
Swarm and Evolutionary Computation 44 (2019) 622–635
Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo
An artificial bee colony algorithm with a Modified Choice Function for the
traveling salesman problem

Shin Siang Choong a, Li-Pei Wong a,*, Chee Peng Lim b

a School of Computer Sciences, Universiti Sains Malaysia, Malaysia
b Institute for Intelligent Systems Research and Innovation, Deakin University, Australia
A R T I C L E I N F O

Keywords:
Hyper-heuristic
Metaheuristic
Bee algorithm
Combinatorial optimisation problem
Neighbourhood search
Lin-Kernighan
* Corresponding author.
E-mail addresses: css15_com047@student.usm.m

https://doi.org/10.1016/j.swevo.2018.08.004
Received 3 December 2017; Received in revised fo
Available online 9 August 2018
2210-6502/© 2018 Elsevier B.V. All rights reserved
A B S T R A C T

The Artificial Bee Colony (ABC) algorithm is a swarm intelligence approach which has initially been proposed to
solve optimisation of mathematical test functions with a unique neighbourhood search mechanism. This neigh-
bourhood search mechanism could not be directly applied to combinatorial discrete optimisation problems. In
order to tackle combinatorial discrete optimisation problems, the employed and onlooker bees need to be
equipped with problem-specific perturbative heuristics. However, a large variety of problem-specific heuristics
are available, and it is not an easy task to select an appropriate heuristic for a specific problem. In this paper, a
hyper-heuristic method, namely a Modified Choice Function (MCF), is applied such that it can regulate the se-
lection of the neighbourhood search heuristics adopted by the employed and onlooker bees automatically. The
Lin-Kernighan (LK) local search strategy is integrated to improve the performance of the proposed model. To
demonstrate the effectiveness of the proposed model, 64 Traveling Salesman Problem (TSP) instances available in
TSPLIB are evaluated. On average, the proposed model solves the 64 instances to 0.055% from the known op-
timum within approximately 2.7min. A performance comparison with other state-of-the-art algorithms further
indicates the effectiveness of the proposed model.
1. Introduction

A computational optimisation methodology involves finding feasible
solutions from a finite set of solutions, and identifying only the optimal
solution(s). Swarm intelligence algorithms constitute a sub-class of
computational optimisation methodology [1]. Swarm intelligence algo-
rithms are developed based on emergence of collective behaviours per-
taining to a population of interacting individuals in adapting to the local
and/or global environments. Examples of swarm intelligence algorithms
include Particle SwarmOptimisation (PSO) [2], Ant Colony Optimisation
(ACO) [3], Bat Algorithm (BA) [4], Firefly Algorithm (FA) [5], Cuckoo
Search Algorithm (CSA) [6], and bee-inspired algorithms [7–9].

Bees are highly organised social insects. Their survival relies on
assigning an important task to each bee in a cooperative mode. The tasks
include reproduction, foraging, and constructing hive. Within these
tasks, foraging is one of the most important tasks, because the bee colony
must ensure an undisrupted supply of food to survive. The food foraging
behaviours of bees can be computationally realised as algorithmic tools
to solve various optimisation problems.

The Artificial Bee Colony (ABC) algorithm is one of the popular bee-
y (S.S. Choong), lpwong@usm.m

rm 5 June 2018; Accepted 4 Aug

.

inspired algorithms. Proposed by Karaboga [7], it is inspired by the
foraging behaviours of honey bees in a colony. In the ABC algorithm, a
food source represents a possible solution to the optimisation problem in
the search space, and the nectar amount of the food source represents the
fitness of that solution. The ABC algorithm defines three types of bees:
employed bees, onlooker bees, and scout bees. An employed bee looks for
new food sources around the neighbourhood of the food source that it has
previously visited. An onlooker bee observes dances and selects a food
source to visit. It tends to select good food sources from those found by
the employed bees. A scout bee searches for new food sources randomly.

The mechanism of the ABC algorithm is as follows. The employed
bees first perform a neighbourhood search nearby the food source in their
memory (i.e. solution). Then, they go back to the hive and perform
dances. The dances inform the onlooker bees about the fitness of each
solution. Each onlooker bee observes and selects a food source to perform
another neighbourhood search based on a probability proportional to the
food source fitness (i.e. a roulette wheel selection). The onlooker bees
tend to select good food sources from those found by the employed bees.
The employed and onlooker bees perform neighbourhood search by
perturbing an existing solution to produce a new solution. A greedy
y (L.-P. Wong), chee.lim@deakin.edu.au (C.P. Lim).

ust 2018

mailto:css15_com047@student.usm.my
mailto:lpwong@usm.my
mailto:chee.lim@deakin.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2018.08.004&domain=pdf
www.sciencedirect.com/science/journal/22106502
www.elsevier.com/locate/swevo
https://doi.org/10.1016/j.swevo.2018.08.004
https://doi.org/10.1016/j.swevo.2018.08.004
https://doi.org/10.1016/j.swevo.2018.08.004


S.S. Choong et al. Swarm and Evolutionary Computation 44 (2019) 622–635
approach is applied to decide whether to accept the newly perturbed
solution. If a solution could not be improved after a pre-determined
number of trails (denoted as the limit), it is abandoned. The employed
bee associated to that non-improving solution (i.e. local optimum) is
abandoned, and it becomes a scout bee. The scout bee explores the search
space at random and looks for a new solution.

This ABC algorithm has been used to solve optimisation of mathe-
matical test functions [7]. Promising results have been reported by using
a number of ABC variants [10–12]. To find the optimum solution of the
mathematical test functions, the neighbourhood search performed by the
employed and onlooker bees is formulated as follows (Eq. (1)):

vij ¼ xij þ ϕ ðxij � xkjÞ (1)

in which xi is the solution associated to the i-th employed bee, xij is j-th
element (i.e. dimension) of solution xi, vi is the new solution produced
based on xi, vij is j-th element of solution vi, j is a random integer between
1 and dim (the dimensionality of the problem), ϕ is a random real number
between �1 and 1, and k is a random integer between 1 and n (the
number of employed bees).

In recent years, the ABC algorithm has been modified to solve
combinatorial discrete optimisation problems, such as quadratic assign-
ment problem [13], p-median problem [14–16], minimum spanning tree
problem [17–19], clustering problem [20–22], uncapacitated facility
location problem [23–25], Knapsack Problem (KP) [26–28], Job Shop
Scheduling Problem (JSSP) [29–31], Vehicle Routing Problem (VRP)
[32,33], and Traveling Salesman Problem (TSP) [34,35]. However, Eq.
(1) cannot be directly applied when solving this set of problems. The
employed and onlooker bees are prescribed with a perturbative heuristic
(or a set of perturbative heuristics) to generate new solutions. These
heuristics are problem-specific, for instance, the neighbourhood search
heuristics for TSP include insertion mutation, swap mutation, random
2-opt, etc. In view of the availability of a large variety of problem-specific
heuristics, the key question concerning the selection of a particular
heuristic has been posed in the literature in recent years. This leads to the
motivation of using hyper-heuristics for tackling such problem, which is
the focus of our research in improving the ABC algorithm.

A hyper-heuristic is a high-level automated methodology for selecting
or generating a set of heuristics [36]. The term “hyper-heuristic” was
coined by Denzinger et al. [37]. There are two main hyper-heuristic
categories, i.e. selection hyper-heuristic and generation hyper-heuristic
[38]. These two categories can be defined as ‘heuristics to select heu-
ristics’ and ‘heuristics to generate heuristics’, respectively [36]. Both
selection and generation hyper-heuristics can be further divided into two
categories based on the nature of the heuristics to be selected or gener-
ated [38], namely either constructive or perturbative hyper-heuristics. A
constructive hyper-heuristic incrementally builds a complete solution
from scratch. On the other hand, a perturbative hyper-heuristic itera-
tively improves an existing solution by performing its perturbative
mechanisms. The heuristics to be selected or generated in a
hyper-heuristic model are known as the low-level heuristics (LLHs).

