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a b s t r a c t

Sustainable production plays an important role in product lifecycle management by considering the
social sustainability. Energy-efficient machining is an efficient approach for sustainable production in
current manufacturing sectors. Although many related efforts have been achieved, a comprehensive
energy optimization approach oriented to manufacturing parts is still a challenge. Therefore, this paper
selects Standard for the Exchange of Product model data-Numerical Control (STEP-NC) as the enabling
technology to achieve energy-efficient machining. An optimization model is proposed based on the
energy calculation method using the workingstep in STEP-NC. An improved ant colony optimization
(ACO) solution, consisting of encoding and decoding, initialization, machining scheme generation, idea of
local multiple iteration, evaluation, pheromone evaporation and update, is presented. A part with typical
manufacturing features is applied to verify the effectiveness of the proposed approach. The generated
solution can provide a comprehensive machining scheme for low energy demandI by improving the
efficiency with 25% for solving the optimization problem.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Due to soaring energy prices and environmental pollution,
research on sustainable product lifecycle management (SPLM) has
been focused recently. Sustainable production is one important
phase of SPLM. Reducing energy consumption during machining
operations plays a critical role in achieving sustainable production,
i.e., energy-efficient machining. Energy-efficient machining has
attracted increasingly more efforts in recent years (Camposeco-
Negrete, 2013; Gong et al., 2016; Velchev et al., 2014; Yan and Li,
2013; Zhou et al., 2016).

Deciding machining schemes (MSs) for a part to be machined
from the perspective of energy efficiency is an effective way to
perform energy-efficient machining. A MS consists of many key
elements, e.g., machining resources, machining parameters, tool
path, process route, etc. In general, there exist more than one
reasonable MS, which could constitute a group of candidate
l and Electrical Engineering,
machining schemes (CMSs), and the best machining scheme (BMS),
i.e., energy-efficient machining scheme (EEMS), is generated from
this group. It is obvious that this process refers to an optimization
problem. To solve the optimization problem, two key procedures
are necessary, i.e., optimization model and the corresponding so-
lution method. An optimization model includes optimization
objective, optimization variables and constraints. The objective
may be single (i.e. only energy consumption) or multiple (e.g. time,
energy, tool life, etc.). No matter single-objective or multiple-
objectives optimization, an energy consumption model for indi-
cating the energy calculation approach duringmachining processes
is essential, which is used to formulating the optimization objec-
tive. Besides, the optimization variables are the contributing factors
to the objective, and the constraints are determined in terms of the
specific conditions. Regarding the solution method, a meta-
heuristic algorithm is a type of effective method of solving the
optimization model, such as genetic algorithm (GA), ant colony
optimization (ACO), particle swarm optimization (PSO), tabu search
(TS), simulated annealing (SA) and NSGA-II. Nowadays, many kinds
of optimization models have been built with related solution
methods, which promoted the development of energy-efficient
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machining. However, the established optimization models mainly
concern on a certain factor or portions of factors to energy con-
sumption in a MS, so that the energy cannot be optimized from a
holistic perspective during production processes. This paper adopts
Exchange of Product model data-Numerical Control (STEP-NC)
(ISO14649-1, 2003) as the key enabling technology to achieve
energy-efficient machining for sustainable production, where an
optimization model for energy-efficient machining is built and its
solution method with an improved ACO is presented. The core
concept of STEP-NC, i.e., workingstep, is applied to the base for
calculating energy consumption for a part, where a finite state
machine model is proposed to illustrate the execution process of
workingstep. Accordingly, an optimization model is established in
terms of the calculation method of energy consumption and the
constraints, where workingstep and the sequence are considered
jointly. An improved ACO is chosen to solve the optimization
model, and the key procedures (i.e., encoding and decoding,
initialization, machining scheme generation, evaluation, idea of
local multiple iteration, pheromone evaporation and update) are
given.

The rest of this paper is organized as follows. Section 2 gives the
literature review about energy consumption calculation methods
and energy optimization. Section 3 presents a brief introduction of
STEP-NC approach used in this work. The energy consumption
calculation method via STEP-NC is shown in Section 4. Section 5
builds optimization model by considering energy consumption.
The model solutions with an improved ACO are illustrated in Sec-
tion 6. Section 7 gives a case study where the proposed model is
examined. Detailed discussions are given in this section too. Section
8 concludes this paper by giving our contributions and future work.

2. Literature review

2.1. Energy consumption calculation methods

To establish the optimization model, an effective calculation
method of energy consumption is necessary. A machine tool is the
basic energy unit during manufacturing process, therefore, the
energy characteristic of a machine tool is the key to achieve energy
consumption calculation for a part. Lv et al. (2016) investigated CNC
machine tools energy characteristics by experimental studies,
where the power consumption formulations of main components
of a machine (e.g., spindle, feed axis) were displayed. Besides,
Zhong et al. (2016) reviewed the power calculation approaches to
cutting processes, and gave the corresponding accuracy of each
method. Based on the above literature, some energy models were
established from diverse perspectives. For example, Avram and
Xirouchakis (2011) proposed an energy demand model for calcu-
lating the total energy required by a machine tool system for
milling processes. Jia et al. (2014, 2016) introduced Therblig to
represent the basic energy consumption unit, and the energy de-
mandwas obtained by linking the activities of machining processes
and Therblig. Aramcharoen and Mativenga (2014) studied the en-
ergy intensity in machining processes and then built an energy
consumption model by identifying key energy states. Lv et al.
(2018) studied the turning energy consumption calculation ap-
proaches through investigating three power prediction methods.
This effort could improve the accuracy of predicting the material
removal power in turning processes. Shi et al. (2018) established a
novel energy consumption model for milling process considering
tool wear progression with experimental method, where this
model not only achieved the energy consumption calculation but
also predicted the tool wear. Yoon et al. (2018) investigated power
characteristics of a rotational axis of a machine tool to build the
corresponding empirical energy consumption model. Altıntaş et al.
(2016) presented an energy consumption prediction model based
on STEP224, which can run with 5% accuracy for the estimation of
the theoretical energy demand during milling processes. Borgia
et al. (2017) proposed an energy prediction method using simula-
tion approach for milling operations, where power consumption of
spindle, axes, and auxiliary units were considered. In addition,
some researchers adopted specific energy consumption (SEC) to
model the problem. For example, Liu et al. (2015) empirically
analysed the relationship between the total power consumed by
the machine tool and the cutting power at the tool tip, and
accordingly the SEC model was obtained. Kara and Li (2011)
adopted SEC to present an empirical model that characterized the
relationship between energy consumption and process variables
for material removal processes.

