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Abstract

Multi-access edge computing (MEC), which is 
deployed in the proximity area of the mobile user 
side as a supplement to the traditional remote 
cloud center, has been regarded as a promising 
technique for 5G heterogeneous networks. With 
the assistance of MEC, mobile users can access 
computing resource effectively. Also, congestion 
in the core network can be alleviated by offload-
ing. To adapt in stochastic and constantly vary-
ing environments, augmented intelligence (AI) is 
introduced in MEC for intelligent decision making. 
For this reason, several recent works have focused 
on intelligent offloading in MEC to harvest its 
potential benefits. Therefore, machine learning 
(ML)-based approaches, including reinforcement 
learning, supervised/unsupervised learning, deep 
learning, as well as deep reinforcement learning 
for AI in MEC have become hot topics. Howev-
er, many technical challenges still remain to be 
addressed for AI in MEC. In this article, the basic 
concept of MEC and main applications are intro-
duced, and existing fundamental works using 
various ML-based approaches are reviewed. Fur-
thermore, some potential issues of AI in MEC for 
future work are discussed.

Introduction
Toward the fifth generation (5G) [1] mobile 
communications network, ubiquitous and intel-
ligent cloud computing is one of the key tech-
nologies. However, the powerful cloud center 
is usually deployed far away from mobile users, 
and thus huge amounts of traffic are usually trans-
mitted through multiple intermediate nodes. As 
a result, heavy load, congestion, delay, energy 
consumption, and so on could be incurred, and 
these would weaken the advantages of cloud 
computing. Therefore, multi-access edge comput-
ing (MEC) [2], which moves computing resource 
from the core network to the edge, is proposed 
as a natural design.

Figure 1 illustrates the typical architecture and 
main applications of MEC in heterogeneous net-
works (HetNets) [3]. Different from the remote 
cloud center, MEC is a distributed network archi-
tecture at the edge network. From the perspec-
tive of the MEC operator, various applications 

could run on the edge network closer to mobile 
users, thereby reducing congestion in the core 
network. From the perspective of the mobile user, 
a resource-constrained device would be liberat-
ed from computation-intensive and delay-sensi-
tive applications to enhance the user’s quality of 
service (QoS). First, the processing task could be 
assigned from a computation-limited individual 
device to available resource-rich MEC servers 
through an uplink channel. Next, the correspond-
ing computing resource should be allocated for 
processing on the MEC side. After processing is 
finished, the computation result would be fed 
back to the mobile user through a downlink chan-
nel. This procedure is widely called “offloading” 
[3]. In an MEC-enabled system, such as MEC-en-
abled vehicular networks and the Internet of 
Things (IoT), the following key issues should be 
addressed regarding offloading:
•	 The cooperation and competition among 

mobile users and MEC operators
•	 The resource matching for communication 

and computation
•	 The practical mechanism design facing the 

characteristics of mobility, stochasticity, and 
heterogeneity
Moreover, since offloading is a “connection” 

between the mobile user and cloud provider, it is 
more or less related to most of the key problems 
in MEC (i.e., offloading decision, resource allo-
cation, mobility management, content caching, 
green energy supply, security, and privacy [3]). 
Therefore, offloading plays a critical role in MEC 
naturally, and the rest of this article mainly focuses 
on offloading in MEC.

In the practical MEC system, the offloading 
decision making optimization is sophisticated 
because the influence factors are multi-dimen-
sional, randomly uncertain, and time varying. As 
a result, traditional approaches (e.g., game theo-
ry, optimization theory) meet the obstacles and 
limitations in such complex scenarios. As is well 
known, artificial intelligence based on machine 
learning (ML) [4] can extract useful information 
from massive data, learning and providing various 
functions for optimization, prediction, and deci-
sion in a stochastic environment, such as analysis 
for service characteristics using data mining tech-
nology. On one hand, artificial intelligence usually 
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relies on massive data, and this is beneficial for 
artifi cal intelligence applied in MEC. On the other 
hand, due to the caused high training and learn-
ing costs in artifi cial intelligence, MEC can provide 
rich computing resource and low-latency service 
for intelligent computing. Introducing intelligence 
computation, MEC is expected to make the edge 
network realize self-optimization and self-adapta-
tion, thereby forming an augmented intelligence 
(AI) decision making system in MEC. Specifical-
ly, AI in MEC does not just apply artificial intel-
ligence to design protocols or algorithms; it is a 
systematic framework to construct a smart MEC 
decision making system with the aid of artificial 
intelligence.