A typical selection hyper-heuristic model consists of two levels [36].
The low level contains a problem representation, evaluation function(s),
and a set of problem specific LLHs. The high level manages which LLH to
use for producing a new solution(s), and then decides whether to accept
the solution(s). Therefore, the high-level heuristic performs two separate
tasks i.e. (i) LLH selection and (ii) move acceptance [39]. The LLH se-
lection method is a strategy to select an appropriate LLH from a set of
available alternatives during the search process. The available LLH se-
lection methods include simple random [40], choice function [41–43],
tabu search [44], harmony search [45], backtracking search algorithm
[46], and a set of reinforcement learning variants [47,48]. The move
acceptance method decides whether to accept the new solution gener-
ated by the selected LLH. Examples of move acceptance methods include
Only Improvement [49], All Moves [43], Simulated Annealing [50], Late
Acceptance [40], and some variants of threshold-based acceptance.
623
Striking a balance between intensification and diversification is
important for a hyper-heuristic [36,51]. Intensification encourages a
hyper-heuristic to focus on the promising LLHs, which leads to a good
performance. On the other hand, diversification serves as a
forgive-and-forget policy which encourages attempts on those rarely
used LLHs. Both intensification and diversification are crucial compo-
nents as the capability of an LLH varies during different phases of the
search process [52,53]. An LLH with a good performance in one phase
should not dominate the subsequent search process, while a poor per-
formance in one phase should not lead to a permanent discrimination of
an LLH in the later phases. In this study, an LLH selection method which
is based on a choice function, namely the Modified Choice Function
(MCF) [42], is integrated with the ABC algorithm. Specifically, MCF is
used to select the neighbourhood search heuristic deployed by the
employed and onlooker bees. The reason of choosing MCF is because it is
able to adaptively control the weights of its intensification and diversi-
fication components during different phases of the search process. Be-
sides that, to enhance the performance of the proposed MCF-ABC model,
it is integrated with the Lin-Kernighan (LK) local search strategy [54].
The proposed model is denoted as MCF-ABC. It is tested using benchmark
TSP instances provided in TSPLIB [55].

This article starts with a description of the related work in Section 2.
Section 3 presents the proposed MCF-ABC model. The results and find-
ings including performance comparison are presented in Section 4.
Finally, concluding remarks are presented in Section 5.

2. Related work

This section describes the related work of the study. Section 2.1 fo-
cuses on the applications of bee-inspired algorithms to solve TSP (or
variants of TSP). Section 2.2 reviews some hyper-heuristic models which
are based on a choice function. Section 2.3 introduces some local-search-
based strategies for combinatorial optimisation problems.

2.1. Application of the bee-inspired algorithms to solve TSP

TSP is an NP-hard discrete combinatorial optimisation problem [56].
When solving a TSP, the aim is to look for the shortest Hamiltonian path,
which is the route that leads a person to visit each location once and only
once, and to return to the starting location with the minimum total dis-
tance [57]. Suppose that the cities are located in some geometric region
that the distances between two cities obey the usual axioms of a distance
function of a metric space. TSP can be modeled as an undirected
weighted graph. Let G ¼ (V, E) be an undirected weighted complete
graph, in which V is a set of n cities (V¼ {v1,v2,…, vn}) and E is a set of
edges (E¼ {(r, s): r, s 2 V }). E is usually associated with a distancematrix,
D¼ {dr,s} where dr,s refers to the distance between city r and city s. Let

Q
represents all possible permutations of set V. A solution of a TSP is to
determine a permutation π 2Q

, which has the minimum total round trip
distance, as shown in Eq. (2), in which π(i) 2 V indicates the i-th element
in π.

CTSP

�
π 2

Y�
¼

Xn�1

i¼1

�
dπðiÞ;πðiþ1Þ

� þ dπðnÞ;πð1Þ (2)

A number of swarm intelligence algorithms have been employed to
solve TSP, such as PSO [58,59], ACO [60,61], FA [62,63], BA [64,65],
CSA [66,67], and some hybrid algorithms [68–71]. In this study, we
focus on bee-inspired algorithms to solve TSP. A discussion on the
application of bee-inspired algorithms to solve TSP or its variants is
presented. The associated neighbourhood search heuristic/mechanisms
are also highlighted.

Marinakis et al. [72] proposed a Honey Bees Mating Optimisation
(HBMO) model to solve TSP. The HBMO model employs a crossover
heuristic and an Expanding Neighbourhood Search (ENS) method to
perform neighbourhood search. The crossover heuristic is able to identify



S.S. Choong et al. Swarm and Evolutionary Computation 44 (2019) 622–635
the common characteristics of the parents, while the ENS method com-
bines multiple local search strategies, i.e. 2-opt, 2.5-opt, and 3-opt.

Wong [73] proposed a Bee Colony Optimisation (BCO) model. In the
BCO model [73], a bee performs neighbourhood search on a selected
dance (a solution constructed by another bee) based on a Fragmentation
State Transition Rule (FSTR). The FSTR technique aids a bee in con-
structing a feasible solution under the influence of arc fitness and heu-
ristic distance. Besides FSTR, the BCOmodel is equipped with three other
components, i.e. waggle dance mechanism, local search, and pruning
strategy. These components are bundled as a generic model [74] to solve
multiple combinatorial optimisation problems, such as JSSP [75–77],
Sequential Ordering Problem (SOP) [78], symmetric TSP [79–81], and
asymmetric TSP [82].

Masutti and de Castro [9] proposed a bee-inspired algorithm known
as TSPoptBees to solve TSP. The TSPoptBees model defines three types of
bees, i.e. recruiter bees, scout bees, and recruited bees. The recruiter bees
recruit other bees to exploit promising areas of the solution search space.
Crossover heuristics are used to combine the solution associated with a
recruited bee and its recruiter. The scout bees explore the search space by
using mutation heuristics on randomly selected solutions from the pop-
ulation. Both the recruited and scout bees utilise a random method to
select the heuristics.

Banharnsakun et al. [83] extended the ABC algorithm with a Greedy
Subtour Crossover (GSX) heuristic [84] to solve TSP, which is denoted as
ABC-GSX. Specifically, GSX is adopted as the neighbourhood search
heuristic. In ABC-GSX, the new solutions generated during the neigh-
bourhood search are further improved by using the 2-opt local search
heuristic. GSX is able to improve the exploitation process of the ABC
algorithm [83].

Karaboga and Gorkemli [85] proposed a combinatorial ABC algo-
rithm to solve TSP. A Greedy Sub-tour Mutation (GSTM) heuristic serves
as the neighbourhood search heuristic of the employed and onlooker
bees. The resulting algorithm is denoted as ABC-GSTM. ABC-GSTM
outperforms eight GA variants with different mutation operators [85].

Akay et al. [86] adopted a neighbour-based 2-opt move and a 2-opt
local search in the ABC algorithm. The resulting algorithm is denoted
as 2-opt ABC algorithm. During the neighbourhood search, an employed
or onlooker bee first performs a neighbour-based 2-opt move for the
current solution. If the neighbour-based 2-opt move is not able to
improve the solution, the solution undergoes a 2-opt local search. The
experimental results show that the 2-opt ABC algorithm outperforms the
2-opt local search strategy.