2.2. Energy consumption optimization

The optimization model is established according to the diverse
energy consumption calculation methods, which in general is used
to formulating the optimization objective with energy. The energy
optimization can be performed through optimizing parameters,
process route, job shop scheduling, etc. Some studies have achieved
energy-efficient machining by optimizing parameters. Deng et al.
(2017) minimized the energy consumption based on cutting SEC.
In this work, a multi-objective optimization model aiming at SEC
and time was built and transformed into a single objective with
weights method, and the quantum genetic algorithm was used to
solve this optimization problem. Li et al. (2019) presented a multi-
objective parameter optimization method for energy efficiency in
CNC milling processes, where the energy model of CNC milling was
then established and it was solved by TS algorithm. Yi et al. (2015)
built an optimization model to minimize carbon emissions during
machining processes, and NSGA-II was adopted to solve the prob-
lem. Chen et al. (2015) analysed the energy consumption of multi-
pass CNC milling, and then a multi-objective optimization model
was proposed to maximize the energy efficiency and minimize the
production cost. In this work, the optimization problemwas solved
by PSO. Li et al. (2014) introduced a multi-objective optimization
model to achieve low energy consumption and high production
rate simultaneously, and GA was used to solve it. In (Wang et al.,
2014), energy consumption, cost and quality were considered to
establish the optimization model, and NSGA-II was used to resolve
the problem. Ma et al. (2017) proposed an energy saving strategy
for milling processes, where the impacts of cutting parameters on
energy were fully considered and matlab toolbox was directly used
to achieve the optimization. Apart from parameter optimization,
process route selection is also an effective approach to reducing
energy consumption. Tan (2004) built an optimization model ori-
ented to process routes for green manufacturing, and this model
was solved by SA. A typical part was used to verify the effectiveness
of the proposed method. Some studies addressed job shop sched-
uling to decrease energy demand. Gong et al. (2016) presented a
generic method for energy-efficient and energy-cost-effective
production at the unit process level. In this research, a mixed-
integer linear programming mathematical model was formulated
for energy-cost-aware job order scheduling on a single machine,
and GA was implemented to search for an energy-cost-effective
schedule. Zhang et al. (2016) minimized the machining system
energy through integration of process planning and scheduling,
where the integrated energy saving model was built and a GA-
based approach was adopted to solve the established model. He
et al. (2015) also used a mixed-integer linear programming
method to establish an optimization model, including machine tool
selection and operation sequence for scheduling. Nested partitions
algorithm was adopted to solve the problem. Shrouf et al. (2014)
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targeted single machining sustainable scheduling to formulate an
energy consumption optimization model, which was solved by GA.
Fig. 2. Energy-efficient machining using STEP-NC approach.
3. STEP-NC enabled approach

STEP-NC (i.e. ISO14649) is a series of standards for remedying
the shortcomings of ISO6983 by specifying a machining process
rather than a machine tool motion. It consists of a group of data
structures (as shown in Fig. 1) built with EXPRESS language to
describe sufficient high-level contents for a part to be manufac-
tured (e.g. geometries, machining processes, and machining re-
sources). Thus Peng and Xu (2017) regard it as a smart enabling
technology to link up main components of product lifecycle man-
agement (e.g. design and manufacturing). With the support of the
information through STEP-NC, energy evaluation and optimization
for a part can be performed. The main characteristic of STEP-NC is
feature-based and workingstep-oriented: the features are applied
to represent the material to be removed in a part, and the work-
ingstep is employed to describe the process information, e.g., the
machining parameters. Besides, STEP-NC provides some candidate
machining operations (e.g., plane rough milling (PRM), plane finish
milling (PFM), etc.) and strategies (e.g., bidirectional (BD), unidi-
rectional (UD), contour parallel (CP), etc.). In the context of STEP-
NC, a STEP-NC Part 21 file is used to instantiate these data struc-
tures to constitute aMS for a part to bemanufactured. To determine
a MS compliant with STEP-NC considering energy efficiency is the
research purpose in this work.

Fig. 2 gives the workflow of energy-efficient machining using
STEP-NC approach. In the whole process, STEP-NC is the core
concept to integrating each procedure: features are used to repre-
sent the part; with our previous work (Wang et al., 2018), CMSs for
this part can be generated as the solution space of the optimization
model; there are some contributing factors to energy consumption
in a MS with STEP-NC, and these factors are the variables to
calculating the energy of the part; the workingstep is selected as
the key to organize these variables for energy consumption calcu-
lation; with this calculationmethod, the optimizationmodel can be
built; ACO is improved in terms of STEP-NC data structure to make
itself more suitable to solve this model. Finally, the EEMS is deter-
mined. The details are presented in the following sections.
4. Energy consumption calculation via STEP-NC

4.1. Calculation method of energy consumption

Workingstep is defined as the basic unit to calculate the energy
consumption. The energy demand of machining a part is the sum of
each workingstep energy consumption, which is shown in Eq. (1).
Fig. 1. Data structure of STEP-NC.
Epart ¼
Xn
i¼1

Ews;i (1)

where Epart represents the energy consumption of machining a part
[J], Ews;i is the ith workingstep energy [J], and n is the count of
workingsteps.

