead to a little pessimism in terms of the impact of those

6. One combination may be the representative of others if addresses
belong to buckets. Hence, simulating 20 combinations provides infor-
mation of, at least, 20 actual address combinations, but generally many
more than 20.

addresses, such pessimism is very limited given that ad-
dresses belong to the same bucket. This may result in pairs
<probability, misscount> further challenging the reliability
of the pWCMC curve, thus potentially rejecting some very
tight (yet reliable) pWCMC estimates.

The approach to determine the probability of each com-
bination is analogous to that of CCP-RM: S × (1/S)

K for a
single combination. For the combined probability (when the
number of combinations represented by the one in the list is
more than one), we pessimistically use the addition of their
individual probabilities as for CCP-RM.

5.3 Assessment Against the pWCMC Curve
As for CCP-RM, CCP-hRP uses MBPTA on the miss counts
obtained from cache simulations in which all addresses are
randomly mapped, as it would occur in reality, to obtain
a probabilistic worst-case miss-count (pWCMC) curve. The
number of simulations, R, is determined by MBPTA.

6 EVIDENCE FOR CERTIFICATION

The mechanisms we propose to identify and capture CCPs
are meant to enhance the reliability of MBPTA results,
with a view to meeting the reliability requirements of the
V&V of embedded critical systems. Not surprisingly, both
techniques feature a heuristic search over the CCP space:
a reasoned heuristic-based empirical evidence is de-facto
the only means to analyze overly-complex hardware and
software systems, where providing exhaustive evidence is
generally untenable. This section aims at showing that CCP-
RM/hRP can concretely improve the reliability of MBPTA.
We do so by conducting a three-fold assessment.

1) We show that the implemented heuristics are ac-
curate by comparing their outcome with that of
ReVS [32], which is known to provide exact results
by exhaustively exploring the impact of all address
combinations with cardinalities higher than cache
associativity. Since the cost of ReVS is prohibitive for
real-size programs (hence the need for a heuristic),
we stick to a controlled scenario as explained next.

2) We show the effectiveness of CCP-RM/hRP in de-
tecting otherwise ignored CCPs, and the impact this
has on the overall number of runs CCP-RM/hRP re-
quire to use (R′) as compared to the default number
of runs used by MBPTA (R).

3) We show that the benefits of CCP-RM/hRP come
with affordable computational requirements.

Note that, in our case, the implication of using a heuristic
is that the CCP impact computed by CCP-RM/hRP may
slightly differ from that computed by the exact method.
However, our algorithms do not focus on a single CPP
but on a list thereof, and the list of CCPs considered by
the heuristics is always including the topmost (highest-
impact) CCPs. For the benchmarks evaluated in this section
and case study (next section) we consider the topmost 20
CCPs (i.e., T =20), which in practice results in considering
already more combinations strictly required, as confirmed
by the results. We inspect combinations of cardinalities K
in the range W + 1 ≤ K ≤ 13 (probabilities of address
combinations of higher cardinalities are negligible).

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2890626, IEEE
Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

6.1 Experimental Setup
We use EEMBC Autobench benchmark suite [37], repre-
sentative of some real-time automotive applications. On
average EEMBC Automotive benchmarks comprise 6,500
Lines of Code, where the average number of distinct ad-
dresses is 2,500 for instructions and 5,600 for data. We
use a simulation environment based on the cycle-accurate
SoCLib [41] framework. We model an architecture featuring
a pipelined in-order processor with separated instruction
(IL1) and write-back data (DL1) caches, both deploying ran-
dom replacement, and RM or hRP policies. Access latencies
for IL1 and DL1 are 1 cycle for hits and 4 cycles for misses,
which sums up to memory latency, for a total of 20 cycles.

