
Accepted Manuscript

Title: Improving the energy efficiency of relational and
NoSQL databases via query optimizations

Authors: Divya Mahajan, Cody Blakeney, Ziliang Zong

PII: S2210-5379(18)30111-2
DOI: https://doi.org/10.1016/j.suscom.2019.01.017
Reference: SUSCOM 315

To appear in:

Received date: 25 March 2018
Revised date: 19 September 2018
Accepted date: 30 January 2019

Please cite this article as: { https://doi.org/

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

https://doi.org/10.1016/j.suscom.2019.01.017
https://doi.org/

Improving the Energy Efficiency of Relational and

NoSQL Databases via Query Optimizations

Divya Mahajan, Cody Blakeney, and Ziliang Zong

Department of Computer Science, Texas State University

divya.mahajan30@gmail.com cjb92@txstate.edu ziliang@txstate.edu

Highlights of key contributions:

1. We conduct a comprehensive study (first of its kind to the best of our knowledge) on the impact of numerous
query optimization techniques for MySQL, MongoDB, and Cassandra on performance, power, and energy
consumption.

2. We develop an easy-to-use power measurement tool that can accurately measure the fine- grained real-time
power consumption of various queries running on MySQL, MongoDB, and Cassandra.

3. We present a methodology using Speedup, Powerup, and Greenup to reveal the correlations between
performance, power, and energy efficiency of relational and NoSQL databases.

4. We prove that in some scenarios energy efficiency optimization is neither merely a byproduct nor a conflicting
goal of performance optimization. There are optimization techniques that can help energy more than performance.

5. We compare the performance and energy characteristics of relational and NoSQL databases using the Yahoo!
Cloud Server Benchmark (YCSB) and ~100GB of customized Twitter data.

6. We reveal the impact of different DVFS policies on the performance and energy efficiency of MySQL, MongoDB
and Cassandra.

Abstract — As big data becomes the norm of various industrial applications, the complexity of database workloads and database

system design has increased significantly. To address these challenges, conventional relational databases have been constantly improved

and NoSQL databases such as MongoDB and Cassandra have been proposed and implemented to compete with SQL databases. In

addition to traditional metrics such as response time, throughput, and capacity, modern database systems are posing higher requirements

on energy efficiency due to the large volume of data that need to be stored, queried, updated, and analyzed. While decades of research in

the database and data processing communities has produced a wealth of literature that optimize for performance, research on

optimizations for energy efficiency has been historically overlooked and only a few studies have investigated the energy efficiency of

database systems. To the best our knowledge, there are currently no comprehensive studies that analyze the impact of query optimizations

on performance and energy efficiency across both relational and NoSQL databases. In fact, the energy behavior of many basic database

operations (e.g. insertion, deletion, searching, update, indexing, etc) remains largely unknown due to the lack of accurate power

measurement methodologies for various databases and queries. In this paper, we investigate a series of query optimization techniques for

improving the energy-efficiency of relational databases and NoSQL databases. We use both widely acceptable benchmarks (e.g. Yahoo!

Cloud Server Benchmark) and customized datasets (converted from ~100GB of Twitter data) in our experiments to evaluate the

effectiveness of various optimization techniques. We conduct cross database analysis on relational database (MySQL) and NoSQL based

databases (MongoDB and Cassandra) to compare their performance and energy efficiency. Additionally, we study a variety of

optimization techniques that can improve energy efficiency without compromising performance on the databases derived from the Twitter

data. Using these techniques, we are able to achieve significant energy savings without performance degradation. Moreover, we investigate

the impact of Dynamic Voltage and Frequency Scaling (DVFS) on the performance and energy efficiency of MySQL, MongoDB and

Cassandra.

Keywords—Energy-efficiency; Relational Databases; NoSQL Databases; MySQL; MongoDB; Cassandra; DVFS

I. INTRODUCTION

 Energy efficiency has become a critical design and operational criteria for computing systems ranging from data centers, small
clusters, stand-alone servers, to mobile and embedded devices. Unfortunately, Database Management Systems (DBMS) running in
server environments have largely ignored the energy efficiency issue, but we can no longer afford such oversight. For example,
Google currently processes about 40,000 queries per second or 3.5 billion queries per day [1]. Today, people express their opinions
and views on Twitter and emerging events or news are often followed almost instantly by a burst in Twitter volume, which makes

ACCEPTED M
ANUSCRIP

T

mailto:divya.mahajan30@gmail.com
mailto:cjb92@txstate.edu
mailto:ziliang@txstate.edu

Twitter another exemplary big dataset where many social media analytics tools are being used to determine attitude of people
towards a product, idea, and so on. However, analyzing such humungous volume of data with accuracy and efficiency is very costly
thus requires databases to be highly efficient in terms of both performance and energy efficiency.

Despite the fact that the majority of data is stored and processed using different forms of databases, either relational or NoSQL,
the current academic research and industrial practices on databases emphasize more on performance than energy efficiency. To the
best our knowledge, there are currently no comprehensive studies that analyze the impact of query optimizations on the performance
and the energy efficiency across both relational and NoSQL databases. In fact, the energy behavior of many basic database
operations (e.g. insertion, deletion, searching, update, indexing, etc.) remains largely unknown due to the lack of accurate power
measurement tools and analysis methodologies that can be applied to various databases. However, understanding the energy benefit
of various query optimizations is paramount for both relational and NoSQL databases, especially for servers that response to millions
of queries on a daily basis. Maximizing the energy efficiency of each single query could significantly reduce the accumulated cost
of large-scale database systems.

Meanwhile, it is worth noting that there are ongoing debates for improving database energy efficiency. Numerous database
researchers believe that hardware optimizations (e.g. replacing HDDs with SDDs [2] [21]) are more effective than software
optimizations. Some studies conclude that energy savings are merely a byproduct of performance optimizations [3]. Nonetheless,
other researchers argue that performance optimization and energy optimization are conflicting goals (i.e. performance needs to be
sacrificed to save energy or vice versa). They believe that tradeoffs are inevitable in a multi-objectives optimization problem. All
these arguments are reasonable in certain scenarios but they do not reveal the whole picture of database optimizations. For example,
the best-case scenario, where optimizations can reduce energy consumption without degrading performance and energy saving is
larger than performance improvement, has been overlooked due to the lack of measurement tools and analysis methodologies. In
fact, researchers may doubt the existence of such best-case scenarios because it sounds too idealistic.

In this paper, we strive to 1) explore a simple but appropriate methodology that can reveal the correlations of performance,
power, and energy in the context of relational and NoSQL database optimizations; 2) find out whether or not performance
improvement is linear to energy reduction; 3) investigate cases where energy savings can be achieved without degrading
performance; 4) investigate cases where more energy reduction can be observed discard the portions caused by performance
improvement; 5) compare the performance and energy efficiency of different relational databases and NoSQL databases; and 6)
evaluate the impact of DVFS on the performance and energy efficiency of relational and NoSQL Databases.

Our contributions can be summarized as follows:

 We conduct a comprehensive study (first of its kind to the best of our knowledge) on the impact of numerous query optimization
techniques for MySQL, MongoDB, and Cassandra on performance, power, and energy consumption.

 We develop an easy-to-use power measurement tool that can accurately measure the fine-grained real-time power consumption
of various queries running on MySQL, MongoDB, and Cassandra.