Li et al. [87] applied an inner-over operator [88] as the neighbour-
hood search heuristic in ABC. The inner-over operator is a modified
version of the inversion mutation. However, the selection of a
sub-sequence to be inverted is related to the population, therefore the
operator has some features of the crossover heuristic. The ABC algorithm
with the inner-over operator outperforms the Bee Colony Optimisation in
Ref. [8].

Zhong et al. [89] integrated the ABC algorithm with a
threshold-based acceptance method. A new solution update equation and
a greedy hybrid operator are proposed as the neighbourhood search
mechanism. The new solution adds an edge based on another randomly
selected solution to the current one. If the two solutions have a common
edge, the edge to be added is formed based on a set of nearest cities. After
an edge is added, the neighbour solutions are generated by applying
reverse, insert, and swap heuristics. The best among the three solutions
serves as the candidate solution. The empirical results show that the ABC
algorithm with a threshold-based acceptance method outperforms that
with a greedy acceptance.

Kocer and Akca [35] proposed an Improved ABC (IABC) algorithm
with a loyalty and a threshold mechanisms to solve TSP. These two
mechanisms form a decision making strategy which decides whether a
bee serves as a worker or an onlooker. Besides that, a 2-opt local search
strategy is integrated to avoid trapping in the local optimum [35].

Kıran et al. [34] analysed the effect of integrating single and multiple
624
neighbourhood search heuristic(s) in a discrete ABC model. The heuris-
tics include Random Swap (RS), Random Insertion (RI), Random Swap of
Subsequences (RSS), Random Insertion of Subsequence (RIS), Random
Reversing of Subsequence (RRS), Random Reversing Swap of Sub-
sequences (RRSS), and Random Reversing Insertion of Subsequence
(RRIS). The experiments in Ref. [34] can be divided into two categories.
The first category consists of seven ABC models with a single neigh-
bourhood search heuristic. The second category consists of two ABC
models with multiple neighbourhood search heuristics (i.e. [RS, RSS,
RRSS] and [RI, RIS, RRIS]). When multiple neighbourhood search heu-
ristics are employed, a random selection strategy is applied. The empir-
ical results show that the [RI, RIS, RRIS] model has a better performance
on TSP instances with the number of cities ranging between 30 and 101.
Comparatively, the RRS model performs better in two TSP instances with
225 and 280 cities.

Besides the classical TSP instances, bee-inspired algorithms have been
adopted to solve different TSP variants. Karabulut and Tasgetiren [90]
proposed a discrete ABC algorithm for solving the TSP with time win-
dows (TSPTW). TSPTW involves a searching for a path with minimum
cost that visits a set of cities once and returns to the starting city within a
pre-defined time window (i.e. ready time and due date). A feasible so-
lution of TSPTW requires a visit to each city to be made within the cor-
responding ready time and due date. A two-phase destruction and
construction heuristic is adopted as the neighbourhood search heuristic
in the discrete ABC algorithm proposed by Karabulut and Tasgetiren.
During the destruction phase, a number of randomly selected cities are
removed from the solution. In the construction phase, the NEH insertion
heuristic [91] is applied to re-insert the removed cities back into the
solution.

Pandiri and Singh [92] adopted the ABC algorithm for solving mul-
tiple TSP (MTSP) instances. There are more than one salesperson in an
MTSP. The aim is to look for a path for each salesperson to visit the cities,
subjected to a condition that each city must be visited exactly once by
only one salesperson. The neighbourhood search mechanism in the ABC
algorithm proposed by Pandiri and Singh [92] is as follows. Each city in a
current solution has a certain probability to be copied to form a neigh-
bourhood solution, otherwise the city is considered as an unassigned city.
The unassigned cities are randomly inserted into the formed neigh-
bourhood solution.

Pandiri and Singh [93] employed an ABC variant for solving a
multi-depot TSP instance with load balancing. Besides having multiple
salespersons, this problem considers multiple depots, in which each
salesperson is stationed at a different depot. The task of a multi-depot TSP
is to look for a route for each salesperson to start and end at his/her
corresponding depot, such that each city is visited exactly once by one
salesperson. As such, the total distance traveled by the salespersons is
minimised, and the workload among salespersons is balanced. Pandiri
and Singh [93] applied a similar neighbourhood search mechanism as
that in Ref. [92].

Zhong et al. [94] proposed a dynamic Tabu ABC model for solving
MTSP with precedence constraints. MTSP with precedence constraints is
a special case of MTSP whereby the cities need to be visited in a specific
order. A dynamic Tabu list is designed to handle the constraints. Multiple
probabilistic solution update mechanisms are implemented.

Based on the reviewed literature in this section, it is noticed that bee-
inspired algorithms can be integrated with a single or multiple neigh-
bourhood search heuristic(s). This article proposes a new ABC model
with multiple neighbourhood search heuristics. Specifically, the MCF is
used to guide the selection of neighbourhood search heuristics (i.e. LLHs)
in the proposed MCF-ABC model.

2.2. Modified Choice Function

Cowling et al. [41] proposed a hyper-heuristic based on a choice
function. It is a score-based approach which measures the score of each
LLH based on its previous performance. The score of each LLH is



S.S. Choong et al. Swarm and Evolutionary Computation 44 (2019) 622–635
composed of three different measurements, i.e. f1, f2, and f3. The first
measurement, f1, represents the recent performance of each LLH (Eq.
(3)):

f1
�
hj
� ¼ X

n

αn�1 In
�
hj
�

Tn

�
hj
� (3)

where hj denotes the j-th LLH, In(hj) denotes the fitness difference be-
tween the current solution and the newly proposed solution by the nth
application of hj, Tn(hj) denotes the amount of time taken by the nth
application of hj to propose the new solution, α2(0,1) is a parameter
which prioritises the recent performance.

The second measurement, f2, reflects the dependency between a
consecutive pair of LLHs (Eq. (4)):

f2
�
hk; hj

� ¼ X
n

βn�1 In
�
hk ; hj

�
Tn

�
hk ; hj

� (4)

where In(hk,hj) denotes the fitness difference between the current solu-
tion and the newly proposed solution by the nth consecutive application
of hk and hj (i.e. hj is executed right after hk), Tn(hk,hj) denotes the amount
of time taken by the nth consecutive application of hk and hj to propose
the new solution, β2(0,1) is a parameter which prioritises the recent
performance. Both f1 and f2 are the intensification component of the
choice function. They encourage the selection of high performance LLHs.

The third measurement, f3, records the elapsed time since the last
execution of a particular LLH (Eq. (5)):

f3ðhjÞ ¼ τðhjÞ (5)

where τ(hj) denotes the elapsed time (in seconds) since the last execution
of hj. Note that f3 acts as a diversification component in the choice
function. It prioritises those LLHs that have not been used for a long time.

The score of each LLH is computed as a weighted sum of the three
measurements, f1, f2, and f3, as shown in Eq. (6):

FðhjÞ ¼ αf1ðhjÞ þ βf2ðhk; hjÞ þ δf3ðhjÞ (6)

where α, β and δ are the respective weights of f1, f2, and f3. In the initial
model [41], these parameters were statically fixed. Promising results
have been reported when the proposed choice function (i.e. Eq. (6)) is
paired with AM as its move acceptance method to solve the sales summit
scheduling problem.

The parameters in Cowling et al. [41] need to be tuned and
pre-determined. In order to have a more effective version of the
hyper-heuristic, the parameters can be dynamically controlled during
execution, as shown in Cowling et al. [95]. The values of α and β increase
when the selected LLH is able to improve the solution. The growth is
proportional to the magnitude of improvement over the previous solu-
tion. On the other hand, if the selected LLH performs a non-improving
move, α and β are decreased proportionally to the fitness difference.
This strategy is able to improve the model in Cowling et al. [41].