Eq. (1) is preliminary for calculation of a part's energy con-
sumption. To achieve energy demand calculation, the finite state
machine of a workingstep is established, as shown in Fig. 3.

According to Fig. 3, the states of aworkingstep and the transition
condition of each state are presented with the execution process of
a workingstep. The value of Ews can be obtained by the sum of each
state's energy consumption, as shown in Eq. (2).

Ews ¼ Ep þ Ea þ El þ Em (2)

where Ep represents the energy demand of the preparation state [J],
Ea is the energy demand of the approaching state [J], El is the energy
demand of the leaving state [J], and Em is the energy demand of the
machining state [J].

Before specifying the approach to calculating the energy de-
mand of the four states, the power-driven components of a ma-
chine tool are re-classified:

� The basic components (BC): They refer to the components that
must run when a machine tool is on, e.g. the controller, monitor
and fan.

� The machine tool function components (MTFC): They refer to
the components that will run according to the corresponding
conditions when a machine tool is on. They can be further
divided into two types:
- The workingstep-related components (WRC): They are the

subtypes of machine tool function components, but the po-
wer of these components is related to workingstep, e.g. tool
changer.

- The workingstep-unrelated components (WURC): They are
the subtypes of machine tool function components, but the
power of these components is unrelated to workingstep, e.g.
light and cutting fluid.

� The components for cutting: They refer to the spindle and feed
axis in this paper.



Fig. 3. Finite state machine of workingstep.
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The BC, WURC and spindle remain running in entire machining
processes. Excluding the spindle, the power of the BC and WURC
are constant, Eq. (3) is used to calculate their energy consumption
Eb;ws nr [J].

Eb;ws nr ¼
�
Pws;nr þ Pb

�
ttotal (3)

where Pws;nr is the power of WURC [W], Pb is the power of BC [W],
and ttotal is the total time of machining a part [s], which meets Eq.
(4).

ttotal ¼
Xn
i¼1

�
tp;i þ tl;i þ ta;i þ tm;i

�
(4)

where tp;i refers to the preparation state time of the ith workingstep
[s], tl;i is the leaving state time of the ith workingstep [s], ta;i is the
approaching state time of the ith workingstep [s], and tm;i is the
machining state time of the ith workingstep [s].

For the spindle, its power demandmeets a linear model, and the
variable is the spindle rotating speed (Lv et al., 2016). Because
different workingsteps may use different spindle rotating speeds,
the energy consumption should be considered as shown in Eq. (5)

Esp ¼ Psp
�
tl þ ta þ tmþ t

0
p

�
(5)

where Esp is the spindle energy consumption of a workingstep [J],
Psp is the power of the spindle of aworkingstep [W], tl is the leaving
state time of a workingstep [s], ta is the approaching state time of a
workingstep [s], tm is the machining state time of aworkingstep [s],
and t

0
p is the preparation state time of spindle preparation [s].

Based on the above discussion, Eq. (1) can be rewritten as Eq. (6).

Epart ¼ Eb;ws nr þ
Xn
i¼1

�
Esp;i þ E

0
p;i þ E

0
a;i þ E

0
l;i þ E

0
m;i

�
(6)

where Esp;i is the spindle energy consumption of the ith working-
step [J], E

0
p;i is the updated preparation state energy consumption of

the ith workingstep [J], E
0
a;i is the updated approaching state energy

consumption of the ith workingstep [J], E
0
l;i is the updated leaving

state energy consumption [J], and E
0
m;i is the updated machining

state energy consumption of the ith workingstep [J].
4.1.1. Preparation state
The preparation state mainly includes the energy consumption

of workingstep-related components, changing the spindle rotating
speed, spindle starting and spindle stopping, which can be repre-
sented by Eq. (7).
E
0
p ¼ Ews r þ Esp s þ Esp on þ Esp off (7)

where Ews r is the energy consumption of workingstep-related
components [J], Esp s is the energy consumption of changing the
spindle rotating speed [J], Esp on is the energy consumption of
spindle starting [J], and Esp off is the energy consumption of spindle
stopping [J].

The energy consumption of Esp s, Esp on, Ews r and Esp off can be
approximately represented by a constant value. This paper uses the
average value of the corresponding process to express the energy
consumption.
4.1.2. Approaching and leaving state
Regarding the approaching state and leaving state, the motions

of these two are rapid traverse of the feed axis. The power of the
feed axis meets a linear model or a square model. The feed velocity
is the variable and the other coefficients are fixed. During rapid
traverse, the power of feed axis is a constant, which could be pre-
sented by Eq. (8).

Ea;l ¼ Pa;lta;l ¼
Pa;l
vr

la;l ¼ ka;lla;l (8)

where Ea;l represents E
0
a or E

0
l, Pa;l is the power of the feed axis in the

approaching state or leaving state [W], vr is the velocity of rapid
traverse [mm/min], la;l is the distance of rapid traverse [mm], and
ka;l is a coefficient that equals Pa;l divided by vr.
4.1.3. Machining state
The machining state performs the key function of a machine

tool, i.e. removal of redundant materials. This state may involve
three motion types in terms of machining strategies, and its energy
consumption Em meets Eq. (9).

Em¼ Em r þ Em f þ Em c (9)

where Em r is the energy consumption of rapid traverse in the
machining state [J], Em f is the feed axis energy consumption in the
machining state [J], and Em c is the cutting energy consumption in
the machining state [J].