 We present a methodology using Speedup, Powerup, and Greenup to reveal the correlations between performance, power, and
energy efficiency of relational and NoSQL databases.

 We prove that in some scenarios energy efficiency optimization is neither merely a byproduct nor a conflicting goal of
performance optimization. There are optimization techniques that can help energy more than performance.

 We compare the performance and energy characteristics of relational and NoSQL databases using the Yahoo! Cloud Server
Benchmark (YCSB) [8] and ~100GB of customized Twitter data.

 We reveal the impact of different DVFS policies on the performance and energy efficiency of MySQL, MongoDB and
Cassandra.

The rest of the paper is organized as follows. Section II discusses the related work. Section III briefly introduces relational and

NoSQL databases. Section IV presents the configuration of our system, the evaluation metrics, and the YCSB benchmark and

Twitter datasets used for generating experimental results. Section V evaluates the performance and energy efficiency impact of

various query optimizations for NoSQL databases (MongoDB and Cassandra). Section VI evaluates the performance and energy

efficiency impact of various optimizations for a relational database (MySQL). Section VII compares the performance and energy

efficiency of relational and NoSQL databases. Lastly, Section VIII concludes the paper, discusses the limitations of our current

study, and points out future work.

II. RELATED WORK

The majority of existing literature on database optimization primarily focused on performance with only very few studies

investigated the energy efficiency aspect of database system. With the emergence of big data, energy efficiency started to attract

more attentions recently as an equally important optimization goal due to the unimaginable growth rate of data size and rapidly

increased ownership and operation cost of large-scale databases.

ACCEPTED M
ANUSCRIP

T

Schall et al. showed that the energy efficiency of database systems can be greatly enhanced by replacing hard drives with solid

state disks (SSDs) [21]. Beckmann et al. endorsed this argument by proving that the sorting algorithms can be improved by a factor

of 3 using SSDs [2]. Although faster and low power hardware can improve energy efficiency of databases, upgrading hardware is

costly in general and may interrupt services occasionally. This issue was pointed out by several researchers and they argued that

energy efficiency can be improved by software approaches. For example, Graefe argued that both hardware and software

optimizations can contribute to energy efficiency [22]. Niemann et al. conducted a comprehensive study on the impact of changing

data types, joining tables, and eliminating duplicates on the energy efficiency of PostgreSQL database. They concluded that energy

savings are often derived from performance improvement and sometimes are conflicting with performance improvement. However,

their study is limited to PostgreSQL and does not include NoSQL databases. Harizopoulos et al. argued that hardware was only part

of the solution. They analyzed the influence of various factors (e.g. energy-aware system wide knobs tuning, query optimization,

algorithm design, resource consolidation, etc.) and concluded that software approaches also played an important role [23] in saving

energy in database systems. Tsirogiannis et al. followed this line of work and conducted a detailed investigation on analyzing the

energy characteristics of basic operations of relational databases [24]. They found that most energy efficient configuration is often

the highest performing one. Unfortunately, their experiments are only for relational databases and they did not quantitatively reveal

the correlations between performance, power, and energy. For query optimizations, Xu et al. proposed an energy-aware query

optimizer in [25], an energy-aware query optimization framework in [28], and energy cost estimation models of query plans in [30],

which aim to select query plans based on both execution time and estimated power consumption. Lang et al. proposed a technique

to reorder query executions for energy conservation [26]. They, along with Florescu et al., suggested that database research

community should pay more attention to cost optimization in addition to performance improvement [29] [31].

All the aforementioned literature targeted on conventional SQL databases. We were only able to find one paper that focused on

the energy efficiency of NoSQL databases [27]. In this paper, Li et al. analyzed the waiting energy consumption of NoSQL databases

and found that the database servers wasted energy when they should be in idle state but actually did not. Their approach aimed to

maximize the idle time of NoSQL database servers for energy conservation, which was orthogonal to our proposed approach.

Another contribution of the paper was to investigate the efficacy of existing benchmarks for NoSQL database evaluation. They also

concluded that the test cases provided by the YCSB benchmark only include basic insert, read, update, and scan operations, which

are insufficient to comprehensively evaluate NoSQL database.

To the best of our knowledge, our work is the first of its kind to propose a simple but applicable methodology in evaluating

performance and energy efficiency of both relational and NoSQL databases. This methodology and the proposed Speedup, Powerup

and Greenup metrics can be directly applied to other databases besides MySQL, MongoDB, and Cassandra. Our work provided

strong evidence to prove that energy efficiency optimization of databases is not straightforward and many different scenarios should

be considered case by case. Additionally, we clarified some fallacies and misconceptions in optimizing databases for better energy

efficiency by verifying that there are optimizations that can help improve performance and lower power consumption

simultaneously, which will lead to the greatest energy savings.

III. INTRODUCTION TO RELATIONAL AND NOSQL DATABASES

A. Relational Databases

Relational databases have dominated the software industry for the past several decades by providing persistent data storage,

concurrency control, transactions, and having standard interfaces for data integration and reporting. A relational database organizes

data as a set of formally described tables from which data can be accessed or reassembled without having to reorganize the

tables. Each table contains one or more data categories in columns. Each row contains a unique instance of data for the categories

defined by the columns.

B. NoSQL Databases

Relational databases are not designed to store schema-less data and have limitations in scaling out to multiple servers. NoSQL

databases can store and quickly process large volume of schema-less data without using the relational model. It provides better

support to scale-out architectures using open source software, commodity servers, and cloud computing instead of large monolithic

servers and storage infrastructure used in relation databases. There are four popular data models in today’s NoSQL databases: key-

value, document, column-family, and graph. Here we skip the introduction of the key-value model and graph model because

MongoDB and Cassandra use the document model and the column family model respectively.

1) Document Databases

The document NoSQL database stores and retrieves data in the form of documents (e.g. XML, JSON, BSON, etc.). These
documents are self-describing hierarchical tree data structures which can consist of maps, collections, and scalar values. MongoDB
is an open-source document database that provides high performance, high availability, and automatic scaling. MongoDB organizes
its data in the following hierarchy: database, collection, and document. A database is a set of collections and a collection is a set of
documents. Collections are analogous to tables in relational databases. Unlike a table, however, a collection does not require its

ACCEPTED M
ANUSCRIP

T

documents to have the same schema. A record in MongoDB is a document, which is a data structure composed of field and value
pairs. The values of fields may include other documents, arrays, and arrays of documents.

2) Column Family Databases

 Column family databases store data in column families as rows, which have many columns associated with a row key. Column

families are groups of related data that is often accessed together. Each column family can be compared to a container of rows in a

relational database table where the key identifies the row and the row consists of multiple columns. The difference is that various

rows do not necessarily have the same columns, and columns can be added to any row at any time without having to add it to other

rows. Cassandra is a typical column family NoSQL database, which is designed to handle large amounts of data across many

commodity servers, providing high availability with no single point of failure. In Cassandra, all nodes play an identical role and

data is written in a way that provides both full durability and high performance. There is no master node and all nodes communicate

with each other via a distributed, scalable protocol called "gossip". To improve availability, each data item can be replicated at N

different nodes, where N is the replication factor. Cassandra’s built-for-scale architecture means that it is capable of handling large

amounts of data and thousands of concurrent users. To add more capacity, new nodes can be added to an existing cluster. Data

written to a Cassandra node is first recorded in an on-disk commit log and then written to a memory-based structure called

a memtable. When the size of the memtable exceeds a configurable threshold, the data is written to an immutable file on disk called

an SSTable.