6.2 CCP-RM/hRP Accuracy
ReVS [32] precisely identifies all conflictive cache placements,
by exhaustively exploring (measuring) the impact of all
possible address combinations rather than predicting their
impact, as done by CCP-RM/hRP. Thus, ReVS is used
as a reference to assess the accuracy of CCP-RM/hRP in
identifying CCPs based on heuristics. As different address
combinations can cause similar miss impact, we are not
comparing individual address combinations and, instead,
we compare the computed <probability, misscount> pairs.
The comparison is conducted both (i) visually, by plotting
pairs as in Figure 6 (we restrict to the cacheb benchmark for
space constraints), and (ii) analytically, considering the size
of the sample required to upper bound those pairs (shown
in Tables 6 and 7). To fairly compare the sample size needed
to upper bound pairs and discard the variation due to the
convergence criteria, we analyze the same measurement
samples with both CCP-RM/hRP and ReVS methods. The
cost of ReVS is however prohibitive for real-size programs,
so for the sake of comparison only, we focus on a controlled
scenario with a small number of addresses, which was
obtained by creating synthetic benchmarks accessing the 15
most-accessed cache lines from each EEMBC Automotive
benchmark.

This limitation on the number of addresses makes that
the number of accessed pages reduces to 1 or 2 cache seg-
ments for most benchmarks, making that no CCP exist for
RM in most of the cases. Hence, only for this controlled sce-
nario and RM, we use a small cache (512B 32B/line 2-ways
IL1/DL1), such that even programs with small address
footprints can exhibit a conflictive behaviour. Note that with
hRP 15 addresses can easily exceed cache associativity. In the
case of hRP reducing cache size would further increase the
probability of CCP, which would easily make the default
number of runs of MBPTA sufficient, so no insight would
be shown if cache size was decreased, as done for RM.
Therefore in the controlled scenario we use a 4KB 32B/line
2-way IL1 and DL1 cache setup.

Table 6 reports the minimum number of measurements
(R′) deemed sufficient for a reliable application of MBPTA
according to CCP-RM and ReVS for IL1 and DL1. The final
number of runs required for each technique is the maximum
of both (IL1 and DL1). The accuracy of CCP-RM is con-
firmed by the fact that in all cases it computes the same values
as ReVS. In general, this is expected since CCP-RM success-
fully identifies the critical combinations, whereas ReVS nec-

TABLE 6
R′ for CCP-RM and ReVS in controlled scenario

R′IL1 R′DL1 R′

ReVS CCP-RM ReVS CCP-RM ReVS CCP-RM
a2time 1,460 1,460 8,650 8,650 8,650 8,650
aifftr 480 480 670 670 670 670
aifirf 6,300 6,300 300 300 6,300 6,300
aiifft 410 410 8,500 8,500 8,500 8,500
basefp 420 420 300 300 420 420
bitmnp 370 370 3,570 3,570 3,570 3,570
cacheb 300 300 690 690 690 690
idctrn 300 300 300 300 300 300
iirflt 300 300 300 300 300 300

essarily identifies them due to its brute force nature. Hence,
by applying the same requirements on the pWCMC with
both methods and using the same measurement sample,
MBPTA converges with the same number of runs. In partic-
ular, when CCP-RM identifies that conflictive placement can
occur, it returns the same address combinations that are top-
ranked by ReVS, or with a very close miss-impact. For the
IL1, for six benchmarks (ia2time, iaifftr, iaifirf,
ibitmnp, icanrdr, iidctrn) CCP-RM does not return
any conflictive address combination: this is explained by the
fact that in those cases all address combinations returned by
ReVS are already upper-bounded with the default number
of measurements by MBPTA. For other benchmarks CCP-
RM also returns no address combinations as potentially
conflictive for high cardinalities of K, while ReVS does.
This may happen when the conflictive impact is actually
caused by address groups smaller than K that are instead
considered by CCP-RM.

Fig. 6. pWCMC for cacheb and a DL1 RM cache.

For instance, Figure 6 shows that, although conflictive
placements – referred to as address combinations – can
occur with cardinalities K = 4 and K = 5, as recognized by
ReVS, those placements are upper bounded by the truly con-
flictive placement of combinations with cardinality K = 3.

