
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

A Novel Supervised Clustering Algorithm for
Transportation System Applications

Mohammed H. Almannaa , Mohammed Elhenawy, and Hesham A. Rakha , Senior Member, IEEE

Abstract— This paper proposes a novel supervised clustering
algorithm to analyze large datasets. The proposed clustering
algorithm models the problem as a matching problem between
two disjoint sets of agents, namely, centroids and data points.
This novel view of the clustering problem allows the proposed
algorithm to be multi-objective, where each agent may have
its own objective function. The proposed algorithm is used to
maximize the purity and similarity in each cluster simultaneously.
Our algorithm shows promising performance when tested using
two different transportation datasets. The first dataset includes
speed measurements along a section of Interstate 64 in the
state of Virginia, while the second dataset includes the bike
station status of a bike sharing system (BSS) in the San
Francisco Bay Area. We clustered each dataset separately to
examine how traffic and bike patterns change within clusters
and then determined when and where the system would be
congested or imbalanced, respectively. Using a spatial analysis
of these congestion states or imbalance points, we propose
potential solutions for decision makers and agencies to improve
the operations of I-64 and the BSS. We demonstrate that the
proposed algorithm produces better results than classical k-
means clustering algorithms when applied to our datasets with
respect to a time event. The contributions of our paper are:
1) we developed a multi-objective clustering algorithm; 2) the
algorithm is scalable (polynomial order), fast, and simple; and
3) the algorithm simultaneously identifies a stable number of
clusters and clusters the data.

Index Terms— Supervised clustering, high dimensional datasets
and traffic operations, bike-sharing systems, urban computing,
classification.

I. INTRODUCTION

W ITH the growth of new technologies, smart cities and
urban areas are adapting advanced devices to control
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and monitor transportation networks and thus provide better
service to the public and private sectors. These devices col-
lect data through many sensors in the city’s infrastructure.
Agencies and researchers exploring the massive amounts of
collected data often find it challenging to draw meaningful
conclusions due the sheer size of the datasets. One way to
deal with such data is to use clustering approaches.

In the transportation field, operating agencies (such as
departments of transportation) have been collecting data to
improve the efficiency of the transportation network and
provide a better service for all transportation modes. Clustering
the travel times or speeds of transportation modes could
help operating agencies to better manage the transportation
network. In particular, the collected data could be reduced to
find the cluster centroids (i.e., the means of the clusters) that
represent the entire data with respect to a time event such
as time of day, day of month, and month of the year. This
could help operating agencies answer several questions related
to traffic operations such as, “Can we discriminate between
recurrent congestion and outliers?” and “Can we identify how
many time periods we need to plan for in terms of resource
and congestion management?”

Clustering is an unsupervised learning technique that iden-
tifies the underlying structure of unlabeled data. The goal of
clustering is to identify intrinsic groupings in an unlabeled
dataset. Meaningful clustering depends on the clustering crite-
rion used by the clustering algorithm. Accordingly, it is crucial
to find the best criterion so that the clustering results will suit
the needs of researchers a{Roberts, 1995 #46}nd agencies.

Clustering algorithms are used in many disciplines, such
as computer vision to segment images [1], marketing to
find similar customer behaviors [2], the insurance industry to
identify fraud [3], [4], and in transportation to identify similar
patterns in various modes of transport [5]–[7]. Clustering
helps develop a deep understanding of similarity in data
patterns. For example, traffic engineers can use clustering
algorithms to identify similar traffic patterns on a highway
during the day, week, or month, and then make use of the
clustered patterns in the management of the system. Clustering
has also been used to analyze bike sharing system (BSS)
data [8], [9]. Some researchers have used a statistical model to
predict bike availability at each station, while others have used
clustering algorithms, such as traditional and non-traditional
clustering [10]. Traditional clustering approaches, such as the
k-median, DBSCAN, and fuzzy algorithms are good tools
for clustering data, but give narrow results, as clusters are
based on only one factor (i.e., distance or similarity). These
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clustering algorithms are unsupervised clustering that divides
the observational points into clusters based on an objective
function without considering natural labels in the dataset, such
as the time of events (i.e., month of year, day of week, or time
of day).

Recently, supervised clustering (non-traditional) approaches
have been widely embraced as powerful tools that can take
advantage of other attributes (labels) in the dataset [11]–[13].
Unlike traditional clustering techniques, the supervised tech-
nique clusters labeled data. Supervised algorithms use data
labels to represent natural data groupings using the mini-
mum possible number of clusters. Only the labels are used
as an objective function, and distance and similarity are
ignored [11], [14].