IV. SYSTEMS, METRICS AND BENCHMARKS

A. Marcher System Configurations

Our experiments are generated on the NSF funded power measurable high performance computing system (codenamed Marcher

[7]). Each Marcher server contains two Intel Xeon E5-2600 processors with a total of 16 cores, a 32GB of DRAM, a K20 GPU and

an Intel Xeon Phi coprocessor, as well as hybrid storage with hard drives and SSDs. We develop an easy-to-use API that integrates

and synthesize the power readings from multiple sources, which include the Intel RAPL interface [4], the NVIDIA Management

Library (NVML) interface [5], the Intel MICAccess API [6], and the Power Data Acquisition Card (PODAC) respectively (see

Fig.1). Through this API, we can easily collect fine-grained power data at real-time of all major components (e.g. CPU, DRAM,

Disk, GPU, and Xeon Phi). Since GPU and Xeon Phi are not used for NoSQL databases and the disk power remains identical most

of the time, only the CPU and DRAM power are calculated in our experiments as total power consumption. More details about the

Marcher system can be found in [7].

B. Speedup, Powerup, and Greenup Metrics

We propose to use the Speedup, Powerup, and Greenup metrics to evaluate each optimization and reveal the impact of a specific

optimization on performance, power, and energy. For each experiment, we create an un-optimized query as the baseline for

comparison to a corresponding optimized query. Speedup is defined in Equation (1) as

Speedup = Tϕ / To (1)

where Tϕ is the execution time of the un-optimized query while To is the execution time of the optimized query. Similarly, Greenup

is the ratio of the energy consumption of the un-optimized query (Eϕ) over the energy consumption of the optimized query (Eo), as

show in Equation (2).

Greenup = Eϕ/ Eo (2)

Powerup = Po/ Pϕ (3)

 Powerup is defined as the ratio of the average power consumed by the optimized query over the average power consumed by
the un-optimized query (see Equation (3)).

The Speedup, Powerup and Greenup metrics provide a simple but powerful methodology to evaluate the impact of optimizations

on performance, power and energy efficiency. Specifically, we can categorize the impact of optimized query on performance, power

and energy as follows:

 Speedup > 1, Powerup < 1, and Greenup > 1 (Case 1): Optimizations improve performance and consume less power. This is

the ideal scenario because energy saving is not only achieved without sacrificing performance but also is greater than

performance improvement.

 Speedup > 1, Powerup = 1, and Greenup > 1 (Case 2): Optimizations improve performance but consume the same amount of

power. All energy savings come from the performance improvement.

 Speedup > 1, Powerup > 1, and Greenup > 1 (Case 3): Optimizations achieve better performance at the expense of consuming

more power. Since the Speedup obtained is greater than the power penalty, the optimized query still saves energy.

 Speedup < 1, Powerup < 1, and Greenup > 1 (Case 4): Optimizations reduce power consumption at the cost of performance

degradation. Since the power saving is greater than the performance penalty, the optimized query still saves energy.

ACCEPTED M
ANUSCRIP

T

C. Benchmarks

The open source Yahoo! Cloud Server Benchmark (YCSB) [8] and ~100GB Twitter data are used in our experiments to

comprehensively study the impact of various optimizations on energy efficiency and fairly compare the energy efficiency of

different databases.

1) YCSB

YCSB is one of the widely used comparative benchmark for relational and NoSQL databases. It supports a wide range of database

bindings and provides a diverse set of desired workloads. YCSB consists of two parts: the YCSB Client (an extensible workload

generator) and the core workloads (a set of workloads executed by the generator). YCSB includes six core workloads, as shown in

Table 1.

Since workloads D and E insert records during the test run, we execute the workloads in following order to keep the database

size consistent.

1. Load the database, using workload A’s parameter file (workloads/workloada) and the “-load” switch to the client.

2. Run workload A (using workloads/workloada and “-t”) for a variety of throughputs.

3. Run workload B (using workloads/workloadb and “-t”) for a variety of throughputs.

4. Run workload C (using workloads/workloadc and “-t”) for a variety of throughputs.

5. Run workload F (using workloads/workloadf and “-t”) for a variety of throughputs.

6. Run workload D (using workloads/workloadd and “-t”) for a variety of throughputs. This workload inserts records, increasing

the size of the database.

7. Delete the data in the database.

8. Reload the database, using workload E’s parameter file (workloads/workloade) and the "-load switch to the client.

9. Run workload E (using workloads/workloade and “-t”) for a variety of throughputs. This workload inserts records, increasing

the size of the database.

To fairly compare the performance and energy efficiency of various databases, we execute the aforementioned workloads in the

same order for MySQL, MongoDB, and Cassandra under similar workload conditions.

2) Twitter Data

Although YCSB provides an effective way to compare various databases, datasets used by the YCSB benchmark are very simple,

which typically consists a single table or one field document. This may not represent the use case in real world scenarios.

Additionally, YCSB does not support the execution of complex queries that we want to evaluate. In order to analyze more

complicated datasets with index landscape supporting complex queries, we collect a large volume of Twitter data (~100GB) using

the Streaming API [9], which provides a continuous stream of updated Tweets automatically. These streams are extracted in the

JSON format, which allows lightweight data interchange for MySQL, MongoDB, and Cassandra. To leverage the power

measurement API of the Marcher system, we use the PyMongo API [10] to run queries on MongoDB and the PyCassa API [11] to

run queries on Cassandra.

V. EXPERIMENTAL RESULTS OF NOSQL DATABASES

A. MongoDB

In this section, we present the experimental results of numerous optimizations running over the 100GB of Twitter data on

MongoDB. There are many factors that can affect MongoDB performance, which include index usage, query structure, data models,

and operational factors such as architecture and system configurations. We only focus on the following query optimizations in this

study.

1) Covered Queries

In MongoDB, a covered query is defined as a query in which all required fields are part of an index and all fields returned in the

query are also in the same index [12]. A covered query can be processed using the same index without scanning the documents.

Since indexes are stored in DRAM and documents are stored in disks, it is much faster to fetch data from indexes than fetch data

by scanning documents. To evaluate the impact of covered query optimization on performance, power and energy, we first created

a compound index for the “user.location” field:

db.Twitter_data.ensureIndex({‘user.location’:1})

Then, we search for users’ location using the un-optimized query (i.e. scan the documents on hard drives) and optimized query

(i.e. covered query) respectively. Table 2 shows that the covered query runs 276 times faster and consumes 498 times less energy

than the un-optimized query. This experiment clearly shows that the covered query optimization can not only improve both

performance and energy efficiency but also help energy more than performance (ref. case 1 in Section III B). We also observe that

this trend is more obvious when the input size is small enough to fit into the cache. Fig. 2. plots the real-time power trace when

running an un-optimized query and a covered query, which demonstrates the power saving benefits when required data can be stored

ACCEPTED M
ANUSCRIP

T

in cache. The power consumption can be reduced by almost 50% in this example. When the data size gets larger and cannot fit in

cache completely, the power saving benefits decrease but still can save power if part of the data are stored in cache).

2) Non-indexed vs Indexed Queries

Once documents are inserted into a collection, querying them will be slow if MongoDB does not know which fields in the

document should be optimized for faster lookup. Indexing is one of the typical optimizations for fast access of a collection [13].