Table 7 shows the number of runs that each of the meth-
ods regards as the minimum to use for a reliable MBPTA
application according to CCP-hRM and ReVS. We show
results for both IL1 and DL1. As shown, both approaches
provide exactly the same number of runs (R′) for these
limited address traces. In particular, CCP-hRM identifies the
same address combinations most of the times or, alterna-
tively, address combinations with roughly the same impact
as those regarded by ReVS as the most conflictive ones for

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2890626, IEEE
Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

each value of K. The exception to this comes from the case
in which ReVS identifies for high values of K combinations
which, in fact, are the addition of two or more independent
combinations. For instance, ReVS identifies combinations
for K = 6 that, in reality correspond to two combinations of
K = 3 occurring at the same time. As explained before,
EVT needs to observe high-impact events, but not their
combination. Thus, this difference has no influence on R′.

TABLE 7
R′ for CCP-hRP and ReVS in controlled scenario

R′IL1 R′DL1 R′

ReVS CCP-hRP ReVS CCP-hRP ReVS CCP-hRP
a2time 58,360 58,360 540 540 58,360 58,360
aifftr 6,840 6,840 5,500 5,500 6,840 6,840
aifirf 21,390 21,390 11,530 11,530 21,390 21,390
aiifft 8,920 8,920 8,770 8,770 8,920 8,920
basefp 82,080 82,080 20,010 20,010 82,080 82,080
bitmnp 4,640 4,640 3,510 3,510 4,640 4,640
cacheb 18,610 18,610 7,950 7,950 18,610 18,610
idctrn 65,770 65,770 47,700 47,700 65,770 65,770
iirflt 18,310 18,310 49,760 49,760 49,760 49,760

Despite using different setups, CCP-RM requires fewer
runs than CCP-hRP. This occurs because CCP for RM (if
any) can only occur with few addresses because there are
few cache segments. Therefore, the probability to capture
those CCP is relatively high and few runs suffice in general.
Conversely, with hRP it is often the case that CCP involve
more addresses than those for RM. Therefore, their probabil-
ity of occurrence is lower and thus, a larger number of runs
is required to guarantee that they are effectively captured.

6.3 Evaluation of CCP-RM and CCP-hRP Effectiveness
With the purpose of entailing an increase in the number
of conflicts and hence, further stressing CCP-RM/hRP, in
this section we evaluate CCP-RM/hRP for a relatively small
cache 4KB 32B/line 2-ways IL1 and DL1 cache. We also
focus on full-size EEMBC benchmarks to assess whether our
methods effectively improve MBPTA reliability by identify-
ing potentially unobserved CCP. To that end, we compare
the number of measurements required by a default applica-
tion of MBPTA (R) against those required by CCP-RM/hRP
(R′), for a set of EEMBC benchmarks. Note that for this
experiment using all addresses, ReVS could not be used
due to its exponential execution time requirements with the
number of benchmarks’ number of unique addresses.

TABLE 8
CCP-RM on EEMBC (‘lhood’ stands for likelihood)

CCP-RM MBPTA
R′IL1 R′DL1 R′ lhood(R′) R lhood(R)

a2time 300 730 730 10−9 300 2.00 ∗ 10−4

aifftr 300 6,160 6,160 10−9 300 3.64 ∗ 10−1

aifirf 470 22,490 22,490 10−9 370 7.11 ∗ 10−1

aiifft 300 110,000 110,000 10−9 74,600 7.88 ∗ 10−7

basefp 320 1,120 1,120 10−9 960 1.93 ∗ 10−8

bitmnp 300 310 310 10−9 300 1.95 ∗ 10−9

cacheb 460 390 460 10−9 500 < 10−9

idctrn 350 1,050 1,050 10−9 500 5.18 ∗ 10−5

iirflt 300 930 930 10−9 320 8.00 ∗ 10−4

For CCP-RM Table 8 reports different values of R and
R′. Only for one benchmark (cacheb) the default MBPTA

application asks for more runs than those actually needed
to observe conflictive placements. In this case, 460 runs
suffice for MBPTA to converge in the cache miss domain,
but few more runs are needed in the execution time domain
to have enough high execution time values to converge
due to variations across random samples. For the remaining
eight benchmarks, collecting R measurements results in a
probability of not capturing CCP for RM higher than the
established threshold, see lhood(R) column. In fact, for
two benchmarks (aifftr, iirflt) we observe that the
EVT projection using R does not upperbound the ECCDF
applied on an arbitrarily large number of runs, which is ac-
tually upperbounded when the pWCET is estimated using
R′ runs as determined by CCP-RM. Figure 7 reports the
results for one of those benchmarks, aifftr.