In this paper, we propose a new supervised clustering
algorithm based on the college admission (CA) game theory
algorithm [15] to maximize the reciprocal of the within-cluster
sum of distances (similarity) and the cluster purity simulta-
neously. The proposed algorithm was used to answer sev-
eral transportation-related research questions, such as which
days or months exhibit similar patterns.

To evaluate the proposed algorithm, we tested it twice
using two different transportation datasets. The first dataset
is the station status of a BSS in the San Francisco Bay Area,
which consists of bicycle count data. The second dataset is
the speed data and instantaneous travel time collected along
I-64 in Virginia. These data are real-valued data. The proposed
algorithm successfully found meaningful underlying structures
in each dataset when using natural data labeling (i.e., time of
day, day of week, month of year [only for the I-64 dataset]).
We then studied how bike or traffic patterns changed within
each cluster, and addressed when and where the system would
be imbalanced or congested.

II. PROBLEM STATEMENT

Operating agencies and transportation researchers have
devoted significant attention to clustering approaches with
the goal of clustering large datasets that contain traffic
patterns (i.e., travel times or speeds) in transportation net-
works [5]–[7], [16]. They have adopted classical approaches
such as k-means, Ward’s hierarchical clustering algorithms,
and density-based clustering. The purpose of using these
clustering approaches is to (1) cluster traffic patterns with
respect to a time event so that operators can have a temporal
plan for operations planning purposes, and (2) discriminate
between recurrent congestion and outliers. However, the afore-
mentioned studies used classical clustering approaches that
do not take advantage of natural time event labels (such
as time of day, day of week, etc.). As for unsupervised
clustering algorithms, they implicitly assume that clustering
the data points based on similarity or distance leads to the
ground truth of the clustering, which is not necessarily true.
These algorithms cannot consider both similarity/distance and
other domain knowledge information in the objective function.
Consequently, clustering solutions do not help operators map
the clustering solution to the network demand with regard to
time events [17], [18].

In this research, we present a supervised clustering algo-
rithm that attempts to find similar months, days, or hours
within a day that have similar traffic patterns. We sacrifice
the exact centroids of traffic patterns on account of having
similar time events. The proposed algorithm is scalable (poly-
nomial order), fast, and ready for practitioners. It makes no
assumptions about the dataset and requires only one para-
meter, namely the number of clusters, which can be found
using the consensus clustering (CC) technique (explained in
section VII). It compromises between distance and purity in
identifying clusters within the data.

III. RELATED WORK

Clustering algorithms can be categorized into three main
approaches: unsupervised (i.e., traditional), supervised, and
semi-supervised. Unsupervised clustering algorithms assume
the data are unlabeled (i.e., the relationship is unknown
between the data points) and thus try to cluster them according
to similarity or distance [19]. They implicitly assume that
clustering the data points by distance or similarity leads to
the ground truth of the clustering. The supervised clustering
approach deals with labeled data (the relationship is known).
There are a variety of supervised clustering algorithms. Some
of these algorithms attempt to cluster data according to the
labels (i.e., purity) and number of clusters [11]. Another
algorithm uses the labels to learn the best similarity measure
that produces the desirable clustering solution [20]. The semi-
supervised clustering algorithms assume that part of the data
is labeled and the rest is not. The known labels can be used
to form constraints between pairs of data points in the form
of must-link and cannot-link [21], [22] (which will not be
covered in this paper as it is very different).

Two examples of unsupervised clustering algorithms are
the well-known k-means and hierarchical clustering algo-
rithms [23], [24]. The k-means simply partitions the data
points into clusters, minimizing the distortion of each clus-
ter [23]. The value of the model order (k) is set by the
user based on personal knowledge or is chosen to maximize
some criteria such as the clustering stability. At each iteration,
the k-means algorithm assigns all the observation points to the
clusters and updates the centroid of each cluster. Eventually,
the k-means algorithm converges when the centroids stop
moving.

The hierarchical clustering algorithm is a tree-based struc-
ture. It does not require the modeler to specify k apriori.
Moreover, the dendrogram can be utilized to select the opti-
mum number of clusters [24]. At every level of the tree-based
structure, similar clusters are merged into one cluster. The key
to this clustering algorithm is the criteria determining when
and which two clusters can be merged. Different approaches
are used, such as single linkage and complete linkage. The
only difference between this algorithm and the k-means is
the use of a similarity measure between clusters besides data
points, but both use only similarity or the distance measure.
More advanced unsupervised clustering algorithms have been
proposed such as kernel k-means [25], kernel self-organizing
maps [26], and kernel fuzzy c-means [27]. These algorithms
attempt to cluster the data points by transforming them into
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a higher dimensional feature space and then carry out the
original clustering algorithm, which is based on the similar-
ity or distance without considering other domain knowledge
information.