The selection of the right indexes highly depends on the data to be queried. In this experiment, we delete the same record (see

below), but one query has the field "user_mentions” indexed while the other does not.

db.Twitter_data.remove({"entities.user_mentions.id" : "574834900"})

The results shown in Table 3 and Fig. 3 prove that using indexes can significantly improve performance (Speedup of 283) and

reduce energy consumption (Greenup of 474). Similar to the covered query optimization, we observe a case 1 example due to the

performance and power benefits of storing and processing most recently used data in cache.

Table 4 and Fig. 4 show the experimental results of the impact of using indexes on insertion operations. Although it does not

improve performance much (only by 4%), it significantly reduces the power consumption by 47%, which leads to approximately

two times of total energy savings.

3) Ordered vs Unordered Queries

MongoDB allows clients to perform write operations in bulk. Bulk write operations can be either ordered or unordered. The

ordered write operations are executed serially while the unordered write operations can be executed in parallel [14].

We initially expect that the ordered write operations will be slower than the unordered operations because each operation must

wait for the previous operation to finish. Surprisingly, the experimental results shown in Table 5 and Fig. 5 demonstrate that

unordered updates not only take longer to execute but also consume more energy overall. One possible reason is that MongoDB

tightly controls how database operations are acknowledged by a server, which ranges from checking through acknowledgment that

the operation has been executed to confirming the result has been written to the journal. This acknowledgment mechanism aims to

ensure completeness of operations but brings overhead to performance. Since the ordered write operations are done serially, less

acknowledgment and synchronization are probably required. Meanwhile, the advantage of parallel execution on unordered

operations seems to be largely dwarfed by the acknowledgment overhead. There is no evidence to show that more cores are being

utilized by unordered operations. In fact, the ordered operations are better in all aspects (faster, less power, and better energy

efficiency) of this experiment.

4) Projection Optimization Using Aggregation

MongoDB provides a rich set of projection and aggregation operations that aim to reduce the unnecessary calculations on

datasets [15]. Projection only selects the necessary data rather than the whole data fields of a document. Aggregation operations

use collections of documents as an input and return results in the form of one or more documents, which simplifies application code

and reduces resource usage.

The pipeline method [16] is the preferred method for data aggregation in MongoDB because it provides efficient data

aggregation using native operations. Meanwhile, MongoDB provides Map-Reduce as an alternative method to perform aggregation

[17], which include two phases. The map phase processes each document and the reduce phase combines the output of the map

operations. Map-Reduce can specify a query condition to select the input documents as well as sort and limit the results. Since Map-

Reduce is less efficient in general and more complex than the pipeline method, we evaluate the impact of the aggregation

optimization using the pipeline method. Specifically, we use the following query to find the most tweeted user:

db.Twitter_data.aggregate([{"$project": { "_id": 0, "entities.user_mentions" :1}}, {"$unwind": "$entities.user_mentions"},

{"$group": {"_id": "$entities.user_mentions.screen_name",

 "count": {"$sum": 1}}}])

As shown in Table 6 and Fig. 6, aggregation proves to be energy efficient for complex queries. We observe a Speedup of 2.4

and a Greenup of 4.2 for aggregated queries compared to the un-optimized query. The aggregation pipeline can determine if it

requires only a subset of the fields in the documents to obtain the results. Since the aggregation pipeline only uses necessary fields,

it greatly increases the opportunities of reducing the amount of data passing through the pipeline. Consequently, it is more likely

the required data can fit into cache, which greatly helps both performance and energy efficiency, as explained previously in

optimizations for covered queries and indexes.

5) Sharding

Sharding is the process of distributing data across multiple servers. MongoDB uses sharding to deploy very large data sets for

high throughput operations [18]. Sharding in MongoDB supports horizontal scaling, which involves dividing the entire dataset into

ACCEPTED M
ANUSCRIP

T

https://docs.mongodb.com/v3.0/reference/glossary/#term-collection
https://docs.mongodb.com/manual/reference/glossary/#term-sharding
https://docs.mongodb.com/manual/reference/glossary/#term-sharding

smaller portions and load them over multiple servers. Additional servers can be added to increase capacity if required. Although the

speed or capacity of a single server may not be high, sharding distributes the workload to multiple servers, which can potentially

achieve better performance than a single high-speed high-capacity server. Since expanding the size of the database only requires

adding additional servers as needed (i.e. scale out), sharding is more cost effective than scaling up to a high-end server. However,

sharding increases the power consumption as well as the complexity of data management.

To evaluate the impact of sharding on performance, power and energy, we split the Twitter datasets and store them on two

Marcher servers. The results presented in Table 7 indicate that the performance of sharding with two servers is three times better

than a single server but the power consumption is almost doubled. It is worth noting that the power in Table 7 only includes the

CPU power and DRAM power. The Powerup may change if the idle power of other system components (e.g. Motherboard, GPU,

Hard Drive, Fan, etc.) is calculated. Overall, the sharded servers help in improving performance and reducing the total energy

consumption because the margin of performance improvement is larger than the power penalty, thanks to the increased cache and

DRAM sizes of multiple servers. This experiment demonstrates a typical example of case 3 (ref. Section III B).

B. CASSANDRA

In this section, we evaluate the impact of two optimizations for Cassandra on performance, power and energy. We create

keyspaces in Cassandra to store ~100GB Twitter data. To leverage the power measurement tool of the Marcher system, we use

PyCassa [11], a thrift-based python library for Cassandra, to execute Cassandra queries and obtain real-time power consumption

data.

Cassandra works optimally when the required data is already in memory or cache. If data has to be fetched from disks, it works

better when the read operation is performed sequentially. The best practices for improving performance in Cassandra include (but

not limited to) enabling row caching [19] and compaction [20]. The following two sub-sections provide in-depth analysis for these

two optimizations.

1) Row Caching

With row caching enabled, Cassandra will detect frequently accessed partitions and store rows of data into DRAM or cache to

reduce the data access latency. To study the impact of row caches on performance, power and energy, we analyze the update queries

with row caching enabled (i.e. the optimized query) and disabled (i.e. the un-optimized query) respectively.

The results shown in Table 8 and Fig. 7 prove that row caching helps both performance and energy efficiency. We observe a

Speedup of 150 and Greenup of 163 in case of optimized query taking advantage of row caching. The Greenup is larger than

Speedup because the average power consumption is 8% lower when row caching is enabled. This shows again the power benefit of

caching data because it is generally more power effective to process data in cache or DRAM than in disks.

2) Compaction

Cassandra periodically merges multiple SSTables into a smaller set of larger SSTables using a process called compaction.

Compaction merges row fragments together, removes deleted columns, and rebuilds primary and secondary indexes. Since the

SSTables are sorted by the row key, this merge is efficient (no random disk I/O). Once a newly merged SSTable is complete, the

input SSTables are marked as obsolete and eventually deleted by the JVM garbage collection (GC) process.

Compaction has impact on read performance in two ways. While a compaction is in progress, it can temporarily influence read

performance (if the require data is missing in cache or DRAM) because the disks are heavily utilized during compaction. However,

after a compaction has been completed, off-cache read performance improves because there are fewer SSTable files on disk that

need to be checked in order to complete a read request.