(a) pWCMC estimate with R and R′ runs

(b) pWCET estimate with R and R′ runs

Fig. 7. EVT projections for benchmark aifftr with RM caches

In Figure 7(a) the pWCMC estimate derived with R runs
and R′ is plotted against the conflictive sets of addresses
(from 3 to 7 addresses) found by CCP-RM for DL1. As it can
be observed, for the default R the pWCMC does not cover
all relevant address combinations, while with the CCP-RM-
provided R′ the resulting pWCMC does upperbound all
conflictive address combinations.

In the time domain we take as term of comparison the
Empirical Complementary CDF (ECCDF) derived from four
million execution times we collected. Figure 7(b) shows
that the pWCET curve obtained from R runs does not
upperbound the ECCDF. The pWCET obtained with R′ runs
returned by CCP-RM, instead, upperbounds the ECCDF.

Analogous results are reported in Table 9 for CCP-
hRP. As shown, R′ ≥ R: in many cases we observe that
the likelihood of missing critical address combinations in
the default runs (R) determined by MBPTA only is high.
This does not mean that pWCET estimates are necessarily
wrong, but indicates that there is non-negligible risk of not
observing some high-impact timing events in the analysis
runs if CCP-hRP is not used.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2890626, IEEE
Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

TABLE 9
CCP-hRP on EEMBC

CCP-hRM MBPTA
R′IL1 R′DL1 R′ lhood(R′) R lhood(R)

a2time 67,150 300 67,150 10−9 300 9.11 ∗ 10−1

aifftr 300 4,760 4,760 10−9 300 2.71 ∗ 10−1

aifirf 20,080 8,090 20,080 10−9 14,260 4.06 ∗ 10−7

aiifft 300 10,630 10,630 10−9 300 5.57 ∗ 10−1

basefp 78,220 300 78,220 10−9 1,250 7.18 ∗ 10−1

bitmnp 330 1,800 1,800 10−9 300 3.16 ∗ 10−2

cacheb 19,840 1,500 19,840 10−9 9,360 5.69 ∗ 10−5

idctrn 67,460 43,040 67,460 10−9 300 9.12 ∗ 10−1

iirflt 29,920 2,430 29,920 10−9 300 8.12 ∗ 10−1

When comparing the number of runs of CCP-hRP with
full address traces w.r.t. only 15 addresses, we observe in
most of the cases a limited variation in R′. However, in
some cases R′ decreases noticeably (e.g., R′IL1 for aifftr)
because there are many combinations with similar impact
that cannot be observed with only 15 addresses. This makes
that the probability of observing one of those combinations
is much higher and thus, fewer runs are needed to observe
one of them. In any case, differently to ReVS, which is
limited to 15 addresses, CCP-hRP can deal with arbitrary
access patterns without any explicit limit. Thus, CCP-hRP
removes the uncertainty brought by ReVS due to non-
analyzed addresses.

6.4 CCP-RM and CCP-hRP Time Requirements

The main execution time requirement of CCP-RM, CCP-hRP,
and ReVS comes from the cache simulations (Section 4.2).
In order to run the simulations, we used a cluster running
100 jobs in parallel. For the controlled scenario, CCP-RM
and CCP-hRP require 1 and 11 minutes respectively per
program on average out of which 14 and 4 seconds are
spent in deriving conflictive placements respectively. ReVS,
due to its complete exploration approach, required 2 and 27
hours for RM and hRP cache setups respectively. With full
benchmarks, CCP-RM and CCP-hRP require on-average 18
and 38 minutes per benchmark respectively out of which
2.5 and 1 min on average are spent to calculate conflictive
placements respectively. ReVS simulations would take years
to be executed. Our results show that CCP-RM and CCP-
hRP result in affordable execution time requirements.

7 RAILWAY CASE STUDY ON FPGA
We also evaluate CCP-RM/hRP with a real industrial case
study from the railway domain, running on a LEON3 FPGA
board modified to support RM and hRP caches.