InteLLIgent ApproAches for 
offLoAdIng In mec

In the following, some mainstream ML-based 
approaches in offloading are briefly introduced. 
To better understand ML approaches, the illustra-
tions for reinforcement learning, supervised and 
unsupervised learning, deep learning, and deep 
reinforcement learning are shown in Fig. 2.

reInforcement LeArnIng In offLoAdIng

Reinforcement learning, inspired by behavioral 
psychology, is concerned with how a decision 
maker ought to choose the optimal action by 
continuously interacting with the system environ-
ment [5]. The goal of reinforcement learning is to 
select an action for each state of the system so as 
to maximize cumulative reward in the long term 
(delayed reward instead of immediate reward). 
Reinforcement learning is suitable for automatic 
control and decision making issues under a sto-
chastic and dynamic environment. Diff erent from 
other categories of ML, reinforcement learning 
cannot learn from data; instead, it has to learn 
from its own experience. 

Markov Decision Process (MDP): A reinforce-
ment learning environment is usually formulated 
as an MDP that provides a mathematical frame-
work used to model decision making. More spe-
cifically, a decision maker chooses an action on 
state st. Then state st will move into the next pos-
sible state with the transition probability P(stst, at) 
while giving a corresponding reward r(st, at). This 
process continues over time, and the decision 
maker can get a sequence of rewards. Clearly, the 
performance of such systems heavily relies on the 
quality of hand-crafted features (e.g., state, transi-
tion probability).

Application: In view of mobile users, off load-
ing can save their energy and improve computing 
capability, but it will incur additional transmission 
and computing resource consumption. Therefore, 
whether to offload or not should be answered 
fi rst. If yes, the appropriate MEC server should be 
selected, and the amount of workload should be 
determined to off load. In [6], considering the ran-
dom mobility of a user and the limited capacity of 
a cloudlet, Y. Zhang et al. investigate offloading 
policy using MDP as an optimization method to 
achieve a long-term stable offloading/local exe-
cution policy. The MDP problem in [6] is solved 
based on dynamic programming without learn-
ing action; however, reinforcement learning algo-
rithms, such as Q-learning, can also be adopted 

for this problem. The limitation of MDP is that the 
computational complexity will grow exponential-
ly with the number of states, which leads to the 
“curse of dimensionality” problem.

Q-Learning: To solve MDP, the system model 
such as transition probability should be perfect-
ly known. However, in a practical network, this 
information is very diffi  cult to fully capture, espe-
cially in complicated mobile situations. To address 
the aforementioned problems, Q-learning [5] can 
be seen as a trial-and-error method to search the 
optimal policy. The trial and error mean that the 
decision maker must make a trade-off between 
exploration and exploitation in an unknown envi-
ronment. The decision maker prefers to “exploit” 
the action that has the highest cumulative reward 
tried in the past, but it also has to “explore” 
the better new action that may yield the higher 
reward in the future. Under sufficient learning, 
the decision maker can finally find the optimal 
policy, where the goal is to learn the optimal 
action-value function to obtain the best action for 
the given state. Compared to the model-based 
MDP method, Q-learning is a model-free online 
learning method without any prior environment 
knowledge.

Application: In a dynamic MEC system, it is 
infeasible to obtain perfect knowledge of the net-
work environment. Hence, Q-learning may be 
suitable for decision making with limited informa-
tion and a dynamic environment, and is usually 
introduced to design the online and model-free 
learning approach. To apply Q-learning in MEC, 
the fi rst step is to identify the actions, states, and 
reward functions. Then, based on exploration and 
exploitation, Q-learning can update action-val-
ue function by observing the feedback given 
system states and actions. In [7], L. Xiao et al.
investigate the mobile off loading problem against 
smart attacks based on Q-learning in dynamic 
environments, where some system parameters 
such as attack cost, offloading gain, and detec-
tion accuracy are unknown. Experimental results 
in [7] illustrate that offloading rate and security 
using Q-learning are increased by 86 and 6 per-
cent compared to a random offloading scheme, 

Figure 1. MEC in heterogenous mobile networks and main applications.
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respectively. However, the proposed policy 
cannot guarantee global optimum since all pos-
sible states and actions have not been exploit-
ed. Besides, similar with MDP, due to “curse of 
dimensionality,” Q-learning is also not applicable 
to large state space.