Cassandra provides different compaction optimization strategies for different scenarios. The Size Tiered Compaction Strategy

(STCS) triggers a compaction when multiple SSTables of a similar size are present. Additional parameters allow STCS to be tuned

to increase or decrease the number of compactions it performs and how tombstones are handled. This compaction strategy is good

for insert-heavy workloads, as depicted in Table 9. A Speedup of 2.6 and Greenup of 2.8 are achieved when the STCS strategy is

used.

Another optimization strategy for compaction is the Leveled Compaction Strategy (LCS). This strategy groups SSTables into

levels, each of which has a fixed size limit (10 times larger than the previous level). SSTables have a fixed and relatively small size

(160MB by default). For example, if Level 1 contains up to ten SSTables, then Level 2 will contain no more than 100 SSTables.

SSTables are guaranteed to be non-overlapping within each level – if any data overlaps in a table, it will be promoted to the next

level and the overlapping tables will be re-compacted. This compaction strategy is best suited for read-heavy workloads because

tables within the same level are non-overlapping. Table 10 shows the performance, power and energy results of running a read-

heavy query, which is to find the most tweeted user, with LCS enabled and disabled respectively.

The results shown in Table 9 demonstrate that the LCS strategy can improve performance and energy efficiency by a factor of

4.5 and 5.2 compared with the non-optimized query. Meanwhile, Powerup is less than 1, which emphasizes the power saving

benefits by leveraging cache size of the system and the chunk size of datasets to reduce cache miss rate.

ACCEPTED M
ANUSCRIP

T

VI. EXPERIMENTAL RESULTS OF RELATIONAL DATABASES

In this section, we present the experimental results of the relational database. We create a MySQL database and import the

Twitter data into tables. In relational databases, programmers can obtain the same results by writing different SQL queries. However,

the performance and energy efficiency of different queries that generate the same results could vary significantly. A number of

studies have reported the performance and energy tradeoffs of relational databases [28, 29, 30, 31, 32]. In this study, we explore

and report a set of SQL querying optimization techniques that can lead to better performance and energy efficiency.

A. Indexing

Full-table scans can result in excessive amounts of unnecessary I/O and degrade the performance a database system. The most

common strategy for reducing unnecessary full-table scans is adding indexes [33]. The Primary Key for a table acts as a default

index. Additional indexes can be added to a table depending on the size of data it holds. B-tree, bitmapped, and function-based

indexes can be added to columns to speed up retrieval. To evaluate the impact of indexing for performance and energy efficiency,

we execute the following SQL query, which counts the number of tweets from San Diego.

SELECT count(*) as tweets

FROM location_details

WHERE location = 'San Diego';

As depicted in Table 11 and Fig. 8, indexing resulted in a Speedup of roughly 66X and a Greenup of nearly 70X. The use of

indexing results in both high performance as well as energy efficiency.

We conduct a similar experiment for delete operations. The results are depicted in Table 12 and Fig. 9.

For delete operations, Table 12 shows that indexing leads to a 13X performance increase and a 17X reduction in energy

consumption. Since each index keeps the indexed fields stored separately, it makes finding the right entries particularly easy. The

database finds the entries in the index then cross-references them to the entries in the tables. This cross-referencing does take time

but is faster than scanning the entire table. This contributes to lower execution times and less power consumption.

We also investigate the performance and energy efficiency of more complex queries such as finding the most tweeted user:

SELECT username, count(*)

From tweet_details

GROUP BY username

ORDER BY count DESC LIMIT 1;

As shown in Fig. 10 and Table 13, we observe that an indexed query has a Speedup of 33X and a Greenup of about 40X compared

to a non-indexed query. A strong conclusion can be drawn from this set of experiments, which is indexing is an effective

optimization that not only accelerates the execution but also reduces the power consumption of a SQL query. In other words, it

belongs to category 1 optimizations, which we have observed previously in the NoSQL optimizations where better utilization of

cache plays a critical role.

B. Avoid using Select * Clauses

The wild card character ‘*’ allows the reference to all columns of a table in SQL. While this feature can be convenient, it is

extremely inefficient. The ‘*’ character has to be converted to each column by obtaining the names of valid columns from the data

dictionary and substituting them on the command line. We quantitatively evaluate the energy cost of using the ‘*’character with the

following two queries:

SELECT *

FROM location_details l, user_details u

WHERE u.username=l.username

AND l.location=’Houston’;

Query without using ‘*’:

SELECT u.screand_name, l.tweet_id

FROM location_details l, user_details u

WHERE u.username=l.username

AND l.location=’Houston’;

Table 14 shows that the query without using SELECT * has a Speedup of 1.07X and a Greenup of 1.22X. Fig. 11 clearly depicts

that the performance gains of this particular optimization is not significant (<7%), but the energy savings, especially when

ACCEPTED M
ANUSCRIP

T

considering the ubiquity of the SELECT * in SQL, is significant (>20%). This is a great example of cases where energy efficiency

is not directly tied to performance improvement. A more than 20% of savings in energy for database transactions by simply typing

out column names, or using tools to auto-populate them, is low hanging fruit for any organization with a data intensive infrastructure.

C. IN vs. EXISTS

In SQL, the EXISTS function searches for a single row that meets the stated criteria while the IN statement looks for all

occurrences. We compare the performance and energy efficiency of IN versus EXISTS using the two queries below:

SELECT l.tweet_id FROM location_details l

WHERE l.username IN (SELECT u.username

 FROM user_details u)

AND l.location=’Houston’;

SELECT l.tweet_id FROM location_details l

WHERE l.username EXISTS (SELECT ‘1’

 FROM user_details u)

AND l.location=’Houston’;

Table 15 shows that EXISTS is much more efficient. Compared to using IN, the use of EXISTS achieves a speeded up of 146X

and a green up of 208X. This is another technique that leads to category 1 optimization, which can be explained by how the EXISTS

clause works. When EXISTS is executed it does a partial scan of the table and stops after it finds the first matching row. However,

IN scans every row in the table to determine if they match the criteria. Even when searching for values in columns that represent a

minority of data for that field, it still remains more likely to find the value much earlier in the table than searching the entire table.

Meanwhile, it also increases the chances where the search operations can process data in the cache rather than loading data from

the memory.

VII. CROSS DATABASE COMPARISON

In this section, we perform a series of performance and energy analysis on Cassandra, MongoDB, and MySQL using both the

YCSB benchmark and the Twitter data. It should be noted that there is (to date) no single “winner takes all” among the databases

studied or any other database engine for that matter. Depending on the use cases and deployment conditions, it is highly possible

for one database to outperform another and yet lag its competitor when the rules of engagement change. The benchmarks and Twitter

data used in this study may not represent the best-case scenarios of each evaluated database. In addition, we evaluate the impact of

various Dynamic Voltage and Frequency Scaling (DVFS) policies on the energy consumption and performance of all three

databases.

A. Database Comparison using YCSB

For fair comparison, each test starts with an empty database, which is loaded with an initial set of randomly generated data.

Once the data is loaded, we run the six workloads in exactly the same order (ref. Section III C). In between each workload, occasional

database health and readiness checks are performed. For example, we check if there are any ongoing compaction processes in

Cassandra and wait until those are completed before continuing to the next workload. The measured performance and energy results

are presented in Table 16.