However, Drake et al. [42] stated some limitations of the strategy in
Cowling et al. [95]. Firstly, rewarding/penalising the LLH proportionally
to the fitness difference over the previous solution is arguable. During the
early stages of optimisation, it is easier for a relatively weaker heuristic to
obtain a great improvement from a poor starting solution, and a greater
reward is assigned to this weaker heuristic. On the other hand, the
improvement made in the later stages of optimisation is minor (due to
convergence to an optimum solution, either local or global), and a lower
reward is assigned. However, the improvement made in the later stages is
more significant than the improvement made in the early stages, there-
fore this rewarding scheme might be misleading. Besides that, if no so-
lution can achieve improvement for a number of iterations, this LLH
selection method can descend into random selection due to the low α and
β settings (i.e. the diversification component, f3, dominates the score).
625
Targeted at these limitations, Drake et al. [42] proposed a variant of
choice function, namely MCF, to manage its parameters. In MCF, α and β
are combined as a single parameter, μ. The score, F, is computed as fol-
lows (Eq. (7)):

FtðhjÞ ¼ μt½f1ðhjÞ þ f2ðhk ; hjÞ� þ δt f3ðhjÞ (7)

If the selected LLH yields an improvement, intensification is priori-
tised by setting μ to a static maximum value close to one, at the same time
δ is reduced to a static minimum value close to zero. When the selected
LLH fails to improve the solution, μ is penalised linearly with a lower
bound of 0.01, while δ grows at the same rate. This prevents the inten-
sification components (i.e. f1 and f2) from losing their influence too
quickly. Specifically, μ and δ are computed as follows (Eq. (8) and (9)), in
which d denotes the fitness difference between the newly proposed so-
lution and the previous solution.

μt
�
hj
� ¼

�
0:99; d > 0
max

�
0:01; μt�1

�
hj
�� 0:01

�
; d � 0 (8)

δtðhjÞ ¼ 1� μt
�
hj
�

(9)

In Section 3, the proposed model which incorporates MCF into the
ABC algorithm is presented. The main function of MCF is to help the
employed and onlooker bees to select an appropriate neighbourhood
search heuristic (i.e. LLH).

2.3. Local-search-based strategies

Local search strategies have been used widely in solving many
combinatorial optimisation problems. Generally, the procedure of this
category of strategies consists of the following steps:

1. Randomly generate a feasible solution, S.
2. Perform a transformation on S to produce S’.
3. If S0 is found to be better than S, replace S with S’.
4. Repeat steps 2 and 3 until no improvement is observed. At this stage,

S is said to be locally optimal.

A number of local search strategies that have been used for solving
TSP include 2-opt [96], 3-opt [97], and LK local search [54].

In general, a local search strategy is able to yield a local optimal so-
lution. However, its capability is limited to intensification, i.e., exploi-
tation around the neighbourhood of the initial solution. One of the
effective methods to increase the chance of a local search strategy to
obtain the global optimal solution is to restart the search after a particular
region of the search space is extensively exploited. A local search which
adapts a restart mechanism is known as a Multi-start Local Search (MSLS)
[98]. In MSLS, a local search is allowed to begin from different initial
solutions. As such, it is able to yield a set of local optimal solutions.
Ideally, the global optimum (or a near-global-optimal) solution can be
found in the set of local optimal ones. Many MSLS variants have been
developed to solve various combinatorial problems, such as permutation
flow shop scheduling problem [99], generalised quadratic multiple KP
[100], periodic VRP [101], and dynamic TSP [102].

In addition, diversification of a local search strategy can be improved
by repeatedly performing a perturbation and a local search on a solution.
One such method is Iterated Local Search (ILS) [103]. In ILS, an initial
solution iteratively goes through a diversification phase and an intensi-
fication phase. During the diversification phase, a new solution is pro-
duced by performing a perturbation to the current solution. After that,
the intensification phase is initiated to perform local search based on the
newly produced solution. One ILS-based strategy for solving the TSP, i.e.,
the Chained Lin-Kernighan (CLK) heuristic, was proposed in Refs. [104,
105]. In the CLK heuristic, an LK local search is repeatedly performed on
a TSP solution, which is followed by a double-bridge move [104] to
exchange four arcs in the solution with the other four arcs. Besides TSP,



Table 1
Details of the ten integrated LLHs in the MCF-ABC model.

Operations LLHs Description

Reverse Random Reversing of
Subsequences (RRS)

Invert a randomly selected
subsequence.

Insert Random Insertion (RI) Randomly pick a city from a solution,
remove it from the solution, and
reinsert it to a random position of the
solution.

Random Insertion of Randomly pick a subsequence from a

S.S. Choong et al. Swarm and Evolutionary Computation 44 (2019) 622–635
ILS-based strategies have been used in various applications, i.e. variants
of VRP [106,107], bin-packing problem [108], and different scheduling
problems [109–111].

Many swarm intelligence algorithms have good global search ability.
As such, a balance between intensification and diversification can be
achieved by integrating a local search strategy with a swarm intelligence
algorithm. The usefulness of hybridising local search and swarm intelli-
gence algorithms has been demonstrated in many publications
[112–117]. Motivated by the research in this domain, the proposed
MCF-ABC model is integrated with an LK local search strategy in this
study. The local search takes place after each neighbourhood search
performed by the employed or onlooker bees before applying the
acceptance criterion.

With the inclusion of local search, the proposed MCF-ABC model has
some similarities with the MSLS and ILS models. In the initialisation
phase of MCF-ABC, a population of solutions is initialised to form mul-
tiple starting points of the local search process. During the activities
performed by the employed and onlooker bees, each of these solutions
undergoes an ILS procedure, i.e. repetitively goes through a perturbation
using a selected LLH and an LK local search. During the activities per-
formed by the scout bee, if a solution could not be improved after limit
trials, a restart mechanism (i.e. a replacement of the solution with a
random solution) takes place. Therefore, MCF-ABC shares some common
features of MSLS during the initialisation phase and scout bee activities,
while similarities between MCF-ABC and ILS are shown in the activities
of the employed and onlooker bees.

3. The proposed model

The pseudo code of a classical discrete ABCmodel [34,85] is shown in
Algorithm I. The model consists of four phases: initialisation, employed
bee phase, onlooker bee phase, and scout bee phase. In the initialisation
phase, the maximum iteration (maxIteration), population size (popSize),
the maximum number of trails of a solution (limit), and an LLH to be used
for the neighbourhood search by the employed and onlooker bees (llhx)
are pre-determined. Then, the solution associated to each food source is
initialised randomly. The employed and onlooker bees perform neigh-
bourhood search using an LLH determined during the initialisation phase
throughout the search process.

Algorithm I
Pseudo code of a classical discrete ABC model.

1 Procedure ABC()

Subsequence (RIS) solution, remove it from the solution,

and reinsert it to a random position of

//initialisation
the solution.