Supervised clustering algorithms go a step further and
endeavor to improve the unsupervised clustering algorithms
by incorporating purity (i.e., labels) in the objective func-
tion [11], [14]. Purity means using labeled data to identify
clusters that have a high probability density with respect to
a single class. Eick et al. [11] proposed four different super-
vised clustering algorithms with the same objective function
containing a linear combination of impurity and number of
clusters. The aim is to minimize impurity and the number
of clusters. However, these algorithms do not consider the
similarity or distance measure. Spinelli [14] proposed a super-
vised clustering algorithm called Box Clustering that clusters
data points into specific convex polygons with a fixed cluster
impurity. Similar to Eick et al.’s [11] work, similarity was
not incorporated in the objective function. Another approach
to supervised clustering algorithms was given by Awasthi and
Zadeh [28]. They assumed there is access for a teacher that can
help improve the purity of the clusters [28]. Yet, this approach
assumes that the teacher knows the ground truth of the data,
which is not always the case in many datasets (i.e., assumes
we have two datasets: training and test).

Recently, supervised clustering algorithms have
been enhanced greatly by using a multi-objective
approach [29]–[33]. This approach aims to optimize
several clustering criteria such as similarity or compactness
of the clusters and connectivity of the clusters. The goal is to
compromise between these objective functions and produce a
trade-off solution. This has led them to be widely introduced
in data mining as a powerful way to effectively classify
labeled datasets. Law et al. [32] proposed a multi-objective
approach in a two-step process. In the first step, they used
different clustering algorithms with different goals, and in
the second step they integrated the output into a single
partition. The labels of the datasets were only used for
evaluating the clustering results but not in the objective
function. Handl and Knowles [33] proposed a multi-objective
evolutionary algorithm, maximizing the compactness and
connectivity of the clusters simultaneously. This approach
(i.e., the evolution optimization algorithm) gives many
possible solutions (so called population approach) at each
iteration, and thus the authors used a Pareto-based approach
to select the non-dominate solutions that were created by the
proposed algorithm.

None of the previous approaches used both purity as well
as similarity in the objective function. Only a few supervised
clustering algorithms had both purity (i.e., background infor-
mation) and distance or similarity in the objective function,
yet they suffer from complexity and having many assumptions
and parameters, making them hard to interpret [24], [25].
For instance, Marcu [29] used the Dirichlet process prior to
using a Bayesian approach to incorporate both similarity and
purity. This approach is considered a generative model, mean-
ing it estimates the joint probability distribution of the data
between the observed data and the corresponding labels. This

algorithm suffers from several drawbacks: (1) it is complex—
one has to define the distribution of the data (which is usually
unknown) and also has to use the Markov Chain Monte
Carlo-based (MCMC) sampling to avoid intractability; (2)
it cannot define a good distribution for the data due to its
generative nature; and (3) it cannot deal with a large dataset,
and thus the scalability is an issue. Forestier et al. [30]
proposed a collaborative clustering algorithm that incorporates
three components: cluster quality, class label, and link-based
constraints. This approach selects a subset of the dataset as
background knowledge randomly, causing it to be less stable.
It also requires an expert who can tell which subset of the
dataset to use as background knowledge.

In this paper, we propose a new supervised clustering
algorithm with the ability to increase both cluster purity and
member similarity simultaneously. The proposed algorithm is
scalable, quick, and simple, considering only one parameter—
the number of clusters. It compromises between distance and
purity in identifying clusters within the data. It showed promis-
ing performance when applied to the I-64 and BSS datasets.
It clustered the travel times and speeds of I-64 and bike
availability with respect to a time event, giving operators more
practical clustering results for operation planning purposes.

IV. THE COLLEGE ADMISSION ALGORITHM

In 1962, Gale and Shapley [15] proposed the deferred
acceptance algorithm as a solution to the stable marriage
problem, in which an equal number of men and women are
matched such that no player has an incentive to leave his/her
matched partner. The stable marriage problem involves one-to-
one matching. The college admission (CA) problem is another
version of the stable marriage problem, though in this case the
algorithm matches many to one. In the CA problem, there are
a number of colleges and applicants that need to be matched.
Each college has a ranked list of students they prefer, and
each student has a ranked list of colleges they prefer. The size
of the ranked list of students depends on the capacity of the
college. The best-qualified candidates are offered admission
first, followed by the lesser-qualified candidates.