In all workloads used in the YCSB, both NoSQL databases outperform MySQL, with MonogoDB as the winner. Although

MySQL does consume less power than Cassandra, Cassandra still has better energy efficiency because of its significantly shorter

execution time. It is notable that there is very little difference on what type of workload runs, as energy and execution time are fairly

consistent for each database. Since we observe a similar pattern on different workloads, here we only report the results of workloads

A, B, C, D, and E and only include the power trace for running workload A (See Fig. 12) on three databases. As it is unlikely that

three database systems with very different design would perform so uniformly across vastly different tasks in the real world, the

results reinforce our impression that other datasets are needed to reveal the true advantages and disadvantages of each database.

B. Database Comparison using Twitter Data

In this section, we conduct a cross database comparison using the Twitter data. For fair comparison, a number of commonly used

queries (search, update, delete, insert) are used in our experiments. These queries have different syntax in different databases but

they essentially query the same size of datasets and return the same results.

The first query finds the most tweeted user and the results of the query are presented in Table 17 and Fig. 13. In this experiment,

MySQL has the best performance (4.08 s) and consumes the least energy consumption (254.60 J). It has a Speedup and Greenup of

45X and 89X over Cassandra. MongoDB is less efficient than MySQL as aggregation is used to find the most tweeted users, which

is a slower operation than the groupby and order by functions used in MySQL. Cassandra, while utilizing extensive parallelism to

execute the query, has more overhead than MongoDB as it has insufficient support for aggregation functions. This makes Cassandra

particularly not suitable for this kind of query.

ACCEPTED M
ANUSCRIP

T

The second query we investigate is update. The results are shown in Table 18 and Fig. 14. In this experiment, we observe that

MongoDB and Cassandra both are more energy efficient than MySQL even though their power consumption is higher. In this case,

the energy savings come purely from performance improvement. The Greenup of MongoDB over MySQL falls under category 3,

which is often the result of parallelism used to speed up a task.

The third query we evaluate is delete. The results are shown in Table 19 and Fig.15. We observe that both MongoDB and

Cassandra databases have higher power consumption, likely because of their highly parallel nature. MongoDB is the most efficient

database in case of delete query execution and Cassandra is the least efficient one due to its high power and low performance.

MongoDB benefits from its shorter execution time and the power consumption is moderate, thereby making it highly energy

efficient.

The fourth query we evaluate is insert. The results are shown in Table 20 and Fig 16. In this experiment, MySQL and MongoDB

have nearly identical execution time and power consumption, both of which execute faster and use about a third of the energy of

Cassandra.

The last query we evaluate is search. The results are shown in Table 21. In this experiment, MongoDB excels in both performance

and energy efficiency. MySQL consumes an order of magnitude more energy than MongoDB while Cassandra is even worse by

consuming two orders of magnitude more energy.

The evaluation results on different queries show that the performance and energy efficiency of various databases are drastically

different when executing diverse workloads. There is no single database that is uniquely better in terms of performance and energy

consumption than all other databases. We hope that the variety of queries we have demonstrated will be useful for people deciding

which database is the most appropriate one for their workload. It is notable that in our experiments Cassandra never has the best

performance nor energy efficiency. This is possibly due to the relatively small scale of our testing environment, in which the parallel

design of Cassandra could not be fully utilized. It is clear that at small scale (one or two servers) the cost of Cassandra’s design

outweighs its benefits. Additional experiments with more servers and larger datasets will be necessary to further investigate the

advantages of Cassandra.

C. Dynamic Voltage and Frequency Scaling (DVFS)

Dynamic Voltage and Frequency Scaling is an advanced power-saving technology, which aims to lower a component’s power state

while still meeting the performance requirement of the running workload. Some of the DVFS governors supported by the Linux

kernel are:

1. Performance: This governor sets the CPU statically to the highest frequency with the borders of scaling_min_freq and

scaling_max_freq.

2. Powersave: This governor sets the CPU statically to the lowest frequency within the borders of scaling_min_freq and

scaling_max_req.

3. Ondemand: Ondemand governor sets the CPU depending on the current CPU usage. To do this the CPU must have the

capability to switch the frequency very quickly.

To evaluate the impact of DVFS on performance and energy efficiency, we conduct experiments on various databases executing

queries using both the “Performance” and “ondemand” governors.

1) Effects on MySQL queries

Fig. 17 shows that MySQL’s insert query uses less than half of the power with only a slightly performance degradation when

using the “ondemand” governor, which yields much better energy efficiency.

Fig. 18 shows the execution time and power usage when running the update query under the “performance” mode and

“ondemand” mode. This experiment shows counter-intuitive results. The “performance” mode, which presumably accelerates

instruction execution, slows down the update operation and increases the power usage. It has been reported that higher processing

speeds can cause performance degradation in high performance computing applications [32]. The slowdowns occur at higher

frequencies when the early arrival of a single thread causes the atomic journal to commit to lock with less batched threads than in

the lower frequency case. In the lower frequency case, the difference between the lead thread and other threads is much smaller,

therefore less time is spent in waiting. Slower processor frequencies effectively increase the number of threads that access the shared

resource while reduce the overall commits required at higher processor frequencies. Since the update query is write heavy and needs

synchronization, we predict that the synchronization overhead not only dwarfs but also hurts performance and energy efficiency

when the CPU is running in the “performance” mode.

2) Effects on MongoDB queries

ACCEPTED M
ANUSCRIP

T

For MongoDB, we test the “find the most tweeted user using aggregation” query and the search query. The experimental results

are presented in Fig. 19 and Fig. 20 respectively. For both queries, we observe that the “ondemand” governor is able to reduce

power consumption with no negative effect on performance.

3) Effects on Cassandra queries

To study the effects of DVFS on Cassandra, we conduct two experiments using the insert and delete queries. The results are

depicted in Fig. 21 and Fig. 22 respectively. For the insert query, we observe the same counter-intuitive results (see Fig. 21), in

which the "performance" governor makes the query run slower with higher power (similar to the MySQL’s update query). On the

other hand, the “ondemand” governer reduces both power consumption and execution time. For the delete query, we observe sharp

power spikes from both the "performance" and “ondemand” governors (see Fig. 22). As expected, the power consumption of the

“ondemand” governor is less than the “performance” governor, which make it more energy efficient.

VIII. CONCLUSION AND FUTURE WORK

This paper evaluates the impact of various optimization techniques for both relational and NoSQL databases on performance,

power, and energy consumption. We strive to provide additional evidence to complement the conventional wisdom that

optimizations for performance will either hurt energy efficiency or help energy efficiency equally. We also conduct, as far as we

can tell, first of its kind comparisons of performance and energy use characteristics of both relational and NoSQL databases.

We use the YCSB benchmark and ~100GB of Twitter data as the testing workloads and implement a power measurement tool

on the NSF funded Marcher system to measure the real-time power consumption of queries with and without optimizations. Our

experimental results show that (1) energy efficiency can be improved significantly for all studied database management systems

without degrading performance; (2) energy efficiency is not always linear to performance improvement; and (3) optimizations do

not always help and sometimes may degrade performance and increase power consumption.

For MongoDB, we find that using indexes can achieve a Speedup of more than 280 times and reduce power consumption by

40% at the same time for delete operations, which altogether improves energy efficiency by 474 times. Similarly, covered query

can improve performance by 276 times while consuming 45% less power, which leads to a Greenup of almost 500 times.