Instruction and data addresses are collected with the
standard debug interface (DSU) support present in our
FPGA board. Notably, other processor architectures provide
similar or more advanced tracing features, e.g. the Nexus
Interface for NXP processors and Coresight for ARM pro-
cessors. Since address tracing can affect execution time,
time traces are collected only with the address tracing
mechanism disabled. Address traces are collected in a sin-
gle separate run, for which timing is not considered. Ob-
tained data and instruction traces can be used to perform

TABLE 10
CCP-RM and CCP-hRM results on the Railway case study.

CCP-RM MBPTA CCP-hRP MBPTA
R′IL1 R′DL1 R′ R R′IL1 R′DL1 R′ R

TEST0 1,560 300 1,560 300 300 1,300 1,300 370
TEST1 300 410 410 300 600 3,800 3,800 3,800
TEST2 300 340 340 300 600 1,000 1,000 300
TEST3 350 300 350 300 1,600 850 1,600 300
TEST4 — — 300 300 1,200 1,100 1,200 750
TEST5 10,300 300 10,300 300 2,100 900 2,100 480
TEST6 — 3,200 3,200 300 500 890 890 890
TEST7 1,240 300 1,240 300 500 4,400 4,400 300
TEST8 — — 300 300 700 2,300 2,300 300
TEST9 — 300 300 300 4,800 1,740 4,800 1,740

CCP-RM/hRP analysis and random-cache simulations since
cache-set mapping is now independent from the address.

The railway application implements a safety function
from the European Train Control System (ETCS) reference
architecture. The analysed application controls the execution
of all safety functions associated to the travelling speed
and distance supervision. This safety function is provided
with the highest integrity level defined in the railway safety
standards, SIL-4, and has strict real-time requirements. The
end user provided us input vectors that exercise 10 different
paths (TEST0 to TEST9). The case study comprises around
8,500 lines of code, 2,994 unique instruction addresses and
597 unique data addresses for the largest input set.

7.1 Experimental Results

The case study was executed by the end user on the FPGA
(following the exact specifications of the FPGA setup). Both
first level caches are 16KB 4-way, with 32B cache line size
for instructions and 16B for data.

CCP-RM. Table 10 (left) reports the number of runs
identified by CCP-RM (R′) for IL1, DL1 and globally, against
the default number required by MBPTA for convergence
(R). Both R and R′ measurements suffice to upper bound all
CCP in the RM setup. Since the number of segments for each
benchmark is generally low (between 4 and 13), conflictive
behaviour can occur only for combinations of addresses
of low cardinality, which are more likely to be observed
already with a moderate number of runs. For data traces
of two benchmarks (TEST8 and TEST9), the number of
segments does not exceed cache associativity. For data trace
of TEST2 and instruction traces of groups of benchmarks
(TEST0, TEST1, TEST2, TEST3, TEST5, TEST6, TEST7 and
TEST9) the method does not identify any CCP: despite CCP
can be theoretically had, as the number of segments exceeds
associativity, the addresses from distinct segments are barely
interleaved, hence CCP-RM attaches small guilt values. For
data traces of (TEST0, TEST1, TEST3, TEST5, TEST7), the
method identifies relevant combinations at most for a single
K value (5 in all cases apart from TEST5 with 6). However,
each of them are already upper bounded by the number
of runs required by a default MBPTA application, 10,300 at
most. Further, by comparing the EVT projection with the
actual impact (ECCDF projection over 10 million observed
miss counts), we observed that pWCMC estimates are very
close to actual values.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2890626, IEEE
Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

Fig. 8. pWCMC for TEST7 (DL1) by applying MBPTA (R) and CCP-
hRP+MBPTA (R’).

CCP-hRP. Table 10 (right) reports the results we ob-
tained, in terms of the number of runs that MBPTA and
CCP-hRP require in the miss domain for the hRP setup.
As it can be seen, the default application of MBPTA failed
to upper-bound some address combinations for data or
instructions for many input sets. Furthermore, in those
cases where R < R′ confidence on having enough runs
for a reliable application of MBPTA cannot be had. This is
shown in Figure 8 for TEST7 and the DL1 where CCP-hRP
<probability, misscount> pairs (points in the plot) are not
upper-bounded by the pWCMC curve (lower straight line
in the plot) when using R = 300, as determined by MBPTA.
Instead, if we use R′ = 4, 400, as determined by CCP-hRP,
the pWCMC curve properly upper-bounds those pairs.