Em r mainly depends on the distance of rapid traverse in the
same machine tool (the calculation method refers to Eq. (8)), while
Em f and Em c depend on not only the moving distance but also the
machining parameters.

Similar to Eq. (8), Em f can be obtained by Eq. (10).
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Em f ¼ Pm f tm f ¼
Pm f

vf
lm f (10)

where Pm f is the feed axis power [W], tm f is themoving time [s] of
the feed axis with feed velocity vf [mm/min], and lm f is the motion
distance [mm] of the feed axis with vf .

For Em c, its calculation meets Eq. (11).

Em c ¼ Pm ctm c ¼ Pm c
lm c

vf
(11)

where Pm c is the cutting power [W], tm c is the cutting time [s], lm c

is the motion distance of the feed axis [mm].
In this paper, a milling process and a drilling process are mainly

considered. The power calculationmethod of the two processes can
refer to Eq. (12) and Eq. (13) (Lv et al., 2016).

Pm c ¼ PM ¼ CMaxMp f yMz vnM
M auM

w (12)

where PM is the milling power [W], CM , xM , yM , nM , and uM are the
coefficients, ap is the axial cutting depth [mm], fz is the feed per
tooth [mm/z], vM is the cutting velocity for milling [m/min], and aw
is the radial cutting depth [mm].

Pm c ¼ PD ¼ CDf
yD
r vnD

D (13)

where PD is the drilling power [W], CD, yD and nD are the co-
efficients, fr is the feed per revolution [mm/r], and vD is the cutting
velocity for drilling [m/min].

In Eq. (10) and Eq. (11), the motion distance of the feed axis
depends on machining parameters and strategies, which can be
expressed by Eq. (14).

lm f ; lm c ¼
ls
�
ts; ap; aw

�
vf

(14)

where ts is the type of machining strategies and ls [mm] is a
function of ts, ap and aw.
5. Proposed model by considering energy consumption

This section introduces the optimization model based on the
calculated energy consumption.
5.1. Determination of optimization variables

In this research, optimization variables involve: (1) machine tool
(MT); (2) cutting tool (C); (3) cutting parameters (P); (4) machining
strategy (S); (5) material (M); and (6) sequencing of workingsteps.
The above optimization variables will constitute a machining
scheme (MS) that is compliant with STEP-NC.
5.2. Optimization objective

The energy-efficiency of machining a part is the optimization
objective. In this work, SEC is used to represent the energy-
efficiency, which is shown as Eq. (15).

SEC ¼ Epart
Vpart

(15)

where Vpart is the volume of the part [mm3].
5.3. Constraints

Because this work considers generation of workingstep and the
sequencing, the set of constraints should be organized as follows.

For a workingstep, the basic constraints are shown as Eq. (16).

8>><
>>:

pmin � p � pmax
Fcut � Fmax
Pcut � Pmax

(16)

where p are the machining parameters of a workingstep, Fcut is the
cutting forcing during execution of a workingstep [N], and Pcut is
the cutting power during executing a workingstep [W]. The above
three variables should be within the corresponding ranges. pmin
and pmax are the minimum and maximum of p, respectively. F max

and P max are the maximum of Fcut and Pcut that a machine tool can
support, respectively.

Some workingsteps should meet the roughness requirement.
For milling processes, the roughness value after machining can be
formulated as Eq. (17) (Wang et al., 2018).

Ra ¼ f 2

18
ffiffiffiffiffiffiffi
3rt

p � Rmax (17)

where Ra is the arithmetic surface roughness, rt is the tool nose
radius, and Rmax is the maximum of the required Ra.

Parameters are the main factors to affecting the life of a cutting
tool, and the mathematical relationship is shown as Eq. (18) (Shi
et al., 2018).

T ¼
 

CVkVdqV

vcf
yV
z axVp auV

w zpV

!m�1

� Tl (18)

where T is the tool life [h], CV , kV , qV , yV , xV , uV , and pV are the
coefficients, and Tl is the expected tool life [h].

Some sequencing constraints of workingsteps should also be
concerned, namely, the process principle (e.g., benchmark priority).
This paper uses the following approach to formalizing constraints
of sequencing.

i and j are used to represent the identity of workingstep. Func-
tion fs can return the number of workingsteps in the sequencing
with the input of the identity, where the result can be marked as S.
Then, Si ¼ fsðiÞ, and Si ¼ fsðiÞ. It is assumed that workingstep imust
be finished before workingstep j under some constraints, i.e. Si < Sj.
Therefore, Eq. (3) can be used to formalize the order of two
workingsteps.

Fs ¼
8<
:1; Si < Sj

0; else (19)

where Fs is the discriminant function, and it can determine the
satisfaction of the constraint. Furthermore, there are more than a
pair of workingsteps that should be constrained. To solve it,
continued multiplication is used, which is formalized as Eq. (20)

F ¼
Yn

i¼1

Ym

j¼1
Fs;i;j (20)

where F is the final discriminant function, and it can determine
whether all constraints can be satisfied in a sequencing of work-
ingsteps. Fs;i;j represents the discriminant function of workingstep i
and workingstep j.

From Eq. (20), the optimization process is reasonable under the
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premise of F equals to 1.
According to the above description, the optimization model can

be established, which is shown as Eq. (21).

min SEC s:t: pmin �p � pmax Fcut � F max Pcut � P max T � Tl Ra

¼ f 2

18
ffiffiffiffiffiffiffi
3rt

p � Rmax F ¼ 1

(21)
6. An improved ACO solution for the proposed model

6.1. Encoding and decoding

The purpose of encoding is to represent each candidate
machining scheme, while decoding is to transfer the encoded
numbers to achieve the evaluation of energy consumption.