Additionally, we find that ordered queries have better performance and energy efficiency than unordered queries, which is counter-

intuitive because ordered queries are executed sequentially therefore are expected to be slower. Aggregated queries help both

performance and energy efficiency by a factor of 2.4 and 4.2 respectively. Sharding on multiple servers can improve performance

at the cost of higher power consumption. Total energy savings can still be achieved provided that the Speedup is larger than the

power increase rate. It is worth noting that our experiments contain only two sharding servers. Performance improvement and energy

savings could become conflicting goals if Speedup cannot scale up linearly with the number of sharding servers.

For Cassandra, we find that the row caching optimization helps both performance and energy efficiency with a Speedup of 150

and Greenup of 163. Two optimizations (STCS and LCS) for compaction are both able to improve performance and energy

efficiency if they are used appropriately (e.g. STCS for insert-heavy query and LCS for read-heavy query).

For MySQL, we find that indexing significantly improves performance and energy efficiency with indexed search having a

Speedup of 66 and a Greenup of 69, and indexed delete having a Speedup of 13 and a Greenup of 17. Avoiding the use of the

‘SELECT *’ command results in more than 20% gain in energy efficiency, which is significant because of the ubiquity of the

command among practitioners. Additionally, it is easy for such a benefit to remain unnoticed, as it is not connected to significant

performance improvement.

In our comparison of databases using the YCSB, MongoDB performs the best and consumes less energy for most of the

workloads. However, when evaluated using the Twitter data and our own “real world” type queries, the relative performance and

energy efficiency of different databases vary greatly. We highly recommend configuring servers running database systems to the

“ondemand” DVFS mode because it resulted in lower power consumption with little or no performance degradation in almost all

experiments. This is true for all three databases and in some cases the “ondemand” governor even yields better performance.

In the future, we will expand our experiments to more databases with bigger and more complex data sets. The Cassandra database

does not perform as well as MongoDB in our experiments. It is possible that the highly parallel and scalable nature of Cassandra is

not well suited to our experimental setup with the maximum of two servers. Further experimentation with more servers and even

larger datasets could shed light on the advantages of Cassandra. In the future, we would like to extend our experiments to a cluster

of nodes to analyze performance and energy efficiency tradeoffs.

ACKNOWLEDGMENT

The work reported in this paper is supported by the U.S. National Science Foundation under Grant No. CNS-1305359.

REFERENCES

ACCEPTED M
ANUSCRIP

T

[1] http://www.internetlivestats.com/google-search-statistics/.

[2] A. Beckmann, U. Meyer, P. Sanders, and J. Singler. “Energy-efficient sorting using solid state disks”, Proceedings of the Green

Computing Conference 2010, pages 191–202, 2010.

[3] R. Niemann, N. Koratis, R. Zicari, and R. Gobel. “Does query performance lead to energy efficiency? A comparative analysis

of energy efficiency of database operations under different workload scenarios”, http://arxiv.org/abs/1303.4869, 2013.

[4] https://01.org/blogs/2014/running-average-power-limit---rapl.

[5] https://developer.nvidia.com/nvidia-management-library-nvml.

[6] https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-developers-quick-start-guide.

[7] Z. L. Zong, R. Ge, and Q. J. Gu. “Marcher: A Heterogeneous System Supporting Energy-Aware High Performance Computing

and Big Data Analytics”, Journal of Big Data Research, 2017.

[8] https://github.com/brianfrankcooper/YCSB/wiki.

[9] https://dev.twitter.com/streaming/overview.

[10] http://api.mongodb.com/python/current/api/.

[11] http://pycassa.github.io/pycassa/api/.

[12]https://docs.mongodb.com/v3.2/indexes/#covered-queries.

[13] https://docs.mongodb.com/v3.2/indexes/.

[14] https://docs.mongodb.com/v3.2/core/bulk-write-operations/.

[15] https://docs.mongodb.com/v3.2/aggregation/.

[16] https://docs.mongodb.com/v3.2/aggregation/#aggregation-pipeline.

[17] https://docs.mongodb.com/v3.2/aggregation/#map-reduce.

[18] https://docs.mongodb.com/v3.2/sharding/.

[19] https://www.datastax.com/dev/blog/row-caching-in-cassandra-2-1.

[20]http://docs.datastax.com/en/archived/cassandra/2.0/cassandra/operations/ops_configure_compaction_t.html.

[21] D. Schall, V. Hudlet, and T. Harder. “Enhancing Energy Efficiency of Database Applications Using SSDs”, Proceedings of the

Third Conference on Computer Science and Software Engineering, 2010.

[22] G. Graefe. “Database servers tailored to improve energy efficiency”, Proceedings of the EDBT workshop on Software

engineering for tailor-made data management, 2008.

[23] S. Harizopoulos, M. A. Shah, J. Meza, and P. Ranganathan. “Energy Efficiency: The New Holy Grail of Data Management

Systems Research”, Proceedings of CIDR’09, 2009.

[24] D. Tsirogiannis, S. Harizopoulos and M. Shah. “Analyzing the energy efficiency of a database server”, Proceedings of

SIGMOD'10, 2010, pp.231-232.

[25] Z. Xu, Y. Tu, and X. Wang. “Exploring power performance tradeoffs in database systems”, Proceedings of ICDE, 2010.

[26] W. Lang and J. M. Patel. “Towards Eco-friendly Database Management Systems”, Proceedings of CIDR’09, 2009.

[27] T.T. Li, G. Yu, X. B. Liu, J. Song. “Analyzing the Waiting Energy Consumption of NoSQL Databases”, Proceedings of the

IEEE 12th International Conference on Dependable, Autonomic and Secure Computing, 2014.

[28] Z. Xu, Y. Tu, and X. Wang. “PET: Reducing Database Energy Cost via Query Optimization”, VLDB Journal, vol. 5(12), pp.

1954-1957, Aug. 2012.

[29] W. Lang, R. Kandhan, and J. M. Patel. “Rethinking Query Processing for Energy Efficiency: Slowing Down to Win the Race”,

IEEE Computer Society Technical Committee on Data Engineering, 2011.

[30] Z. Xu, Y. Tu, and X. Wang. “Online Energy Estimation of Relational Operations in Database Systems”, IEEE Transactions on

Computers, vol. 64(11), pp.3223-3236, Nov. 2015.

[31] D. Florescu and D. Kossmann. “Rethinking Cost and Performance of Database Systems”, ACM SIGMOD Record, vol. 38(1),

pp. 43-48, Mar. 2009.

[32] H. C. Chang, B. Li, M. Grove, and K.W. Cameron. “How Processor Speedups Can Slow Down I/O Performance”, Proceedings

of the IEEE International Symposium on Modelling, Analysis & Simulation of Computer and Telecommunication Systems, 2014.

[33] https://docs.MongoDB.com/manual/indexes/

 ACCEPTED M
ANUSCRIP

T

Processor(s)

Data
Storage

Network
Interface

Power Measurement System

Power Data
Acquisition Card

(PODAC)

GPU

DRAM

MotherBoard

Power Profile
System

(Power Data
Collection,
Calculation,

Transfer, and
Storage)

. . .