7.2 CCP-RM/hRP Execution Time Requirements
CCP-RM took less than 0.5s per input vector to identify
conflictive placements and less than 5s on average for cache
simulations. CCP-hRP, instead required 1.3 minutes per
input vector to derive the conflictive combinations and 20
seconds per input vector for cache simulations. As expected,
the cost on the hRP setup is a bit higher than on the RM
setup due to the increased number of CCPs in the former
since addresses in the same segment may potentially collide.

8 RELATED WORK

While several approaches exist for attacking the WCET
estimation problem [44], we focus here on related work on
MBPTA. MBPTA deals with jres by either enforcing some
hardware components to always operate in their worst-case
mode (upperbounding) or by injecting time randomization
in those components exhibiting larger variability. The real-
ization of the above concepts led to the notion of MBPTA-
compliant hardware, as formalized in [15], which has been
later implemented either by low-overhead modifications
in the hardware design of resources like caches [27] or
buses [15], or by resorting to lightweight software means
to obtain the same effects of randomization, as it has been
done in the case of deterministic caches [26].

A time-randomized cache, deploying hRP placement,
was firstly introduced in [27]. Its improved version, RM,
has been proposed in [22]. Previous work observed that,
in certain scenarios, TRc can lower the confidence had
on WCET estimates [2], [31], [39]. A detection mechanism
for such scenarios and ways to account for them in the

analysis have been proposed for hRP cache designs and
programs in which accesses to memory are homogeneously
distributed [2], and for programs with arbitrary access pat-
terns but extremely limited size [32].

Several studies focus on properly handling control-flow
and data dependencies [28], [45] and controlling execution
time dependence on input-data [13]. Other works consid-
ered the application of EVT or other probabilistic techniques
to programs running on deterministic (non-randomized)
architectures [4], [10], [13], [20]. In that scenario, however,
the lack of randomization (and upperbounding) necessarily
leads to extremely fragile results in terms of representative-
ness of the different jres, including caches.

Statistical aspects of MBPTA are addressed in [40], fo-
cusing attention on EVT parameter selection and [3], [13],
[35], the tail distribution to better describe WCET estimates.
Other works apply MBPTA in multicore systems where
shared hardware resources are MBPTA-compliant [43] or
contention impact is upperbounded [9]. The open challenges
for MBPTA application are explored in [25].

9 CONCLUSIONS

We propose CCP-RM and CCP-hRP, two conflictive-
placement detection mechanisms for high-performance TRc
deploying RM and hRP placement respectively. CCP-
RM/hRP identify the cache conflictive placements that re-
sult in high execution times. We exploit this information
to derive the minimum number of measurements R′ to be
performed so that the probability of missing the impact of
those cache conflictive placements is below a configurable
threshold (e.g. 10−9). The adoption of CCP-RM/hRP guar-
antees a cache-conflictive placement aware, reliable appli-
cation of MBPTA. Our results using benchmarks and a real
case study, respectively run on a simulator and a real board
deploying RM and hRP caches, show the effectiveness of
CCP-RM/hRP in identifying cache conflict placements and
deriving an appropriate value for R′. Moreover, we show
that the cost of applying CCP-RM is lower than that of CCP-
hRP due to the reduced number of CCP that can occur in RM
caches w.r.t. those in hRP ones.

ACKNOWLEDGMENTS

This work has received funding from the Spanish Ministry
of Science and Innovation under grant TIN2015-65316-P and
the HiPEAC Network of Excellence. The Ministry of Econ-
omy and Competitiveness partially supported Suzana Mi-
lutinovic under FPI grant (BES-2016-077561), Jaume Abella
under Ramon y Cajal postdoctoral fellowship (RYC-2013-
14717) and Enrico Mezzetti under Juan de la Cierva-
Incorporación postdoctoral fellowship (IJCI-2016-27396).