This problem includes the uncertainty of the colleges not
knowing which other colleges the students have applied to, and
thus not knowing the ranked list of each student, or whether
the student has been offered admission by other colleges.
Consequently, the colleges are in a blind position with very
little information, which prevents them from making the
appropriate decision. This can result in an unbalanced situation
in which some students are offered many admissions, while
others are not offered any at all. Gale and Shapley presented
a stable solution where each student would be accepted to the
best possible college with regard to his or her list, and each
college would have the best possible qualified student.

The CA algorithm finds a stable matching solution through
a series of iterations. At each iteration, the colleges offer
admission to the best-qualified students, and the students have
to reply back by either accepting the offer or not. At the end
of the iteration, some students have an admission and others
do not. Colleges then update their list accordingly in the next
iteration and offer admission to students who did not receive
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an offer in the previous iterations, regardless of whether they
have an admission or not. The students’ lists do not change, but
students can change their decision at each iteration if they are
offered admission to a better college. The algorithm continues
iterating until it reaches a stable matching solution.

V. THE PROPOSED ALGORITHM

Knowing some similarities in the dataset is a great advan-
tage to clustering algorithms. It can efficiently and effectively
advance the outcome of the algorithm and create meaningful
clusters. Accordingly, we developed a novel supervised clus-
tering algorithm that is based on the CA algorithm [15]. The
proposed algorithm takes advantage of the natural labeling
of the data (i.e., day of week, time of day) and models
the clustering problem as a cooperative game. In this game,
two disjointed sets of players join the game to identify a
stable match. The first player’s set consists of the centroids
(clusters), and the second player’s set consists of the data
examples (data points). Each centroid orders the data points in
its preference list based on the distance from the centroid to the
data point. Alternatively, each data point orders the centroids in
its preference list based on the purity. For example, a data point
that has label h will give preference to the centroid that has
the proportion of members with label h. In other words, a data
point gives higher preference to centroids when the majority
of its members have the same label as its own label. Through
a series of iterations, the proposed algorithm tries to match
between the clusters, which want to minimize distances, and
data points, which want to maximize purity, until it converges.
It should be noted that cluster purity is the number of objects
of the largest class in this cluster divided by the cardinality of
the cluster, as presented in Eq. (1). The similarity measure is
computed using Eq. (2). The algorithm terminates when the
stopping criteria of Eq. (3) are met.
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where t is the iteration number, ni is the number of objects
in cluster i (cardinality of cluster i ), i ∈ {1, . . . , K }, nm

i is the
number of the class (m) in cluster i , m ∈ {1, . . . , M}, d is
the distance between x j and ci , ci is the centroid of cluster
i , i ∈ {1, . . . , K }, j ∈ {1, . . . , N}, N is the number of data
points, x j is the data vector j , α is a weighting factor (0.5 in
our case), and ε is the stopping criteria threshold (0.0005 in
our case).

We observe that one advantage of the proposed algorithm
is that we do not need to write the entire objective function
of the algorithm. Thus, we remove the normalization prob-
lem. However to stop the algorithm we normalize the purity

difference by simply dividing by the previous purity and do
the same with the similarity.

The following is a description of the proposed algorithm
assuming the model order K is known:

1) Randomly choose K points as the initial centroids ci ,
i ∈ {1, . . . , K }.

2) Form K clusters by assigning all points to the closest
centroid using L1 norm distance where x j is assigned
to the centroid that satisfies min

ci

∥∥x j − ci
∥∥

1.

3) Recompute the centroid of each cluster by computing
the median. The median is computed in each single
dimension.

4) Find the cardinality of each cluster.
5) Compute the within-clusters class distribution matrix P.
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7) Each centroid ci creates its preference list of points
x j∀ j ∈ {1, . . . , N} based on

∥∥x j − ci
∥∥

1 =∑D
d=1

∥∥xd j − cdi
∥∥, where D is the dimension of the data

vector x j .
8) Each point creates its preference list based on the P

matrix. For example a point from class m will create its
preference list based on column m of the P matrix.

9) Find the best match using the CA algorithm.
10) Recompute the centroids and the P matrix based on the

outcome of CA.
11) Evaluate the stopping criteria using Eq. 3.
12) While the stopping criteria are not satisfied, repeat

steps 7–12.

To illustrate this algorithm, let us assume we have N data
points and want to group them into three clusters as shown
in Fig.1. The data points’ labels are known. These labels could
be any observed labels, such as the day of the week (M = 7).
Moreover, we assume that the true number of clusters is three.
The question we want to answer is how to partition the N data
points such that similar data points in terms of distance and
true labels are grouped together. By effectively partitioning the
N data points, we can answer questions such as which days
of the week have similar bike availability across the network.