. . . Sensors

Cables

Xeon Phi

Fig. 1. Power measurement of Marcher servers

Fig. 2. Power: un-optimized query vs covered query

 Fig. 3. Power: non-indexed vs. indexed query for deletion

 ACCEPTED M
ANUSCRIP

T

Fig. 4. Power: non-indexed query vs. indexed query for insertion

Fig. 5. Power: ordered query vs. unordered query

Fig. 6. Power: un-optimized query vs. aggregated query

 ACCEPTED M
ANUSCRIP

T

Fig. 7. Power: un-optimized query vs. optimized query

Fig. 8. Power: Non-indexed vs Indexed search

sfsdf

Fig. 9. Non-indexed vs Indexed delete

ACCEPTED M
ANUSCRIP

T

Fig. 10. Non-indexed vs indexed Query to find most tweeted user

Fig. 11. Query execution using select * clauses

Fig. 12. Cross-database comparison using YCSB Workload A

ACCEPTED M
ANUSCRIP

T

Fig. 13. Cross-database comparison to find the most tweeted user

Fig. 14. Cross-database comparison for update

Fig. 15. Cross-database comparison for delete

ACCEPTED M
ANUSCRIP

T

Fig. 16. Cross-database comparison for insert

Fig. 17. The impact of DVFS on MySQL – insert query

ACCEPTED M
ANUSCRIP

T

Fig. 18. The impact of DVFS on MySQL – update query

Fig. 19. The impact of DVFS on MongoDB - find most tweeted user

ACCEPTED M
ANUSCRIP

T

Fig. 20. The impact of DVFS on MongoDB – search query

Fig. 21. The impact of DVFS on Cassandra – insert query

ACCEPTED M
ANUSCRIP

T

Fig. 22. The impact of DVFS on Cassandra – delete query

 Table 1: YCSB Workloads

YCSB Workloads

Workload Type Operation

A Update Heavy Read: 50%, Write: 50%

B Read Heavy Read: 95%, Write: 5%

C Read Only Read: 100%

D Read Latest New records are inserted
Heavy read for new records

E Short Ranges Query short ranges of records

F Read-modify-
write

Read a record, modify it, and
write back the changes

 Table 2: Unoptimized vs Covered Query

Query Power(W) Time(s) Energy(J) Speedup Powerup Greenup

Un-
optimized

126.67 162.79 20619.32 276.15 0.55 498.35

Covered 70.19 0.59 41.38

 Table 3: Non-indexed vs. Indexed Delete Query

Query Power(W) Time(S) Energy(J) Speedup Powerup Greenup

Non-
indexed

130.52 165.25 21568.29 283.25 0.60 474.01

Indexed 77.99 0.58 45.50

 Table 4: Non-indexed vs. Indexed Insert Query

Query Power(W) Time(S) Energy(J) Speedup Powerup Greenup

Non-
indexed

136.88 0.64 88.19 1.04 0.53 1.98

ACCEPTED M
ANUSCRIP

T

Indexed 71.90 0.62 44.53

 Table 5: Ordered vs. Unordered Query

Query Power(W) Time(S) Energy(J) Speedup Powerup Greenup

Unordered 80.79 1.08 87.42 1.87 0.98 1.91

Ordered 78.80 0.58 45.68

 Table 6: Unoptimized Query vs. Aggregated Query

Query Power(W) Time(S) Energy(J) Speedup Powerup Greenup

Un-
optimized

124.36 287.64 35769.76 2.45 0.57 4.27

Optimized 71.50 117.17 8377.28

 Table 7: Single Server vs. Sharded Servers

Query Power(W) Time(S) Energy(J) Speedup Powerup Greenup

Single
Server

77.59 281.48 21839.62 3.08 1.81 1.71

Sharded
Server

140.06 91.31 12788.32

 Table 8: Row Caching Enabled vs. Disabled

Query Power(W) Time(S) Energy(J) Speedup Powerup Greenup

Un-
optimized

135.80 51.62 7010.14 150.85 0.92 163.12

Optimized 125.58 0.34 42.97

 Table 9: STCS Enabled vs. Disabled

Query Power(W) Time(S) Energy(J) Speedup Powerup Greenup

W/O STCS 137.75 1.23 169.35 2.63 0.93 2.81

STCS 128.77 0.47 60.18

 Table 10: LCS Enabled vs. Disabled

Query Power(W) Time(S) Energy(J) Speedup Powerup Greenup

W/O STCS 142.30 831.85 118371.9 4.52 0.87 5.17

STCS 124.30 184.24 22901.45

 Table 11: Non-indexed vs. Indexed Search Query

Query Power(W) Time(S) Energy(J) Speedup Powerup Greenup

Non-
indexed

142.88 3.72 531.68 66.34 0.95 69.89

Indexed 135.62 0.06 7.61

 Table 12: Non-indexed vs. Indexed Delete Query

Query Power(W) Time(S) Energy(J) Speedup Powerup Greenup

Non-
indexed

67.89 3.12 211.87 13.47 0.78 17.29

Indexed 52.88 0.23 12.25

 Table 13: Non-indexed vs. Indexed Query to Find Most Tweeted User

Query Power(W) Time(S) Energy(J) Speedup Powerup Greenup

ACCEPTED M
ANUSCRIP

T

Non-
indexed

75.87 135.04 10246.12 33.08 0.82 40.24

Indexed 62.36 4.08 254.60

 Table 14: Select * Clause

Query Power(W) Time(S) Energy(J) Speedup Powerup Greenup

With
Select *

66.66 3.85 256.44 1.07 0.88 1.22

Without
Select *

58.44 3.60 210.44

 Table 15: IN vs. EXIST

Query Power(W) Time(S) Energy(J) Speedup Powerup Greenup

Using ‘IN’ 68.94 13.59 937.02 146.34 0.70 208.75

Using
‘EXISTS’

48.33 0.09 4.49

Table 16: Cross-database Comparison using YCSB

Workloads MongoDB Cassandra MySQL

Energy (J) Time (S) Energy (J) Time (S) Energy (J) Time (S)

A 1211.37 12.94 3102.37 33.38 4037.72 46.75

B 1212.06 12.67 3085.76 32.99 4075.12 47.25

C 1219.75 12.87 3152.97 33.89 4097.56 47.14

D 1242.89 12.95 3070.00 32.97 4077.80 47.62

E 1224.69 12.85 3176.56 34.14 4169.83 48.28

Table 17: Cross-database Comparison for Most Tweeted User

Database Power (W) Time (S) Energy (J)

MySQL 62.36 4.08 254.60

MongoDB 76.62 117.12 775.93

Cassandra 124.30 184.24 22901.44

Table 18: Cross-database Comparison for Update

Database Power (W) Time (S) Energy (J)

MySQL 63.64 6.91 440.03

MongoDB 78.80 0.58 45.67

Cassandra 69.29 2.17 150.37

Table 19: Cross-database Comparison for Delete

Database Power (W) Time (S) Energy (J)

MySQL 56.72 0.37 21.26

MongoDB 79.58 0.23 18.68

Cassandra 121.12 0.48 58.64

ACCEPTED M
ANUSCRIP

T

Table 20: Cross-database Comparison for Insert

Database Power (W) Time (S) Energy (J)

MySQL 56.31 0.32 18.00

MongoDB 57.36 0.35 20.32

Cassandra 128.77 0.47 60.18

Table 21: Cross-database Comparison for Search

Database Power (W) Time (S) Energy (J)

MySQL 130.00 2.25 292.09

MongoDB 70.19 0.59 41.37

Cassandra 122.55 37.77 4628.36

ACCEPTED M
ANUSCRIP

T