supervIsed And unsupervIsed LeArnIng In offLoAdIng

Supervised learning [8] enables an eff ective infer-
ring function from labeled training data using 
statistical rules, which aims to learn an analytical 
model that can predict the corresponding output 
results based on input data set. Support vector 
machine (SVM) and support vector regression 
(SVR) are the typical supervised learning algo-
rithms, and are widely utilized for discrete-valued 
classifi cation and continuous-valued regression, 
respectively. In contrast, the label of input data 
[9] is unknown in unsupervised learning, and the 
goal is to find attributes and structures hidden 
in data to achieve prediction and inferring func-
tions. One of the most widely used unsupervised 
learning algorithms is K-means, which attempts 
to divide data whose category is unknown into 
several disjoint clusters. These methods are rel-
atively simple and easy to adopt in practical sce-
narios, but the performance is sensitive to the 
training data.

Application: Since service requirements in 
MEC are diverse and varied over time, it is ben-
eficial to customize offloading decision for dif-
ferent service features using classification and 
cluster methods. Besides, these methods can 
also be used for estimating or predicting radio 
parameters, handover policy in HetNets, anomaly 
detection in wireless networks, and so on. In [8], 
A. Khairy et al. investigate smart off loading based 
on supervised learning to optimize execution 
time and energy consumption for smartphones, 
where the dataset is built by measuring energy 

consumption in different contexts. Using SVR, 
accurate application execution time and energy 
consumption could be predicted, and a compu-
tation off loading decision can be made according 
to diff erent service features.

Meanwhile, to mitigate interference, a 
K-means-based context-aware mechanism has 
been adopted in mobile HetNets [9] for small cell 
clustering. Experimental results in [9] illustrate that 
the proposed context-aware prediction can guide 
the mobile user to obtain a stable wireless link. 
As an inspiration, MEC server selection and off-
loading decision are made by cluster instead of 
individual decision, which can be more efficient 
to decline a number of participants signifi cantly. 
However, the prediction accuracy is aff ected by 
massive data in [8, 9], which makes it hard to the-
oretically give the performance bound, and thus 
the performance might be unstable and uncer-
tain. Moreover, a mobile user would be more vul-
nerable due to classification and clustering, and 
thus privacy and security should be considered.

deep LeArnIng In offLoAdIng

Deep learning is a representation (or namely 
feature) learning method based on a multi-layer 
neural network, which allows the computational 
model to automatically extract features needed 
for prediction or classifi cation from massive raw 
data. As claimed in [10], the key advantage of 
deep learning is that these features are learned 
from data without any manual setup, which is 
different from reinforcement learning relying on 
hand-crafted features. However, deep learning 
is considered as a black box; thus, training tricks 
and experiences are needed in a practice training 
model due to no fully theoretical analysis. Since 
massive data must be trained using complex com-
puting, naturally, introducing MEC could provide 
available computing resource and raw data.

Figure 2. The illustrations of ML approaches: a) reinforcement learning; b) supervised and unsupervised 
learning; c) deep learning; d) deep reinforcement learning.
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Application: Deep learning can be seen as an 
ideal tool for supporting issues including fault and 
security detection, traffic and behavior prediction, 
and so on. First, MEC extracts useful features from 
mobile networks, and the model could be trained 
on the MEC server side in an offline manner. 
Then the trained model could provide inferring 
function for recognition and prediction in a real-
time environment. Accordingly, the better under-
standing of characteristics using deep learning 
in an MEC system would be helpful to forecast 
stochastic changes for offloading decision making 
optimization. C. Liu et al. in [11] integrate deep-
learning-based classification algorithms into an 
edge-computing-based real-time computing sys-
tem. The pre-processed data in an edge device 
(e.g., a wearable device for healthcare) is trans-
ferred to an MEC server. By distributing the com-
putation-intensive task throughout the network, 
a convolutional neural network (CNN) can be 
used to perform more accurate data analytics in 
the proposed system. The proposed recognition 
method achieves very high detection accuracy 
(95.2 percent). However, unpredictable training 
time, long response delay, and massive labeled 
data are the main challenges on this issue.