The objectives of encoding are optimal variables. In a working-
step, it involves MT , C, P, S and M. Except for P, other elements can
use continuous natural numbers to achieve the encoding.
Machining parameters can be further divided into sub-parameters,
e.g. ap in the milling processes. Each sub-parameter is generally a
real number and has its own accuracy. Therefore, the encoding of
each sub-parameter Np is expressed as Eq. (22).

0�Np � pmax � pmin

acc
(22)

where pmax is the maximum of the sub-parameter, pmin is the
minimum of the sub-parameter, and acc represents the accuracy
(e.g. 0.1, 0.01).

The above description gives the approach to encoding, and the
decoding method can be found in Eq. (23).

pmax ¼ pmin þ accNp (23)

The range of parameters depend on the combination of machine
tool, cutting tool and material. Thus, it is necessary to describe the
combination Ncom, as follows:

Ncom ¼NcNMiþ NMjþ k; 0 � i � NMT ;0 � j � Nc;0 � k � NM

(24)

where i, j and k are the encoded numbers of MT , C and M,
respectively, and NMT , Nc and NM are the maximum encoded
numbers of MT , C and M, respectively.
Fig. 4. Pheromone m
Each workingstep can also be represented by a natural number.
A reasonable workingstep sequence can be abstracted as a group of
non-repeating natural numbers.

6.2. Initialization

In the initialization step, two tasks will be performed, i.e. setting
basic parameters of ACO and generating the solution space. The
basic parameters mainly include the colony population, pheromone
initial value and coefficients of key formulas in ACO. Literature
(Wang et al., 2018) is used to generate the solution space.

6.3. Machining scheme generation

Generating a machining scheme includes two procedures, i.e.
constitutingworkingsteps and selecting aworkingstep sequence. In
this study, a pheromone matrix (Fig. 4 (a)) and a pheromone vector
(Fig. 4 (b)) are used to generate the workingstep sequence and
workingsteps, respectively.

Fig. 5 gives the process of machining scheme generation. An ant
first selects a workingstep according to the pheromone matrix, and
then the ant will enter into the space of workingstep, where the
workingstep is generated. After that, the ant leaves this space and
starts to select the next workingstep. The above process will
continue until all workingsteps are selected.

According to Fig. 4 (a), the pheromone matrix is important to
select a workingstep. In the matrix, using the value located by WSi
and WSj as the accordance to determine the next workingstep. The
determination of the next WS (i.e. WSj) is achieved based on the
current WS (i.e. WSi) except the first selection. Both i and j can
represent the ID of a workingstep. For WSi, when the selection
starts, the i is fixed in general, and j is variable. Therefore, replacing i
with constant c, and then the selection possibility of WSj fromWSc,
i.e. Pðc; jÞ, can be completed by Eq. (25).

Pðc; jÞ¼ tae cðjÞ,ð1=Obðc; jÞÞbPn
j¼0t

a
e cðjÞ,ð1=Obðc; jÞÞb

; j2allowedws (25)

where te cðjÞ is the pheromone vector extracted from the phero-
mone matrix when i is c (and it stores the pheromone value be-
tween workingstep c and the rest of the workingsteps), Obðc; jÞ is
the evaluated value between workingstep c and workingstep j,
allowedws is the workingstep that is allowed to select, and a and b
are the coefficients.
atrix and vector.



Fig. 5. Machining scheme generation.
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Based on Eq. (25), Eq. (26) is given to achieve the selection of the
next WS.

NumWS ¼ k; r1 �
Xk
j¼0

Pðc; jÞ (26)

where NumWS represents the ID of WS, r1 is a random number that
ranges from 0 to 1, and k is an ID of WS.

Eq. (26) represents the following process: calculating the sum of
Pðc; jÞwith j ranging from 0 to n, and once the Pðc; kÞ is added to the
previous sum, the kth WS is selected.

After the ID of a WS is selected, the elements of WS will be
determined subsequently.

Regarding a WS, its elements include manufacturing resources,
machining parameters andmachining strategy. Each element has its
ownpheromonevector, for instance, Fig. 4 (b) shows thepheromone
vector of the machine tool. In terms of the pheromone vector, the
possibility of an element of aWS, i.e. PðiÞ, is expressed by Eq. (27).

PðiÞ ¼ teðiÞPn
i¼0teðiÞ

(27)

where te represents the pheromone vector, i is the ID of an element,
and n is the length of the pheromone vector.
Then, Eq. (28) is given to determine which ID of an element will

be selected.

Eles ¼ k; r4 �
Xk
i¼0

PðiÞ (28)

where r4 is a random number that ranges from 0 to 1, k and i is the
ID of the element of a WS.

Eq. (28) has the same meaning of Eq. (26), namely, calculating
the sum of PðiÞ with i from 0 to k; once the sum is greater than r4,
the k is selected.

To achieve optimization globally, the ants should have the
chance to select the ID of workingstep and ID of an element of aWS
randomly. Therefore, Eq. (29) and Eq. (31) are used to this purpose.

NumWS ¼
8<
: Eq:ð17Þ; if r2 � Q

select randomly; else
(29)

Eles ¼
8<
: Eq:ð19Þ; if r3 � Q

0

select randomly; else
(30)

6.4. Evaluation

In section 4.3, a machining scheme is generated. Next, this
machining scheme should be evaluated. For the evaluation, the
energy consumption model is used to calculate the energy effi-
ciency of machining a part. Moreover, in each iteration, the evalu-
ation of the current machining scheme will be compared with that
of the previous machining scheme, and the better one will be used
to achieve pheromone update.