In the first step, the proposed algorithm first randomly
chooses three points as centroids for the three clusters. Then,
it will partition the data points based on distance to get an
estimate of the cardinality of each cluster and the P matrix.
After that, each data point builds its preference list and each
centroid builds its preference list, as shown in Fig. 1.

In the second step, the proposed algorithm, through a series
of iterations, will try to find matches between clusters and data
points and provide a stable match using the CA algorithm.
At the end of this step, all points should be matched with one
of the three clusters.

After successfully matching the point with clusters, the cen-
troid and P matrix of the three clusters will be recalculated.
The algorithm will repeat the entire process of building new
preference lists, matching, and calculating new centroids and
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Fig. 1. CA based clustering.

Fig. 2. Virginia study site (I-64) (source: Google Maps).

the P matrix. The algorithm will stop when there is no
significant improvement in the purity and similarity.

VI. DATASETS

To evaluate the proposed algorithm, we used two different
datasets for two different transportation modes: a dataset
containing the spatiotemporal traffic speed matrices collected
on I-64 and a dataset containing station status from a BSS
in the San Francisco Bay area. The following two subsection
will briefly explain each dataset.

A. I-64 Speed and Instantaneous Travel Time Data

The selected I-64 eastbound study site was located between
Hampton and Williamsburg in Virginia as shown in Fig. 2.
There are 30 segments along the selected 26-mile stretch of
freeway. The number of lanes in the selected stretch ranges
from two to six, and the speed limit varies from 55 to 65 mph.
This is the major commuting corridor between Richmond and
Virginia Beach. INRIX probe data from 2013–2016 were used
in this research effort, and data reduction was conducted to
extract the daily traffic speed matrices. One-minute average
speeds (or travel times) are available in the raw data for each
roadway segment. Initially, the daily speed data were sorted
by time and location from the raw data into a two-dimensional
(spatiotemporal) matrix. In order to reduce the stochastic noise
and measurement error, the speed matrices were aggregated by
5-minute intervals. The missing data in the aggregated speed
matrices were estimated using the moving average for a 3 × 3
window.

Fig. 3. Different views of traffic data (a) Visualization of the spatiotemporal
traffic speed matrix where blue areas are congested. (b) Travel time vector
corresponding to the spatiotemporal traffic speed matrix.

Preprocessing the traffic data resulted in the creation of a
spatiotemporal traffic speed matrix for each day, as shown
in Fig. 3(a). In order to cluster speeds, we considered multi-
variate speed vectors as the inputs to the proposed clustering
algorithm. The speed vectors had 30 dimensions, and each
element was the speed at one segment at a certain time (i.e.,
one column of the spatiotemporal traffic speed matrix).

We also reduced the 2-D spatiotemporal traffic speed matrix
into a 1-D vector by computing the instantaneous travel time.
The instantaneous travel time method is simple, and assumes
the segment speed does not change for the entire trip. The
travel time calculation using the instantaneous approach is
shown in equation (4).

instantaneous travel time at t0 =
∑30

i=1

Li

υ t0
i

(4)

where Li is the length of segment i , υ to
i is the speed at

segment i at the departure time t0, and 30 is the total number
of segments.

The travel time vector corresponding to the spatiotemporal
traffic speed matrix is shown in Fig. 3(b). After converting
the spatiotemporal traffic speed matrices to travel time vectors,
the vectors were used as data input to the proposed algorithm.
Each travel time vector had 288 dimensions, and each element
was the instantaneous travel time at a certain time of the day.

B. BSS Station Status in the San Francisco Bay Area

We used docking station data collected from August 2013 to
August 2015 in the San Francisco Bay area. The docking
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station data include station ID, number of bikes available,
number of docks available, and time of recording. The time
data included year, month, day of month, day of week,
hour, and minute at which the docking station data were
recorded. As the station data were documented every minute
for 70 stations in San Francisco over 2 years, it was necessary
to reduce the size of the dataset by sampling station data
once at every quarter-hour instead of once at every 1 minute
and obtaining the exact values without any smoothing process.
This was done to reduce the complexity of the data and take
a global view of bike availability in the entire network every
15 minutes, with the goal of finding the similarity between
these views and clustering them based on this similarity and
recorded time. Similarity refers to bike availability in all
stations, while recorded time refers to day of week and hour
of day. We discarded other time attributes such as year, day
of month, and minute in the analysis as they might not have
a significant impact on bike availability.