Deep Reinforcement Learning in Offloading

As mentioned above, deep learning can extract 
useful features directly by learning high-dimen-
sional raw data. Meanwhile, traditional reinforce-
ment learning needs hand-crafted features to 
learn the optimal decision, while low-dimensional 
state space is required. To learn the optimal con-
trol and decision-making in the context of real-
world complexity, deep Q-network (DQN) [12] is 
proposed as typical deep reinforcement learning, 
which can learn directly from high-dimensional 
raw data using end-to-end reinforcement learning 
and deep learning. In DQN, the action-value func-
tion is approximated by a deep neural network. In 
addition, an experience replay mechanism, which 
can accelerate the training process by randomly 
sampling stored experiences, is used to update 
parameters of the deep neural network.

Application: Deep reinforcement learning 
enables learning a policy in an unknown system 
through an online approach, which is suitable in 
a fast changing MEC system. To apply DQN in 
MEC, the main process follows four steps:
1. First, the operator or controller collects raw 

data by observation from the edge network, 
including available computing resource at 
the MEC server, energy limitation of the 
mobile user, wireless channel condition, 
topology, and so on.

2. Second, the filtered data is fed into the DQN 
model to extract useful features while updat-
ing the action-value function.

3. Then the DQN model is trained and updat-
ed iteratively by performing an action-value 
function as feedback.

4. Finally, the DQN model outputs the optimal 
decision for offloading under certain criteria.

In [13], T. Y. He et al. study resource allocation 
in a connected vehicle network using DQN for 
base station association, content caching, and off-
loading polices. By using DQN to approximate 
and train action-value function, the optimal poli-
cy can be obtained with better performance and 

faster training speed. The performance of the pro-
posed resource allocation policy when network-
ing, caching, and offloading are jointly considered 
has been improved by 60 percent over those that 
are not jointly considered. Nevertheless, the larg-
er discrete state space may incur longer training 
time.

Advantage, Limitation, and Application
In this section, we first conduct a simulation for 
offloading based on ML and traditional approach-
es. Second, the main characteristic, advantage, 
limitation, and application of ML-based approach-
es are summarized. Finally, we discuss the applica-
tion of learning methods.

ML Compared to Traditional Approaches 
In order to illustrate the advantage and limitation 
of ML-based approaches, a basic simulation is per-
formed using MDP, Q-learning, and convex opti-
mization for the same offloading problem. Assume 
that a mobile user with a task moves randomly 
within the coverage of an MEC server, and the full 
or partial workload can be transmitted to the MEC 
server through a wireless network. First, we formu-
late the offloading problem as an MDP problem to 
decide how many workloads to offload, and this 
problem is solved by dynamic programming. Sec-
ond, as the typical ML-based approach, Q-learn-
ing is adopted to determine the optimal policy for 
the same problem. Third, convex optimization for 
this offloading problem is also conducted as the 
benchmark since it is a traditional approach that 
has been widely used in various scenarios. To eval-
uate the offloading payoff, it is formulated as the 
utility function minus the offloading cost and the 
penalty cost, where the utility function is to show 
the benefit of offloading (it is a widely used non-de-
creasing logarithmic function), the offloading cost 
is caused by the resource consumption in trans-
mission and computation, and the penalty cost is 
incurred by the offloading failure due to intermit-
tent connection [6] (it is defined as offloading fail-
ure probability multiplied by offloaded workload). 
Let the mathematical expectation of offloading fail-
ure probability be 0.1, the corresponding variance 
be 0.025, the discount factor in MDP and Q-learn-
ing be 0.9 (which is to determine the weight of the 
present and future rewards), and the learning rate 
be 0.5 for action-value function updating. To show 
the performance of the learning method, Q-learn-
ing is performed based on 1  104 and 5  104 

learning times (denoted as N), respectively.
As shown in Fig. 3a, MDP and Q-learning 

have higher payoff in the stochastic scenario 
compared to convex optimization (which gen-
erally uses the mathematical expectation of 
offloading failure probability as a guideline for 
decision making). Meanwhile, we can also see 
that the higher number of learning times, the 
higher payoff of Q-learning. Specifically, we can 
observe that the performance of Q-learning is 
unstable when N is small because the state space 
grows exponentially with the increase of work-
load. With the more learning times, Q-learning 
has more opportunities to explore enough states 
to search the optimal policy. Therefore, Q-learn-
ing, as a widely used ML-based approach, is suit-
able in dynamic and stochastic situations due to 
its learning ability.