2
 Initialise maxIteration, popSize, limit and llhx

3
 for i¼ 1 to popSize/2
Swap Random Swap (RS) Swap the position of two randomly
selected cities in a solution.
4
 foodSource[i]¼ initialiseSolutions()

5
 foodSource[i].counter¼ 0
Random Swap of
Subsequences (RSS)

Swap the position of two randomly
selected subsequences in a solution.
6
 end for

7
 while not reaching maxIteration do
Shuffle Shuffle Subsequence (SS) Re-order a randomly selected
subsequence at random.
//Employed bee phase

8
 for i¼ 1 to popSize/2
Combined Random Reversing Invert a randomly selected
9
 newSol¼ neighbourSeach(foodSource[i], llhx)
 Operations Insertion of Subsequence
(RRIS)

subsequence, then remove the
inverted subsequence from the
10
 if getFitness(newSol)< getFitness(foodSource[i])

11
 foodSource[i]¼ newSol
solution, and reinsert it to a random
position of the solution.
12
 foodSource[i].counter¼ 0

13
 else
Random Reversing Swap
of Subsequences (RRSS)

Swap the position of two randomly
selected subsequences in a solution.
14
 foodSource[i].counterþþ

15
 end if
Each of the subsequences has a 0.5
probability to be inverted.
16
 end for
Random Shuffle Insertion Re-order a randomly selected

//Onlooker bee phase
17
 for i¼ 1 to popSize/2

of Subsequence (RSIS) subsequence at random, then remove

the shuffled subsequence from the

18
 k¼ selectSolBasedOnRouletteWheelSelection(foodSource)

19
 newSol¼ neighbourSeach(foodSource[k], llhx)
 solution, and reinsert it to a random

position of the solution.

20
 if getFitness(newSol)< getFitness(foodSource[k])

21
 foodSource[k]¼ newSol
Random Shuffle Swap of
Subsequence (RSSS)

Swap the position of two randomly
selected subsequences in a solution.
22
 foodSource[i].counter¼ 0
Each of the subsequences has a 0.5

23
 else
probability to be shuffled.
(continued on next column)
626
Algorithm I (continued )
24
 foodSource[i].counterþþ

25
 end if

26
 end for
//Scout bee phase

27
 for i¼ 1 to popSize/2

28
 if foodSource[i].counter> foodSource[i].limit

29
 foodSource[i]¼ initialiseSolutions()

30
 foodSource[i].counter¼ 0

31
 end if

32
 end for

33
 end while

34
 end Procedure
The proposed MCF-ABC model is a bee algorithm with multiple
neighbourhood search heuristics (i.e. LLHs). The seven perturbative LLHs
for TSP proposed in Ref. [34], namely, Random Insertion (RI), Random
Swap (RS), Random Insertion of Subsequence (RIS), Random Swap of
Subsequences (RSS), Random Reversing of Subsequence (RRS), Random
Reversing Insertion of Subsequence (RRIS) and Random Reversing Swap
of Subsequences (RRSS), is adopted. Besides that, the proposedMCF-ABC
model also includes three additional LLHs i.e. Shuffle Subsequence (SS),
Random Shuffle Insertion of Subsequence (RSIS) and Random Shuffle
Swap of Subsequence (RSSS). Therefore, a total of ten LLHs are adopted
in the MCF-ABC model. These ten LLHs involve four main types of op-
erations, i.e. reverse, insert, swap and shuffle. Specifically, RRS performs
a reverse operation, RI and RIS perform an insert operation, RS and RRS
perform a swap operation, and SS performs a shuffle operation. Among
the ten LLHs, four of the LLHs (i.e. RRIS, RRSS, RSIS, and RSSS) involve
combinations of two types of operations. Note that the subsequence of a
TSP solution considered by RRS, RIS, RSS, SS, and the four LLHs with
combined operations covers size in a range of [2:dim], where dim denotes
the TSP dimension. The details of the ten LLHs are shown in Table 1.

The fitness function of the proposed MCF-ABC model is formulated as



S.S. Choong et al. Swarm and Evolutionary Computation 44 (2019) 622–635
the round trip distance (i.e. tour length) to visit each city once and only
once, and return to the starting city (as shown in Eq. (2)). The pseudo
code is shown in Algorithm II. Similar to the classical discrete ABCmodel,
the proposed MCF-ABC model consists of four phases: initialisation,
employed bee phase, onlooker bee phase, and scout bee phase. In MCF-
ABC, the solution associated with each employed bee is initialised
randomly. In order for an employed bee or an onlooker bee to select an
appropriate LLH, it is aided by the MCF as explained in Section 2.2. Each
LLH has a score, F. Each employed bee or onlooker bee selects an LLH
based on the F score (lines 9 and 22 in Algorithm II). The computation of
F is shown in Eq. (7). The LLH with the largest F score is selected and ties
are decided randomly. After performing a neighbourhood search, the
generated solution by the neighbourhood search is improved using the
LK local search [54] (lines 11 and 24 in Algorithm II). Then, a greedy
acceptance method is applied to decide whether to accept the newly
produced solution or otherwise (lines 12–13 and 25–26 in Algorithm II).
After that, the F score of the selected LLH is updated using Eq. (7) (lines
18 and 31 in Algorithm II).

While the employed bees and onlooker bees perform neighbourhood
search to exploit the promising areas of the search space, the scout bees
focus on exploration of a new region in the search space [10,24,118]. As
such, the scout bees are good for avoiding local optima. However, some
studies suggest that random replacement of an abandoned solution de-
creases the search efficiency, because an abandoned solution could
contains more useful information than a random solution [119,120]. In
this article, the same mechanism as proposed in the original ABC algo-
rithm by Karaboga [7] is applied, i.e. if a particular solution (i.e. food
source) has not been improved after the limit trials, it is abandoned. The
employed bee associated to the abandoned food source becomes a scout
bee, and it goes to search for a new food source (i.e. solution) at random.
The scout bee uses a random initialisation procedure to generate a new
solution (line 35 in Algorithm II).

Algorithm II
Pseudo code of the MCF-ABC model.

1 Procedure MCF-ABC()

//initialisation
2
 Initialise maxIteration, popSize, limit and LLHSet

3
 for i¼ 1 to popSize/2

4
 foodSource[i]¼ initialiseSolutions()

5
 foodSource[i].counter¼ 0

6
 end for

7
 while not reaching maxIteration do
//Employed bee phase

8
 for i¼ 1 to popSize/2

9
 selectedLLH¼ selectLLH_BasedOnMCF()

10
 newSol¼ neighbourSeach(foodSource[i], selectedLLH)

11
 localSearch(newSol)//optional

12
 if getFitness(newSol)< getFitness(foodSource[i])

13
 foodSource[i]¼ newSol

14
 foodSource[i].counter¼ 0

15
 else

16
 foodSource[i].counterþþ

17
 end if

18
 updateChoiceFunction(selectedLLH)//eq. (7)

19
 end for
//Onlooker bee phase

20
 for i¼ 1 to popSize/2

21
 k¼ selectSolBasedOnRouletteWheelSelection(foodSource)

22
 selectedLLH¼ selectLLH_BasedOnMCF()

23
 newSol¼ neighbourSeach(foodSource[k], selectedLLH)

24
 localSearch(newsol)//optional

25
 if getFitness(newSol)< getFitness(foodSource[k])

26
 foodSource[k]¼ newSol

27
 foodSource[i].counter¼ 0

28
 else

29
 foodSource[i].counterþþ

30
 end if

31
 updateChoiceFunction(selectedLLH)//eq. (7)

32
 end for
(continued on next column)
627
Algorithm II (continued )
//Scout bee phase

33
 for i¼ 1 to popSize/2

34
 if foodSource[i].counter> foodSource[i].limit

35
 foodSource[i]¼ initialiseSolutions()

36
 foodSource[i].counter¼ 0

37
 end if

38
 end for

39
 end while

40
 end Procedure
4. Results and discussion

The experimental setting, experimental results, and comparison
studies are presented in this section.

4.1. Experimental settings

All experiments were conducted using a computer with multiple Intel
i7-3930K 3.20 GHz processors, and with 15.6 GB of memory. At any
particular time, each test was executed by one processor only. The pro-
posed MCF-ABC model is implemented in C programming language. The
implementation of the LK local search is obtained from Concorde [105].