During the data processing phase, we found that numerous
stations had recently been added to the network and others
had been terminated, making it necessary to clean the dataset
by eliminating any entries missing docking station data. This
reduced the number of entries from approximately 70,000 to
48,000. Each entry included the availability of bikes at the
70 stations with the associated time (day of week and hour
of day). The availability of bikes represents the coordination
measure for each entry, which is used in the k-median method
to determine the entry closeness measure. This resulted in each
entry constituting 70 dimensions (70 stations).

VII. CLUSTERING RESULTS AND DISCUSSION

In this section, we present the results of the aforementioned
proposed algorithm using the I-64 traffic and BSS station
status datasets. We first demonstrate the technique used to
select the model order, and then we show the results for each
dataset with respect to month of year, day of week, and time
of day.

A. Model Order Selection—Consensus Clustering (CC)

Finding clustering for similar days of the week or similar
hours of the day is not straightforward, as we do not know the
natural grouping for day of week or hour of day (i.e., number
of clusters). In cluster analysis, determining the number of
clusters is called model order selection. In this research effort,
we used a well-known model order selection technique called
consensus clustering to determine the number of clusters [34].
This method looks for the model order that yields the most
stable clustering solution. By stable clustering we mean that,
given the model order, nearly the same paired data points are
grouped together each time the clustering algorithm is run
using different initial centroids (i.e., the centroids we begin the
algorithm with) [35]. The CC method begins by assuming that
the number of clusters is K, and then the dataset is clustered
B times (using different initial centroids). A consensus matrix
(C M) which is an N × N matrix (N is the number of the data
points), is built for this model order K. This matrix identifies
the number of times each two data points are grouped in the

Fig. 4. CDF against consensus index value for each cluster – time of day
using speed vectors from I-64.

Fig. 5. CDF against consensus index value for each cluster – time of day
using BSS station status data.

same cluster divided by B . Then the algorithm increases K by
one and redoes the clustering and the consensus matrix for the
new model order. The algorithm continues doing this until it
has scanned the whole range of model orders required. At this
point, the best model order is chosen visually by drawing the
cumulative distribution function (CDF) of the CM at each
model order against the consensus index ci ndex ∈ [0, 1]
(Eq. 5). The CDF for a particular C M is defined over the
range [0, 1] as follows:

C DF (c_index) =
∑

i< j 1{C M(i, j) ≤ c_index}
N(N − 1)/2

(5)

where 1{…} denotes the indicator function, C M(i, j) denotes
entry (i, j) of the consensus matrix C M , and N is the number
of rows (and columns) of C M .

The outcome of the CDF is that for the correct model order
the elements of the C M will only have zeros and ones. So we
estimate the CDF for different model orders and choose the
cleanest CM which has the flatter CDF. In other words, every
CDF curve represents a different model order (number of
clusters), and the flatter the curve, the more stable the model
order. We applied this algorithm to the two aforementioned
datasets to find the best number of clusters using the proposed
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algorithm. To illustrate, in Fig. 4 and Fig. 5 we give two
examples with regard to the time-of-day label for the two
datasets. As the figure shows, the most stable model order for
time of day for both datasets was determined to be K = 2.
Consequently, we analyzed the data in more detail for K = 2.
Similarly, the optimal number of clusters for day of week was
K = 2 and K = 3 for the I-64 and BSS datasets respectively.
The optimal number of clusters for the month of year was
K = 2 for the I-64 dataset.

B. Instantaneous Travel Time Clustering Results

In order to demonstrate that traditional clustering analysis
cannot provide a satisfactory answer to our aforementioned
research questions, we clustered the I-64 travel time vectors
using the k-means and hierarchical clustering techniques.
Accordingly, we clustered travel time vectors blindly (without
considering the natural label day of week), and then found the
distribution of days of the week inside each cluster in order to
determine which clusters dominated on certain days. However,
the results of the k-means and hierarchical clustering did not
show any obvious grouping of similar days. For example,
in Fig. 6(a), the left panel shows that the first centroid (cluster)
for k-means has members of all days with almost the same
percentage except Fridays. The right panel of Fig. 6(a) shows
that the second centroid (cluster) has members of all days but
has a high percentage of Fridays and Thursdays. The same
thing applies to the hierarchical technique in Fig. 6(b). This
means that these clusters are not homogeneous, and thus we
cannot identify a grouping for a particular day. Therefore, both
the k-means and hierarchical clustering algorithms did not help
us determine which days were similar.

That is due to the fact that k-means and hierarchical
clustering algorithms try to cluster the observations using only
distance as the parameter, and thus neglect the existence of the
natural label. These results make it difficult to come up with
any meaningful conclusion that would be helpful for operating
agencies.