6.5. Pheromone evaporation and update

During the iteration process, the pheromone will finish evapo-
ration and update. Eq. (31) can be used to express the evaporation.

te ) ð1�gÞ � te (31)

where g is the coefficient that ranges from 0 to 1.
Eq. (31) shows that the density of pheromone will decrease

gradually. Meanwhile, the update will increase the density with the
best generated machining scheme in one iteration. This process
refers to Eq. (32).

te ) te þ 1
SEC

(32)

6.6. Tabu table

The tabu table covers the following functions:

� It meets the constraints, especially the constraints of the
workingstep sequence.

� It meets the condition set by users.
� It stores the selected workingstep and workingstep sequence to
avoid repetitive selection.



Fig. 6. Local multiple iteration.

Table 1
Machine tool information.

MT Type Machining capability

Roughness Dimension
error

Flatness
tolerance

Position
tolerance

ACE-50 Milling
machine

3.2e6.3 ±0.01 0.05 0.05
DMU-

70
1.6e3.2 ±0.005 0.01 0.01

Table 2
Cutting tool information.

CT Type Material Diameter CT Type Material Diameter

CT1 EndMill HSS 8 CT9 FaceMill Carbide 63
CT2 9 CT10 80
CT3 10 CT11 T-slot HSS 30
CT4 18 CT12 32
CT5 Carbide 10 CT13 Drill HSS 8
CT6 18 CT14 10
CT7 FaceMill HSS 10 CT15 Carbide 10
CT8 Carbide 50 CT16 HSS 15

Table 3
Power of BC and MTFC.

MT BC (Unit: W) WRC (Unit: W) WURC (Unit: J)

Light Cutting Fluid Chip removal Tool changer

ACE-50 800 40 143 None 249
DMU-70 1740 60 162 235 615.5
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6.7. An improved ACO

From the traditional ACO described above, there are some
shortcomings: when determining a workingstep, there exist
different dimensions of contributing factors to energy consump-
tion, so that the lower dimension will result in earlier convergence
and the higher dimensionwill do the opposite. This condition leads
Fig. 7. Experim
to the cost of the final iteration count. To overcome the drawbacks,
this paper improves ACO with an approach called local multiple
iteration.

As shown in Fig. 6, the improvement approach can be described
as follows: in one iteration, an ant will repeat its action in the
higher dimension of factors, leading to generation of more than one
machining scheme. Then, these machining schemes are evaluated
to select the best one to achieve the pheromone update. During this
process, the following two principles can be referred to:

� The type of factor that is iterated multiply should not be too
much, as otherwise the performance may deteriorate;

� This approach is to decrease the dimension difference of factors,
so the time of the higher factor and lower one can be used as the
iterated count.

7. Case study and discussions

This section will verify the presented approach using a case
study. Firstly, power data acquirement experiment is performed to
obtain the key coefficients of calculating energy consumption
during machining operations. Then, the effectiveness of the
improved ACO algorithm is verified by determining an energy-
efficient machining scheme for a typical part. The performance of
the traditional one and the improved one will be compared. Finally,
the accuracy of energy consumption calculation method is given to
indicate the effectiveness of the determined machining scheme.

7.1. Power data acquirement experiment

Two machine tools and sixteen cutting tools are selected as the
experiment objects (the related information refers to Table 1 and
Table 2). The material to bemachined is C45 steel. The powermeter
is CW240. Fig. 7 shows the experimental platform used in this case
study.

Table 3, Table 4 and Table 5 present the power of BC and MTFC,
ent scene.



Table 4
Power coefficient of spindle and feed axis.

MT Sp x FA y FA z FA

k b k1 x b1 x k1 y b1 y k1 zþ b1 zþ k1 zþ b1 z�

ACE-50 0.124 414.9 0.027 1.4 0.028 1.2 0.121 10.2 �0.013 �5.3
DMU-70 0.337 3.3 0.031 1.9 0.029 1.8 0.182 20.3 �0.022 �9.6

Table 5
Cutting power coefficient.

M CT MT Coefficient

CM x y n u

45# Steel CT2 ACE-50 2.991 0.911 0.744 0.857 0.925
CT4 2.832 0.926 0.731 0.821 0.900
CT6 3.162 0.899 0.727 0.907 0.946
CT8 5.889 0.883 0.710 0.889 0.921
CT10 7.552 0.864 0.724 0.921 0.907
CT14 32.323 e 0.843 0.973 e

CT16 31.562 e 0.825 0.933 e

CT3 DMU-70 3.659 0.985 0.706 0.917 0.937
CT5 3.963 1.001 0.697 0.965 0.979
CT7 4.668 1.001 0.710 0.976 0.959
CT9 7.668 0.908 0.720 0.955 0.939
CT12 5.964 1.039 0.746 1.006 1.001
CT15 40.871 e 0.794 0.963 e

H. Wang et al. / Journal of Cleaner Production 232 (2019) 1121e1133 1129
power coefficient of spindle and feed axis and cutting power co-
efficient, respectively. The detailed procedures can be found in the
literature (Wang et al., 2018).
7.2. Verification

The part shown in Fig. 8 is used to verify the proposed model
with the improved ACO solution. The solution space of ACO is ob-
tained using the approach from (Wang et al., 2018), as shown in
Table 6, Table 7 and Table 8.

Use Java programming language to implement the TACO and
IACO, and then execute the two algorithms under the generated
solution space before. The iteration process of TACO and IACO refers
to Fig. 9: the two algorithms can converge when SEC is about 4.0 J/
mm3, and this shows that both of them can achieve the optimiza-
tion. Besides, IACO needs less iteration counts to achieve conver-
gence than TACO because of the introduce of local multiple
iteration. But for IACO, the content of each iteration has been
improved compared with TACO, so that each iteration time of the
former may also increase. Thus, only checking iteration count is not
enough to verify the effectiveness of IACO, and it is necessary to
compare the time of two algorithms.