The performance of the proposed model is investigated by using
benchmark TSP datasets taken from TSPLIB [55]. A total of 64 instances
are used, and their dimension ranges from 101 to 85,900 cities. The
numerical figure appears in the problem instance name denotes the
dimension of the problem, e.g. eil101 is a 101-city TSP; d493 is a 493-city
TSP.

Two key performance indicators are defined to measure the perfor-
mance of the proposed MCF-ABC model as follows: the percentage de-
viation from known optimum, δ (measured in %) and computational time
(measured in seconds) to obtain the best tour length. The formula for
calculating δ is stated in Eq. (10) where C* and C(π) denote the best
known tour length (or optimum tour length) and the obtained tour length
of a particular TSP instance respectively:

δ ¼ CðπÞ � C*

C* � 100 (10)

When an instance is solved by the proposed MCF-ABC model, a total
of 30 test replications are conducted. The shortest tour length produced
by each replication and the computational time to obtain such tour length
are recorded. This leads to the creation of C¼ {c1, c2,…, c30} and T¼ {t1,
t2, …, t30}, in which C is a set of tour lengths and T is a set of compu-
tational time corresponding to the time to obtain the best tour length in
C. For set C, the average of 30 tour lengths are identified and denoted as
μC. Then, the average deviation percentages (i.e. δavg) from C* are
computed using Eq. (10). For set T, the average is computed and is
denoted as μT.

4.2. Parameter tuning

There are two parameters in MCF-ABC, i.e. popSize and limit. To
determine both parameters, a structured design-of-experiment tech-
nique, i.e. the face-centred central composite design (CCD) [121], is
employed. All 64 TSP instances are grouped into four classes according to
their dimensions. Classes A, B, and C include instances with dimensions
[1:500], [501:1000], and [1001:10,000], respectively, while Class D
includes instances with dimension >10,000. For each class, one TSP
instance is selected as a representative instance for the CCD experiments.
Specifically, gil262, u724, fnl4461, and rl11849 are selected as the
representative instances of Classes A, B, C, and D respectively. The
resulting parameter settings from these representative instances are
generalised to other TSP instances within the corresponding class.

In accordance with the face-centred CCD [121], each parameter is set



S.S. Choong et al. Swarm and Evolutionary Computation 44 (2019) 622–635
at three different levels, i.e. low, medium, and high, as shown in Table 2.
A total of 32¼ 9 combinations of these parameters at each level are
generated. The experimental setting is illustrated in Fig. 1. To have a fair
comparison, all experiments are terminated after a fixed number of
neighbourhood search operations (i.e. 10,000 operations). For example,
the experiment with popSize¼ 10 would be terminated after 1000 iter-
ations, while the experiment with popSize¼ 20 would be terminated after
500 iterations. Table 3 shows the detailed configurations and results of
the CCD design experiment.

MCF-ABC is able to solve gil262 to the known optimum using all the
nine configurations of popSize and limit. For Classes B, C, and D, the best
results are achieved from the second configuration, i.e. popSize¼ 10 and
limit¼ 200. With this configuration, popSize is set at the low level and
limit is set at a medium level. Besides that, it is worth-noting that the
configuration with limit¼ 200 outperforms all other configurations with
the same popSize. As such, 200 is selected for limit, which is in line with
the setting in Ref. [122] as well. Based on the tuning results, MCF-ABC
with popSize¼ 10 and limit¼ 200 is used in the following experiments
to solve all 64 TSP instances.
4.3. Experimental results of MCF-ABC

In order to examine the effect of the integrated LLH pool described in
Table 1 listed in Section 3, the proposed MCF-ABC model with the ten
integrated LLHs is compared with a variant denoted as MCF-ABC(4)
which only integrates four LLHs with basic operations, i.e. RRS, RIS0,
RSS0, and SS, whereby RIS0 and RSS0 consider subsequence with size
[1:dim]. Besides, the proposed MCF-ABC model is compared with a
Random-ABC model to examine the effectiveness of integrating the MCF
hyper-heuristic in the ABC model. The Random-ABC model utilises the
same sets of LLHs (i.e. ten LLHs) as MCF-ABC. In Random-ABC, a random
strategy is used for the employed bees and onlooker bees to select an LLH
for each neighbourhood search. For all the three algorithms (i.e. MCF-
Table 2
Low, medium, and high levels of popSize and limit.

Low Medium High

popSize 10 20 30
limit 100 200 300

Fig. 1. A face-centred central composite design with two parameters.

Table 3
Effects of popSize and limit on the MCF-ABC performance. The selected configu-
ration to solve the 64 TSP instances listed in Table 4 is in bold.

Configuration popSize limit δavg

Class A
gil262

Class B
u724

Class C
fnl4461

Class D
rl11849

1 10 100 0 0.039 0.225 0.472
2 10 200 0 0.007 0.213 0.447
3 10 300 0 0.026 0.222 0.576
4 20 100 0 0.031 0.277 0.608
5 20 200 0 0.012 0.232 0.575
6 20 300 0 0.016 0.258 0.584
7 30 100 0 0.054 0.272 0.655
8 30 200 0 0.029 0.238 0.647
9 30 300 0 0.039 0.284 0.676

628
ABC, MCF-ABC(4), and Random-ABC), the stopping criterion is based
on the pre-determined execution iterations (i.e. 1000 iterations). The
average tour length (μC), average deviation percentages (δavg), and
average computational time to obtain the best solution (μT) obtained by
the three algorithms are shown in Table 4.

The average scores of δavg obtained by MCF-ABC, MCF-ABC(4), and
Random-ABC in Table 4 are 0.055%, 0.326%, and 0.238%, respectively.
On average, MCF-ABC yields better δavg than those of MCF-ABC(4) and
Random-ABC. MCF-ABC solves all 64 instances to 0.055% from the
known optimum within 2.7min (�162.6s). Besides that, MCF-ABC is
able to consistently solve 40 out of 64 instances (i.e. 62.5%) to the known
optimum for 30 replications.

To statistically compare the performance of each algorithm, the
Wilcoxon signed-rank test [123] with 95% confidence interval is
employed. In the Wilcoxon signed rank test, the difference between the
δavg obtained by two compared algorithms is ranked. The tie instances are
discarded, and N denotes the effective sample size (i.e. number of in-
stances) after discarding the ties instances. The sum of ranks for the in-
stances in which MCF-ABC outperforms its competitor is denoted as Rþ,
while R� denotes the sum of ranks for the instances in which MCF-ABC is
inferior to its competitor. According to the Wilcoxon signed rank test, the
test statistic,W is compared with a critical value,Wcri,N [123].W�WCri,N
indicates that there is a significant difference between the performance of
the two algorithms, while W>WCri,N indicates otherwise. The results of
the Wilcoxon signed ranks test are summarised in Table 5.

The Wilcoxon signed rank test results show that, the proposed MCF-
ABC model significantly outperforms MCF-ABC(4) and Random-ABC.
The comparison with MCF-ABC(4) shows that the inclusion of more
LLHs has positive effects on the performance, while the comparison with
Random-ABC indicates that the MCF selection method performs better
than the random selection method.

A convergence analysis is conducted based on a problem with the
largest dimension in TSPLIB, i.e. pla85900. The best-so-far δ (computed
using Eq. (10)) obtained in each iteration of the three algorithms are
plotted in Fig. 2. As shown in Fig. 2, MCF-ABC(4) with four LLHs con-
verges rapidly, but it is trapped in a local optimum, while Random-ABC
and MCF-ABC with ten LLHs are more capable of escaping the local op-
timum. On the other hand, the proposed MCF-ABC model converges to a
better solution than those of MCF-ABC(4) and Random-ABC in the later
stage of the search process.