On the other hand, when we used the proposed algorithm
to cluster the same dataset and use the month-of-year label,
the optimal number of clusters is K = 2, and the results are
given in Fig. 7(a). The months are grouped into two clusters:
summer (May, June, July, and August), and the rest of the
months of the year in the other cluster. The associated pattern
of travel time for these two clusters is given in Fig. 7(b). The
results can help the operators distinguish between the travel
times.

The results look more homogeneous clusters with respect
to the chosen time event, thus providing a basis for a better
temporal plan for operations planning purposes with regard to
months of the year. Specifically, the results reveal how vehicle
travel times vary over the months and what the expected travel
time is every hour for each month. The variance in travel time
patterns for the two clusters offers insight into the worst and
best travel time scenarios for every hour and every month.
Generally, the longer travel time is, the more congestion
happens at this particular time. One potential mitigation would
be to use traffic control strategies to prevent the onset of traffic
congestion.

Fig. 6. Distribution of days of the week within each of the two clusters
using the travel time vectors (a) k-means and (b) hierarchical algorithms.

Fig. 7. Month of year clustering results (a) Probability of month being in
one of the two clusters (K = 2). (b) Variance and average travel time of
vehicles in the two clusters at different times.

In order to find the natural grouping for day of week,
we applied the proposed algorithm to the same data and used
day of week as the label. We set K = 2, which is the optimal
number of clusters found using the CC method. Analysis
of the travel time data reveals that the two clusters are (1)
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Fig. 8. Day of week clustering results (a) Probability of day of week being
in one of the two clusters (K = 2). (b) Variance and average travel time of
vehicles in the two clusters at different times.

Wednesday, Thursday and Friday (cluster 1), and (2) the rest
of the weekdays (cluster 2). The results of the clustering are
given in Fig. 8(a) and (b), which shows the probability of a day
of the week being in one of the two clusters and the pattern
of each cluster.

As shown previously, the clustering results look more
homogeneous with respect to the chosen time events, month
of year and day of week, providing the basis for a better
temporal plan for operations planning purposes with regard
to either months or days. Specifically, the results reveal how
the travel times of vehicles vary over months or the days of
the week and what the expected travel time is every hour for
each month and day of the week. The variance in travel time
patterns for the clusters demonstrates when the worst and best
travel time scenarios might happen for every hour, month,
and day of the week. Generally, the longer the travel time
is, the greater the congestion that happens at this particular
time. One potential technique that could be utilized is to use
traffic control strategies to regulate the flow of traffic prior
to the onset of congestion to prevent or delay the anticipated
traffic congestion.

C. Speed Vectors Clustering Results

Unlike the data clustering described in the previous section,
we clustered the speed vectors with respect to the time-of-
day label. After determining the optimal number of clusters

Fig. 9. Time of day clustering result. (a) Probability of hour being in one
of the two clusters (K = 2). (b) Cluster’s centroid and variance of the two
clusters at different sectors at I-64.

(K = 2) using CC, we explored how the data points were
partitioned between the two clusters. The results of the two
clusters are presented in Fig. 9(a), which shows the probability
of each hour being in one of the two clusters. Each cluster is
associated with a pattern for the expected speed of vehicles
for each sector as provided in Fig. 9(b).

The two clusters are dominated by peak and non-peak
hours: (1) 7:00 a.m. to 6:00 p.m. and 8:00 p.m. to 10:00 p.m.
are in the first cluster, and (2) 10:00 p.m. to 6:00 a.m. and
7:00 p.m. are in the second cluster. This pattern differs from
previous research showing that peak hours are from 8:00 a.m.
to 6:00 p.m. and non-peak hours are the rest of the day [36].
Unlike most of the previous research, our research shows that
the hours of 8:00 p.m. to 10:00 p.m. belong to the peak hours.
This would make sense, as people often go home after work,
rest for a few hours or so, then go back out for shopping,
dinner, etc.

It should be noted that the pattern represents the centroid
of the cluster (the median of the cluster) so that the exact
values of the pattern are not shown here. The pattern can serve
as an indication of when the speed will drop at a specific
location (i.e., sector). Two observations can be made from
Fig. 9(b). First, the trends of the two clusters generally follow
each other, which might be linked to the geometric design
of the highway (i.e., number of lanes, grade, etc.). Second,
the variance of the pattern of the second cluster is greater
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Fig. 10. The probability of the day of week being in one of the three clusters
(K = 3).

Fig. 11. The ratio of the available bikes to station capacity for the three
clusters at station in the network.

than the first cluster. That makes sense, as non-peak hours
tend to be less deterministic and have more randomness than
peak hours.