Fig. 10 gives the profile of each iteration time for IACO and TACO,
and it shows that IACO will cost more time than TACO in each
iteration. Referring to the data in Figs. 9 and 10, the convergence
time of the two algorithms is shown in Table 9.

From the above table, the time for executing IACO is less than
the time spent on executing TACO, and the efficiency is improved
by approximately 25%. Regarding the time efficiency, IACO out-
performs TACO in this case.

The generatedmachining scheme refers toTable 10, Table 11 and
Table 12. It is necessary to obtain the error of calculated energy
consumption and actual energy consumption.

Fig. 11 shows the machined part. Through power meter CW240,
the actual energy consumption of machining the part is obtained.
Therefore, the energy consumption model error can be calculated,
which refers to Table 13.

According to Table 13, the error is approximately 7.22%. The
result indicates that the proposed energy consumption model is
able to calculate the required energy of a part. The next is to verify
the quality, which includes geometric tolerancing and roughness.
The checking process is shown in Fig. 12 and Fig. 13, and the result
can be found in Table 14.

Table 14 displays the required value (RV) [um] and themeasured
value (MV) [um] of machining quality, and it implies that the part
quality can meet the given requirements.
7.3. Discussion

The generated MS is further analysed and discussed, covering
the workingstep and sequence of workingstep.

Table 10 gives the generated workingstep for milling, including
the machine tool, cutting tool, strategy and parameters.

� In this table, except for WSp1 f2, all workingsteps are imple-
mented in ACE-V50, and WSp1 f2 is finished in DMU-70V. The
result implies that ACE-V50 requires less energy consumption
compared with DMU-70V during machining. But the require-
ment of WSp1 f2 is very stringent, and ACE-V50 cannot meet
this. Hence, DMU-70V is selected to achieve the workingstep
even though its energy demand is high.

� Regarding the cutting tool, the larger the diameter is, the higher
its probability of selection will be. A cutting tool with large
diameter will increase the range of parameters. Accordingly, a
bigger material removal rate is easy to obtain, which will reduce
the machining energy consumption.

� For strategies, CP is often selected during machining of a planar
face or pocket. This is because this strategy produces less air
cutting feed motion compared with other strategies.

� For parameters include fz, vM, aw and ap, according to Table 10,
the values of fz, aw and ap are near the maximum, but the value
of vM is intermediate. Regarding to vM, its value is limited by tool
life.

Table 12 gives the generatedworkingstep sequence and it can be
found that the workingstep is sequenced on the basis of the least
time of changing cutting tools to reduce the energy demand of the
preparation state. This sequence limits the machine of planar face
artificially, where WSp1 ris first and followed by WSp1 f1. The pur-
pose is to provide a preliminary plane for manufacturing subse-
quent features. In addition, the location of WSp1 f2 is not limited,
and the improved ACO selects the workingstep as the last one. The
reasons are: WSp1 f2 needs another machine tool to implement,
leading to the operation of changing machine tool. If WSp1 f2 is
executed before other workingstep, this sequence will produce two
operations of changing machining tool. Therefore, WSp1 f2 is the
final workingstep.

Moreover, compared with (Wang et al., 2018), this paper ach-
ieves the following improvement:

� The energy consumption model considers a holistic process of
the working piece.



Fig. 8. Test part of verifying improved ACO.

Table 6
Solution space (part 1 - machining resource, operation and strategy).

NO. N_MF MF S Op Tool MT

1 F1 T-Slot CM BSRM(Up) CT6 ACE-V50,
DMU-70V2 CT4

3 BSRM(Down) CT12
4 F2 Planar face BD UD CP PRM CT8
5 CT9
6 CT10
7 BD UD CP PSFM CT8
8 CT9
9 CT10
10 BD UD CP PFM CT10 DMU-70V
11 F3 Slot CM BSRM CT3 ACE-V50,

DMU-70V12 CT5
13 F10 Slot CM BSRM CT3
14 CT5
15 F8 Step BD UD CP BSRM Endmills in Table 2
16 F14 Pocket BD_C C_BD BSRM
17 F4, F9, F6,

F7, F13, F11
Round hole DR DO CT14

18 CT15
19 F5, F12 Compound feature CP BSRM(Up) CT2
20 CT3
21 CT5
22 DR DO (Down) CT16
23 Datum A, Datum B Datum BD UD CP PSFM SSFM Endmills or facemills in Table 2

Table 7
Solution space (part 2 - parameter range of milling).

Num max_fz min_fz max_aw min_aw max_ap min_ap max_v min_v

1 0.150 0.002 18 2 9 0.2 180 50
3 0.035 0.002 32 32 10 10 80 30
5 0.160 0.002 63 5 30 2 500 120
7 0.120 0.002 50 5 25 2 450 100
9 0.120 0.004 80 10 35 5 650 150
11 0.070 0.004 10 0.5 4 0.1 110 45
13 0.070 0.004 10 0.5 6 0.1 110 45
19 0.065 0.003 3.5 0.1 9 0.5 105 55
21 0.075 0.005 5 0.1 10 0.5 120 65
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Table 8
Solution space (part 3 - parameter range of drilling).

Num max_fr min_fr max_v min_v

17 0.3 0.15 110 60
18 0.28 0.12 105 58
22 0.32 0.18 120 70

Fig. 9. Iteration process of TACO and IACO.

Fig. 10. Time of each iteration.

Table 9
Time of executing and TACO (Unit: ms).

Time of executing IACO Time of executing TACO

5286.94 7082.49

Table 10
Generated workingstep for milling.