In DQN, the action-val-

ue function is approxi-

mated by a deep neural 

network. In addition, 

the experience replay 

mechanism, which can 

accelerate the training 
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sampling stored experi-
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parameters of the deep 

neural network.
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Although many ML-based approaches have 
been proposed for MEC offloading problems, 
several challenges remain. In particular, the 
overhead of data gathering, the curse of dimen-
sionality for learning, and computation complex-
ity for decision making are the main obstacles 
to ML-based approach design. As shown in 
Fig. 3b, the running time of MDP in log scale 
grows exponentially with the increase of work-
load; the reason is that a higher workload will 
result in larger state space due to discrete states. 
Moreover, the better performance of Q-learning 
requires more learning times, which also leads 
to more computing resource consumption and 
longer running time.

Table 1 summarizes the basic characteristics, 
main advantages, limitations, and typical appli-
cations of ML-based approaches used in MEC 
offloading.

ML Compared to Traditional Approaches 
It is noted that ML-based and traditional 
approaches are not conflicting solutions in an 
MEC system. In contrast, both of them can be 
used well and complement each other. Tradi-
tional approaches require prior knowledge about 
mobile user patterns and network parameters. In 
a static or slowly varying environment, traditional 
approaches should be preferred. However, in 
stochastic and fast changing mobile networks, 
there is no or limited prior knowledge as a guide-
line for decision making, and thus ML-based 
approaches should be preferred. Moreover, it 
is computationally infeasible to train over the 
entire dataset in such an environment. On the 
other hand, it is necessary to adapt to new pat-
terns dynamically. Therefore, online learning 
should be designed to obtain an efficient and 
adaptive policy for MEC over time. To enable 
quick learning in the case of unknown system 
parameters, J. Xu et al. in [14] propose a novel 
post-decision state-based reinforcement learning 
algorithm, which can learn “on the fly” the opti-
mal policy of dynamic workload offloading and 
edge server provisioning. To address the curse 
of dimensionality, an online learning algorithm 
utilizes a decomposition of the offline model iter-

ation and online reinforcement learning, thus 
improving both the learning rate and the runtime 
performance significantly.

In summary, the offloading problem under var-
ious constraints in MEC needs dynamic online 
solutions due to the following reasons:
1. The remaining workload at a mobile user 

varies over time due to offloading, local 
processing, new arrivals, and timeout depar-
tures.

2. The available bandwidth or computing 
capacity of the target MEC server may 
change over time due to offloading decisions 
made by other mobile users.

3. The number of mobile users connected to 
the target MEC server for offloading may 
change.

4. The target MEC server may change due 
to mobile user mobility or mobile network 
reconfiguration.

AI in MEC System Design:  
Framework and Challenges

Most existing works using traditional or ML-based 
approaches in MEC systems only focus on a spe-
cific problem or target, and are not generalized 
and universal for MEC systems, even though some 
good performance has been shown. To illustrate 
the general offloading process, a framework for 
AI in MEC based on the “observe-orient-decide-
act” [15] with feedback loop is proposed in Fig. 
4. The framework is mainly divided into five tiers 
from the bottom up, which gradually introduces 
AI ability according to the service demands and 
network architecture, named observation, analy-
sis, prediction, policy, and evaluation.

Observation tier: This is the basic function for 
AI in MEC. It is connected to an MEC system to 
collect generated or received raw data from the 
infrastructure layer. In order to quickly extract useful 
information (e.g., offloading workload, QoS require-
ment, channel condition, and topology), efficient 
and effective data acquisition, storage, cleaning, and 
pre-processing to reduce learning complexity are 
necessary. Security and privacy are also significant 
issues that should be addressed in this tier, where 

Figure 3. System payoff and running time vs. total workload for offloading using non-learning and learn-
ing-based approaches.
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the unlawful, unsafe, and malicious data in massive 
raw data should be recognized exactly (e.g., denial 
of service [DoS] attack). The extracted information 
is the input of the analysis tier.

Analysis tier: This tier is used for data analysis, 
in which some useful features can be analyzed 
based on the filtered data from the observation 
tier. Due to the proximity to massive data in an 
MEC system, a real-time inferring function (i.e., 
classification and cluster functions) should be 
pre-trained well in this tier to provide guidelines 
for the next tier. Besides, since some services 
would require less computational accuracy, so 
the low-complexity method should be designed 
to provide quick decision making for MEC with 
online analysis in a stochastic environment.