Similar to the month-of-year and day-of-week clustering
results, we can see that the clusters are time homogeneous and
thus can be used by operators to implement traffic operations
plans to manage I-64 temporally and spatially. For instance,
the sections with high variance (e.g., section 9) would be
promising candidates for improvement. One potential improve-
ment is controlling merging and diverging traffic.

D. Bike Station Status Clustering Results

First, we clustered the bike station data using the day-of-
week label, and the optimal number of clusters found using
the CC method was K = 3. The results of the three clusters
are presented in Fig. 10, which shows the probability of each
day being in one of the three clusters. The three clusters
are dominated by specific days: (1) Saturdays and Sundays,
(2) Mondays and Fridays, and (3) finally Tuesday, Wednesday,
and Thursday. This pattern differs from previous research [37]
that showed bike patterns grouped into two clusters (weekend
and weekdays). Our research shows that the weekdays can be
split into groups: (a) Mondays and Fridays, and (b) Tuesdays,
Wednesdays, and Thursdays. This appears to be logical, as the

Fig. 12. Probability of hour being in one of the two clusters (K = 2).

Fig. 13. Available bikes of the two clusters for each station in the network.

beginning and the end of the week are different from the rest
of the weekdays.

Each cluster is associated with a pattern for the availability
of bikes at each station. The patterns of the ratio of the
available bikes to the station capacity for the three clusters
are provided in Fig. 11.

Three observations can be made from Fig. 11. First, the
three patterns of the three clusters generally follow the pattern
of the stations’ capacity, which could be the result of system
operators’ rebalancing efforts. Second, the patterns of the three
clusters show fluctuations in the bike activities; none of the
days of the week has the highest activity for the entire network,
which depends on both spatial and temporal factors. Third,
several stations appear more likely to be empty or full on either
weekdays or weekends. The difference in demand between
the three clusters appears clearly for some stations, but not
others. For example, the bike activities for cluster 1 (Tuesday,
Wednesday, and Thursday) and cluster 3 (Saturday and Sun-
day) are similar for some stations in the network. That can
be seen in stations 58 and 59 (San Francisco Caltrain 2–330
Townsend and San Francisco Caltrain–Townside at 4th). When
taking a closer look at the location of these two stations,
we found that they are located close to the Caltrain station.
Accordingly, the similarity between these two clusters can be
linked to the train timetable.
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Second, we clustered the bike sharing data using the hour-
of-the-day label to find the hours of the day that have similar
patterns. Only the station data at the beginning of each hour
were considered. The optimal number of clusters was found to
be two (K = 2). The analysis of the data reveals that the two
clusters are peak (cluster 2) and non-peak (cluster 1) hours,
confirming previous research. The results of the clustering are
shown in Fig. 12 and Fig. 13, which give the probability of
an hour being in one of the two clusters and the pattern of
each cluster. It can be concluded from Fig. 13 that when the
patterns of the two clusters are lined up, the bike activity in
the peak and non-peak hours is the same.

Generally, both clustering results for day of week and time
of day are time homogeneous, making it possible for operators
of the BSS to manage the bike stations and propose temporal
and spatial plans. The clustering results give them a general
view of the status of stations and clarify where the imbalances
would happen with respect to time of day and day of week,
leading to better monitoring of the system as a whole.

VIII. CONCLUSION

The paper describes the development of a useful tool
for agencies and researchers to cluster similar transportation
patterns with respect to time-based events. A new supervised
clustering algorithm was proposed to benefit from the back-
ground knowledge of the dataset along with similarity. Unlike
other similar supervised clustering algorithms, the proposed
algorithm is scalable given that it involves low computational
times. It takes advantage of the natural labeling of the data
(i.e., day of week, time of day) and models the clustering
problem as a cooperative game and simultaneously clusters
and identifies the stable number of clusters.

The algorithm was tested on two different datasets, namely
a travel time dataset along a section of I-64 in Virginia and
BSS station status data from the San Francisco Bay area. Three
types of background knowledge were used: month of year, day
of week, and hour of day. The proposed algorithm was run
on the two datasets and produced more meaningful clusters
considering the background knowledge. The resultant clusters
appear to be more time homogenous, giving the potential
for operators to better manage the transportation modes per
time event. Specifically, the algorithm provides insight for
the clusters that operators can use to anticipate and plan for
congestion on I-64 and imbalances in the BSS.

We have shown that the proposed algorithm outperforms the
classical k-means clustering algorithm, which did not reveal
any obvious grouping of similar days. We proved that the
proposed algorithm produced better results than these classic
clustering algorithms when applied to any labeled dataset with
respect to a time event.
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