To further analyse the experimental results of the proposed MCF-ABC
model, the average execution distribution (in terms of percentage) of
LLHs chosen by the MCF is recorded. In this analysis, the five classes
which categorise the 64 TSP instances based on their dimensions
described in Section 4.2 are utilised. Table 6 shows the average execution
distribution of LLHs selected by the MCF when solving multiple instances
in each class. Details about the categorisation of LLHs based on the type
of operations can be found in Table 1 listed in Section 3.

Based on Table 6, RSS is selected most frequently when solving the
instances in Class A (dim2[101:500]). RIS is favoured when solving the
instances in Class B (dim2[501:1000]) and C (dim2[1001:10,000]). RRS
yields the highest percentage when solving the instances in Class D
(dim>10,000). For all classes, LLHs which perform single reverse, insert,
and swap operations are more frequently selected than other LLHs (i.e.
the top five selected LLHs with the highest percentage of each class are
RRS, RI, RIS, RS, and RSS).

The intensification components of MCF (i.e. f1 and f2) generally
evaluate the performance of an LLH based on the improvement it yields
over its computational/execution time. Besides that, the influence of f1
and f2 are prioritised by the control mechanism of μ and δ (i.e. Eqs. (8)
and (9)), whereby μ and δ are set to constant maximum and minimum
values, respectively, for an improved move. For a deteriorated move, μ is
slightly decreased whereas δ is slightly increased. Therefore, in the pro-
posed MCF-ABC model, RRS, RI, RIS, RS, and RSS are frequently selected
as they are able to obtain good scores of f1 and f2 (i.e. bringing
improvement within a relatively short computational time). If the control



Table 4
Performance comparison of MCF-ABC, MCF-ABC(4), and Random-ABC based on 64 TSP benchmark instances.

Optimum MCF-ABC MCF-ABC(4) Random-ABC

μC δavg(%) μT(s) μC δavg(%) μT(s) μC δavg(%) μT(s)

eil101 629 629.0 0.000 0.0 629.0 0.000 0.0 629.0 0.000 0.0
lin105 14,379 14379.0 0.000 0.0 14379.0 0.000 0.0 14379.0 0.000 0.0
pr107 44,303 44303.0 0.000 0.0 44303.0 0.000 0.0 44303.0 0.000 0.0
gr120 6942 6942.0 0.000 0.0 6942.0 0.000 0.0 6942.0 0.000 0.0
pr124 59,030 59030.0 0.000 0.1 59030.0 0.000 0.1 59030.0 0.000 0.1
bier127 118,282 118282.0 0.000 0.1 118282.0 0.000 0.1 118282.0 0.000 0.1
ch130 6110 6110.0 0.000 0.0 6110.0 0.000 0.0 6110.0 0.000 0.0
pr136 96,772 96772.0 0.000 0.2 96772.0 0.000 0.1 96772.0 0.000 0.1
gr137 69,853 69853.0 0.000 0.0 69853.0 0.000 0.1 69853.0 0.000 0.1
pr144 58,537 58537.0 0.000 1.8 58537.0 0.000 2.2 58537.0 0.000 1.4
ch150 6528 6528.0 0.000 0.0 6528.0 0.000 0.1 6528.0 0.000 0.0
kroB150 26,130 26524.0 0.000 0.0 26,524.0 0.000 0.1 26524.0 0.000 0.0
kroA200 29,368 26130.0 0.000 0.1 26130.0 0.000 0.2 26130.0 0.000 0.1
pr152 73,682 73682.0 0.000 1.8 73682.0 0.000 2.0 73682.0 0.000 1.1
u159 42,080 42080.0 0.000 0.0 42080.0 0.000 0.0 42080.0 0.000 0.0
si175 21,407 21407.0 0.000 0.2 21407.0 0.000 0.2 21407.0 0.000 0.1
brg180 1950 1950.0 0.000 0.0 1950.0 0.000 0.0 1950.0 0.000 0.0
rat195 2323 2323.0 0.000 0.2 2323.0 0.000 0.2 2323.0 0.000 0.1
d198 15,780 15780.0 0.000 1.3 15780.0 0.000 1.2 15780.0 0.000 0.9
kroA200 29,368 29368.0 0.000 0.1 29368.0 0.000 0.1 29368.0 0.000 0.0
kroB200 29,437 29437.0 0.000 0.0 29437.0 0.000 0.1 29437.0 0.000 0.0
gr202 40,160 40160.0 0.000 0.6 40160.0 0.000 0.9 40160.0 0.000 0.5
tsp225 3916 126643.0 0.000 0.0 126643.0 0.000 0.1 126643.0 0.000 0.0
ts225 126,643 3916.0 0.000 0.1 3916.0 0.000 0.1 3916.0 0.000 0.1
pr226 80,369 80369.0 0.000 1.4 80369.0 0.000 3.4 80369.0 0.000 2.1
gr229 134,602 134602.0 0.000 0.8 134602.0 0.000 1.3 134602.0 0.000 0.9
gil262 2378 2378.0 0.000 0.1 2378.0 0.000 0.2 2378.0 0.000 0.1
pr264 49,135 49135.0 0.000 0.1 49135.0 0.000 0.1 49135.0 0.000 0.1
a280 2579 2579.0 0.000 0.0 2579.0 0.000 0.0 2579.0 0.000 0.0
pr299 48,191 48191.0 0.000 0.2 48191.0 0.000 0.2 48191.0 0.000 0.2
lin318 42,029 42029.0 0.000 1.5 42029.0 0.000 4.4 42029.0 0.000 1.6
rd400 15,281 15281.0 0.0002 2.4 15281.0 0.000 4.1 15281.0 0.000 2.2
fl417 11,861 11861.0 0.000 5.7 11861.0 0.000 4.8 11861.0 0.000 6.3
gr431 171,414 171414.0 0.000 13.0 171414.0 0.000 15.1 171414.0 0.000 12.7
pr439 107,217 107217.0 0.000 2.3 107217.0 0.000 2.7 107217.0 0.000 2.2
pcb442 50,778 50778.0 0.000 1.6 50778.0 0.000 1.3 50778.0 0.000 1.5
d493 35,002 35002.7 0.002 20.9 35002.9 0.002 21.6 35002.7 0.002 15.8
att532 27,686 27686.5 0.002 11.4 27686.9 0.003 12.6 27686.7 0.003 11.9
ali535 202,339 202339.0 0.000 10.6 202339.0 0.000 9.5 202339.0 0.000 8.4
si535 48,450 48498.3 0.100 53.3 48535.1 0.176 55.2 48508.1 0.120 47.4
pa561 2763 2763.1 0.004 7.1 2763.3 0.011 7.5 2763.3 0.010 8.3
u574 36,905 36905.0 0.000 2.1 36905.0 0.000 3.5 36905.0 0.000 3.6
rat575 6773 6774.3 0.020 6.3 6774.4 0.021 5.8 6774.3 0.020 5.5
p654 34,643 34643.0 0.000 21.5 34643.0 0.000 19.2 34643.0 0.000 21.2
d657 48,912 48915.1 0.006 15.5 48913.5 0.003 14.9 48914.1 0.004 11.9
gr666 294,358 294404.1 0.016 32.1 294396.8 0.013 32.8 294389.7 0.011 31.8
u724 41,910 41916.5 0.016 12.9 41917.4 0.018 12.9 41916.5 0.015 14.0
rat783 8806 8806.0 0.000 4.2 8806.0 0.000 6.5 8806.0 0.000 4.1
dsj1000 18,659,688 18661580.6 0.010 53.2 18663249.7 0.019 60.3 18662940.7 0.017 46.9
pr1002 259,045 259073.0 0.011 16.6 259231.0 0.072 25.1 259173.4 0.050 29.7
si1032 92,650 92650.0 0.000 4.4 92650.0 0.000 11.2 92650.0 0.000 5.5
vm1084 239,297 239322.3 0.011 24.3 239321.6 0.010 21.5 239328.5 0.013 33.3
pcb1173 56,892 56897.9 0.010 15.4 56899.0 0.012 12.1 56896.7 0.008 16.3
d1291 50,801 50843.7 0.084 15.7 52383.2 3.115 49.3 51963.7 2.289 68.4
d1655 62,128 62221.6 0.151 27.0 62246.9 0.191 37.8 62210.2 0.132 51.6
u1817 57,201 57354.2 0.268 24.6 57377.6 0.309 22.7 57359.5 0.277 40.8
u2152 64,253 64426.5 0.270 28.3 64433.9 0.282 28.7 64415.2 0.252 39.2
pr2392 378,032 378549.6 0.137 28.9 378418.2 0.102 43.1 378559.5 0.140 41.0
fl3795 28,772 28825.1 0.184 131.7 32294.8 12.244 258.2 31084.0 8.036 275.6
fnl4461 182,566 183002.8 0.239 66.6 183019.3 0.248 48.7 183008.5 0.242 51.3
rl5915 565,530 567990.2 0.435 94.2 573022.9 1.325 109.4 572285.2 1.194 109.4
pla7397 23,260,728 23324321.9 0.273 247.6 23328860.6 0.293 228.0 23323272.4 0.269 191.9
rl11849 923,288 928015.1 0.512 308.9 934773.2 1.244 348.9 933587.4 1.116 368.5
pla85900 142,382,641 143484917.5 0.774 9082.5 144037897.2 1.163 5804.8 143851971.1 1.032 6453.7