Prediction tier: To achieve the exact estimation 
for off loading considering stochastic and diverse 
scenarios in MEC, this tier is designed to forecast 
mobile network changes in the future (e.g., MEC 
server load, traffic, and user mobility) based on 
historical experiences and features from the previ-
ous tiers. With the aid of this tier, an insightful and 
foresighted decision could be made in the policy 
tier to achieve forward-looking planning.

Policy tier: This is crucial for an intelligentized 
MEC system, which is to make decisions for off-
loading and other purposes based on analyzed 
network characteristics and changing trends. 
Most works in this tier mainly focus on how to 
formulate models and optimize parameters for 
specifi c MEC off loading problems, and thus they 
are hard to extend in a general MEC system. In 
fact, the current works only choose an approach 
to solve a given problem individually depending 
on experience. Therefore, we believe that the 
key challenge is to answer “how” to determine 
which model is appropriate for “what” problems 
and scenarios, and “when” to use traditional or 
ML-based approaches.

Evaluation tier: The remote cloud center has 
the global view of the entire MEC system; thus, 
it is suitable for training and learning the global 
strategy in the long term. Meanwhile, with the 
cooperation between MEC and a remote could 

center, this tier is to evaluate the eff ectiveness of 
policy in terms of energy consumption, resource 
utilization, QoS, and so on. Accordingly, evaluat-
ed results can be fed back to the MEC system to 
answer whether the previous decision making for 
off loading is suitable or not, prediction of chang-
ing trends is accurate or not, analysis of features 
and characteristics is exact or not, and extracted 
data is useful or not. As a result, these tiers can be 
self-adaptive and self-optimizing to enhance the 
learning ability of the MEC system iteratively.

Furthermore, each tier in AI function should 
match those of the MEC system properly. There-
fore, future research should carefully investigate 

Figure 4. AI in MEC off loading: observe-orient-decide-act with feedback loop.
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Table 1. Comparisons of ML-based approaches in MEC off loading.

Categories Reinforcement learning Supervised/Unsupervised learning Deep learning Deep reinforcement learning

Typical 
techniques

MDP, Q-learning SVM, SVR/K-means CNN DQN

Complexity • High for large state space • High for massive data
• High for massive data and
   multiple layers

• High for large state space

Characteristics
• Learning from own experience
• Delayed reward

• Learning from labeled or unlabeled
   data

• Representation learning from
   raw data

• Learning control policy directly
   from high-dimensional data

Advantages
• Learning without a priori
   knowledge

• Easy and quick to deploy • End-to-end learning features
• End-to-end reinforcement
   learning

Limitations

• Curse of dimensionality
• Trade-off between exploration and
   exploitation
• Hand-crafted features

• Sensitive to data
• Relying on massive data
• Hard to theoretically give
   performance bound

• Very long training time
• Training tricks, black-box
• Mostly rely on massive labelled
   data 

• Very long training time in
   large discrete state space
• Black-box

Applications

Automatic control and decision
• Offl oading policy for intermitted
    cloudlet [6]
• Offl oading policy against smart
   attacks [7]

Classifi cation and clustering
• Prediction for energy consumption 
   and execution time [8]
• Small cell clustering [9]

Detection and prediction
• Recognition system for offl oading
   policy [11]

Automatic control and decision
• Resource allocation policy for
   connected vehicles [13]
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the relationship and interaction among these tiers. 
Meanwhile, each tier cannot optimize its own 
function and output only; the impact on the next 
tier should be considered as well. To this end, 
how to suitably match AI function with the MEC 
system and jointly optimize among different AI 
tiers would be an interesting topic in the future.

Conclusions
In this article, we have briefly introduced the 
concept of offloading in MEC and its potential 
benefits. We have illustrated the necessity for 
AI in MEC and discussed basic ideas of typi-
cal ML-based approaches in the state-of-the-art 
research work. Next, we have compared the 
performance of ML-based approaches with that 
of traditional approaches. Meanwhile, the main 
characteristics, limitations, and applications have 
been illustrated. Even though existing research has 
shown great benefits of AI in MEC, some poten-
tial research topics still remain. Therefore, we 
show our preliminary idea about how to design 
an AI-based MEC system, and discuss some chal-
lenges for intelligent offloading in MEC.
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