REFERENCES

[1] ARM Expects Vehicle Compute Performance to Increase 100x in
Next Decade. Technical report, https://www.arm.com/about/
newsroom/arm-expects-vehicle-compute-performance-to-\
increase-100x-in-next-decade.php, 2015.

[2] J. Abella et al. Heart of Gold: Making the improbable happen to
extend coverage in probabilistic timing analysis. In ECRTS, 2014.

[3] J. Abella et al. Measurement-based worst-case execution time
estimation using the coefficient of variation. ACM TODAES., 2017.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2890626, IEEE
Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

[4] G. Bernat and M. Newby. Probabilistic WCET analysis, an ap-
proach using copulas. Journal of Embedded Computing, 2006.

[5] Certification Authorities Software Team. Multi-core Processors -
Position Paper. Technical report, CAST-32A, November 2016.

[6] Cobham Gaisler. LEON3 Processor (Probabilistic platform). http:
//www.gaisler.com/index.php/products/processors/leon3.

[7] F. Corno et al. Gatto: a genetic algorithm for automatic test pattern
generation for large synchronous sequential circuits. IEEE Trans.
on CAD of Integrated Circuits and Systems, 1996.

[8] L. Cucu-Grosjean et al. Measurement-based probabilistic timing
analysis for multi-path programs. In ECRTS, 2012.

[9] E. Diaz et al. MC2: Multicore and cache analysis via deterministic
and probabilistic jitter bounding. In Ada Europe, 2017.

[10] S. Edgar and A. Burns. Statistical analysis of WCET for scheduling.
In the 22nd IEEE Real-Time Systems Symposium (RTSS01), 2001.

[11] A. Blin et al. Maximizing Parallelism without Exploding Deadlines
in a Mixed Criticality Embedded System. In ECRTS, 2016.

[12] E. Mezzetti et al. A rapid cache-aware procedure positioning
optimization to favor incremental development. In RTAS, 2013.

[13] George Lima et al. Extreme value theory for estimating task
execution time bounds: A careful look. In 28th ECRTS, 2016.

[14] J. Nowotsch et al. Multi-core interference-sensitive WCET analysis
leveraging runtime resource capacity enforcement. In ECRTS,
2014.

[15] L. Kosmidis et al. Fitting processor architectures for measurement-
based probabilistic timing analysis. Microprocessors and Microsys-
tems, 47:287 – 302, 2016.

[16] Michael H. Schulz et al. Socrates: a highly efficient automatic test
pattern generation system. IEEE Transactions on CAD of Integrated
Circuits and Systems, 7(1):126–137, 1988.

[17] H. Falk and H. Kotthaus. Wcet-driven cache-aware code position-
ing. In Proc. of CASES, 2011.

[18] G. Fernandez et al. Computing safe contention bounds for multi-
core resources with round-robin and FIFO arbitration. IEEE Trans.
Computers, 66(4), 2017.

[19] R.A. Fisher. The arrangement of field experiments. Journal of the
Ministry of Agriculture of Great Britain, pages 503 – 513, 1926.

[20] J. Hansen et al. Statistical-based WCET estimation and validation.
In WCET Analysis workshop, 2009.

[21] A. et al. Hashemi. Efficient procedure mapping using cache line
coloring. ACM SIGPLAN Notices, 1997.

[22] C. Hernandez et al. Random modulo: a new processor cache
design for real-time critical systems. In DAC, 2016.

[23] E. Heymann. The digital car. more revenue, more competition,
more cooperation. Technical report, Deutsche Bank Research,
Frankfurt am Main Germany, July 2017.

[24] International Organization for Standardization. ISO/DIS 26262.
Road Vehicles – Functional Safety, 2009.

[25] S. Jimenez et al. Open challenges for probabilistic measurement-
based worst-case execution time. IEEE ESL, 2017.

[26] L. Kosmidis et al. Probabilistic timing analysis on conventional
cache designs. In DATE, 2013.

[27] L. Kosmidis et al. Efficient cache designs for probabilistically
analysable real-time systems. IEEE Trans. Computers, 2014.

[28] L. Kosmidis et al. PUB: Path upper-bounding for measurement-
based probabilistic timing analysis. In ECRTS, 2014.