MF WS S MT T P

f z vM aw ap

F1 WSts1 r1 CM ACE-V50 CT4 0.115 56.9 18 8.1
WSts1 r2 CT12 0.032 45.7 32 10

F2 WSp1 r CP CT10 0.150 102.4 50 15
WSp1 f1 CT10 0.110 132.4 50 4
WSp1 f2 DMU-70V CT10 0.080 173.1 35 1

F3 WSs1 r CM ACE-V50 CT3 0.069 61.9 10 5.7
F8 WSstep1 r CP CT6 0.101 62.4 18 8.5
F10 WSs2 r CM CT3 0.070 62.2 10 5.4
F14 WSpocket1 r CP CT6 0.069 69.6 20 3.8
F5 WSh2 r2 CT3 0.074 75.1 4.3 9.2
F12 WSh7 r2 CT3 0.073 73.1 4.6 9.7
Datum A WSdatumA CP ACE-V50 CT6 0.105 86.7 3 15.8
Datum B WSdatumB CP ACE-V50 CT6 0.103 87.4 3 15.6

Table 11
Generated workingstep for drilling.

MF WS S MT T P

f r vD

F4 WSh1 r CM ACE-V50 CT14 0.286 74.24
F5 WSh2 r1 DR CT16 0.318 73.11
F6 WSh3 r CT14 0.279 75.28
F7 WSh4 r CT14 0.281 75.02
F9 WSh5 r CT14 0.271 76.32
F11 WSh6 r CT14 0.275 75.91
F12 WSh7 r1 CT16 0.311 73.80
F13 WSh8 r CT14 0.29 73.61

Table 12
Generated workingstep sequence.

Workingstep sequence

WSp1 r -> WSp1 f1 -> WSdatumA -> WSdatumB -> WSh9 r -> WSh1 r -> WSh3 r ->
WSh6 r -> WSh5 r -> WSh4 r -> WSh7 r1 -> WSh2 r1 -> WSh7 r2 -> WSh2 r2 ->
WSs1 r ->WSs2 r ->WSts1 r1 ->WSts1 r2 ->WSpocket1 r ->WSstep1 r ->WSp1 f2

Fig. 11. Test part that has been machined.

Table 13
Energy consumption model error.

CEC(KJ) MEC(KJ) Error

4712.21 4372.10 7.22%

Fig. 12. Checking position tolerancing.
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Fig. 13. Checking roughness.

Table 14
Result of checking quality.

Roughness Flatness Position Circularity

RV MV RV MV RV MV RV MV
1.6 1.11 0.1 0.81 0.1 0.92 0.2 0.17
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� Based on the established energy consumption model, ACO is
employed to generate BMS for a complete part, and its perfor-
mance is enhanced by local multiple iteration.

8. Conclusions

This paper presents an optimization model considering energy-
efficient machining for prismatic parts via STEP-NC and its solution
with an improved ACO algorithm. Workingstep in STEP-NC is
adopted to achieve the calculation of energy consumption.
Accordingly, the optimization model is then built with the opti-
mization objective, optimization variable and constraints. An
improved ACO algorithm is applied to solve the proposed model.
The proposed optimized approach is verified by a part with typical
manufacturing features. The result shows that:

� The calculation method of energy consumption is effective to
calculate the energy demand of the machining of an entire part.

� The optimized solution can provide a comprehensive machining
scheme for low energy demand, which meets the given re-
quirements simultaneously.

� The ideal of local multiple iteration in ACO can improve the
efficiency of solving the optimization problem.

The main advantages of this work can be summarized as fol-
lows: The use of STEP-NC makes the energy consumption calcula-
tion obtain the machining energy of a whole part from a holistic
perspective. Followed by the energy calculation approach, the
optimization model could optimize energy consumption by
adjusting machining resources, parameters, strategies, operations,
etc. For the above reviewed energy optimization method, only one
or portions of contributing factors to energy consumption (e.g.,
parameters) are considered. The proposed method of this paper
could overcome this drawback.

This work aims at prismatic parts with 2.5D manufacturing
features to present the energy optimization approach. But there are
increasingly more products with complex surfaces in the market,
where the energy consumption characteristics is also a challenge.
Therefore, the energy consumption model of complex surfaces and
its optimization method will be performed in our future work. In
addition, this paper mainly focuses on production phase of
sustainable product lifecycle management to implement energy-
efficient machining based on STEP-NC. The proposed framework
can be extended to the whole process of sustainable product life-
cycle management. And this is also the next research point in the
future.
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Nomenclature

Epart energy consumption of machining a part [J]
Ews;i ith workingstep energy [J]
Ep energy demand of the preparation state [J]
Ea energy demand of the approaching state [J]
El energy demand of the leaving state [J]
Em energy demand of the machining state [J]
Eb;ws nr energy consumption of BC and WURC [J]
Em r energy consumption of rapid traverse in the machining

state [J]
Em f feed axis energy consumption in the machining state [J]
Em c cutting energy consumption in the machining state [J]
ttotal total time of machining a part [s]
tp;i preparation state time of the ith workingstep [s]
tl;i leaving state time of the ith workingstep [s]
ta;i approaching state time of the ith workingstep [s]
tm;i machining state time of the ith workingstep [s]
tl leaving state time of a workingstep [s]
ta approaching state time of a workingstep [s]
tm machining state time of a workingstep [s]
Pws;nr power of WURC [W]
Pb power of BC [W]
Pa;l power of the feed axis in the approaching state or

leaving state [W]
Pm c cutting power [W]
Pm f feed axis power [W]
PM milling power [W]
PD drilling power [W]
vr velocity of rapid traverse [mm/min]
fr feed per revolution [mm/r]
vM cutting velocity for milling [m/min]
vD cutting velocity for drilling [m/min]
ap axial cutting depth [mm]
fz feed per tooth [mm/z]
aw radial cutting depth [mm]
T tool life [h]
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Tl expected tool life [h]
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