[29] S. Kotz et al. Extreme value distributions: theory and applications.
World Scientific, 2000.

[30] P. Lokuciejewski, H. Falk, and P. Marwedel. WCET-driven Cache-
based Procedure Positioning Optimizations. In Proc. of the 20th
Euromicro Conference on Real-Time Systems (ECRTS), 2008.

[31] E. Mezzetti et al. Randomized caches can be pretty useful to hard
real-time systems. LITES, 2(1), 2015.

[32] S. Milutinovic et al. Modelling probabilistic cache representative-
ness in the presence of arbitrary access patterns. In ISORC, 2016.

[33] S. Milutinovic et al. Software time reliability in the presence of
cache memories. In Ada-Europe, 2017.

[34] T. Mitra, J. Teich, and L. Thiele. Time-critical systems design: A
survey. IEEE Design &‘ Test, 35(2), 2018.

[35] K. Palma et al. On using gev or gumbel models when applying
evt for probabilistic wcet estimation. In RTSS, 2017.

[36] K. Pettis and R. C. Hansen. Profile guided code positioning. ACM
SIGPLAN Notices, 25(6):16–27, 1990.

[37] J. Poovey. Characterization of the EEMBC Benchmark Suite. North
Carolina State University, 2007.

[38] S. Quinton. Industrial panel: Multicore architectures in the auto-
motive industry: Existing solutions, current problems and future
challenges. http://2017.rtss.org/industrial-panel/.

[39] J. Reineke. Randomized caches considered harmful in hard real-
time systems. LITES, 1(1), 2014.

[40] L. Santinelli et al. Revising measurement-based probabilistic
timing analysis. In RTAS, 2017.

[41] SoCLib. -, 2003-2012. http://www.soclib.fr/trac/dev.
[42] Z. Stephenson et al. Supporting industrial use of probabilistic

timing analysis with explicit argumentation. In INDIN, 2013.
[43] F. Wartel et al. Timing analysis of an avionics case study on

complex hardware/software platforms. In DATE, 2015.
[44] Wilhelm R. et al. The worst-case execution-time problem overview

of methods and survey of tools. ACM TECS, 7:1–53, May 2008.
[45] M. Ziccardi et al. EPC: extended path coverage for measurement-

based probabilistic timing analysis. In RTSS, 2015.

Suzana Milutinovic is a PhD candidate at the
Universitat Politecnica de Catalunya (UPC) and
a researcher in the Computer Architecture - Op-
erating Systems group at the Barcelona Super-
computing Center (BSC). She holds an MSc
degree in innovation and research in informatics
with specialization in high-performance comput-
ing from UPC and a BSc degree in electrical en-
gineering and computing from the University of
Belgrade. Her research is focused on the timing
verification of safety-related real-time systems.

Enrico Mezzetti is a senior Researcher in the
CAOS group. He holds a PhD on industrial-
level timing analysis from University of Bologna
(Italy), with partial support from Thales Alenia
Space. His main research focus is on timing
analysis of real-time systems with special inter-
est on measurement-based probabilistic timing
analysis of multi and many-core systems. He has
been participating in a score of medium-large
scale collaborative EU projects with an excep-
tional level of industrial participation, including

several ESA-funded and FP7 (PROARTIS and PROXIMA) projects.

Jaume Abella is a senior PhD. Researcher in
the CAOS group at BSC. He worked at the Intel
Barcelona Research Center (2005-2009) in the
design and modeling of circuits and microarchi-
tectures for fault-tolerance and low power, and
memory hierarchies. Since 2009 in BSC he is
in charge of hardware designs for FP7 PROAR-
TIS and PROXIMA, and BSC tasks in ARTEMIS
VeTeSS. He has authored +15 patents and +80
papers in top conferences and journals.

Francisco J. Cazorla is the leader of the CAOS
group at BSC. He has led projects funded by
industry (IBM and Sun Microsystems), the Euro-
pean Space Agency, and public-funded projects
(FP7 PROARTIS and PROXIMA and ERC Su-
PerCom). He has participated in FP6 and
FP7 Projects. His research area covers high-
performance and real-time systems. He has co-
authored 3 patents and over 100 papers in inter-
national conferences and journals.