Average: 0.055 162.6 0.326 115.0 0.238 125.7

S.S. Choong et al. Swarm and Evolutionary Computation 44 (2019) 622–635
mechanism is modified such that a greater increment of δ for a deterio-
rated move is performed, the influence of the diversification component,
f3, is increased and other LLHs which are not frequently chosen would
have a higher chance to be selected.

Besides that, an experiment that excludes the LK local search is con-
ducted to investigate the execution distribution of LLHs in MCF-ABC
629
without the local search strategy. The results are presented in Table 7.
When the local search is excluded, the distributions of the selected LLHs
for solving different classes of TSP instances are similar. MCF tends to
concentrate on selecting RRS and RI, while other LLHs has less chance to
be selected.



Table 5
The Wilcoxon signed ranked test for the comparison of MCF-ABC, MCF-ABC(4),
and Random-ABC.

Comparisons (MCF-ABC
vs …)

N Rþ R- W WCri,N Significant
Difference

MCF-ABC(4) 22 226 27 27 65 yes
Random-ABC 21 177 54 54 58 yes

Fig. 2. Convergence graph of MCF-ABC, MCF-ABC(4), and Random-ABC when
solving pla85900.

Table 8
Experimental settings used by the compared algorithms and the proposed MCF-
ABC model.

Approaches
[Citation]

Experimental Settings

Benchmark Algorithms MCF-ABC

maxIteration popSize maxIteration popSize

ABC [34] 100,000 ⌈Dim/2⌉� 2 1000 10
ACO-ABC [70] 250 þ 250 ⌈Dim/2⌉� 2
2-opt ABC [86] 40 2000
TSPoptBees [9] varied from

1155.83 to
4271.83

varied from
99.60 to
177.00

BCO [73] 10,000 50
HDABC [89] 1000 30
CLK [105] 10,000 1
ESACO [60] 300 10 300 10
HBMO [72] 1000 50 5000 10
QPSO [115] 1000 100 10,000 10

S.S. Choong et al. Swarm and Evolutionary Computation 44 (2019) 622–635
4.4. Competitiveness of MCF-ABC

This section compares the proposed MCF-ABC model with state-of-
the-art algorithms. The comparison is conducted based on the
following publications (the abbreviation of each publication is shown in
parentheses):

� The analysis of discrete artificial bee colony algorithm with neigh-
bourhood operator on traveling salesman problem (ABC) [34].

� A hierarchic approach based on swarm intelligence to solve the
traveling salesman problem (ACO-ABC) [70].

� 2-opt based artificial bee colony algorithm for solving traveling
salesman problem (2-opt ABC) [86].

� TSPoptBees: A bee-Inspired algorithm to solve the traveling salesman
problem (TSPoptBees) [9].

� A generic bee colony optimisation framework for combinatorial
optimisation problems (BCO) [73].
Table 6
Average execution distributions (in percentages) of each LLH in MCF-ABC with local

Operations Reverse Insert Swap

LLHs RRS RI RIS RS

Class A (dim2[101:500]) 10.594 10.560 10.359 10.601
Class B (dim2[501:1000]) 14.823 14.951 15.347 14.563
Class C (dim2[1001:10,000]) 16.549 16.596 16.634 16.534
Class D (dim>10,000) 18.176 17.738 17.746 17.458
Overall Average 12.833 12.834 12.800 12.764

Table 7
Average execution distributions (in percentages) of each LLH in MCF-ABC without lo

Operations Reverse Insert Swap

LLHs RRS RI RIS RS

Class A (dim2[101:500]) 74.958 23.252 0.731 0.105
Class B (dim2[501:1000]) 71.239 26.104 1.075 0.149
Class C (dim2[1001:10,000]) 70.836 28.564 0.199 0.024
Class D (dim>10,000) 60.086 38.974 0.467 0.011
Overall Average 72.952 25.395 0.665 0.092

630
� Hybrid discrete artificial bee colony algorithm with threshold
acceptance criterion for traveling salesman problem (HDABC) [89].

� Chained lin-kernighan for large traveling salesman problems (CLK)
[105].

� Effective heuristics for ant colony optimisation to handle large-scale
problems (ESACO) [60].

� Quantum inspired particle swarm combined with lin-kernighan-
helsgaun method to the traveling salesman problem (QPSO) [115].

� Honey bees mating optimisation algorithm for the Euclidean trav-
eling salesman problem (HBMO) [72].

In order to have a fair comparison, the maxIteration of the proposed
MCF-ABC are set such that it uses equal or less number of neighbourhood
search operations as compared with the benchmark algorithm (if stated)
as shown in Table 8. Note that a ceiling function (i.e. ⌈Dim/2⌉) is used to
determine popSize in Refs. [34] and [70]. For example, if the problem is
eil51, the value of popSize is ⌈51/2⌉¼ ⌈25.5⌉¼ 26. In ACO-ABC [70],
each of the ACO and ABC algorithms is executed for 250 iterations.
TSPoptBees uses a dynamic population size, and its stopping criteria are
based on the maximum number of iterations without improvement. The
average final popSize and maxIteration for each instance are reported in
Masutti and de Castro [9]. The average final popSize is varied between
99.60 and 177.00, while the average maxIteration used is varied between
search.

Shuffle Combined Operations δavg(%)

RSS SS RRIS RRSS RSIS RSSS

12.184 9.815 8.226 10.100 9.707 7.853 0.000
11.370 5.786 8.035 5.452 4.382 5.290 0.014
10.184 4.392 6.851 4.636 3.250 4.374 0.159
16.452 2.342 3.046 2.232 2.254 2.556 0.643
11.759 7.724 7.749 7.873 7.164 6.500 0.055

cal search.

Shuffle Combined Operations δavg(%)

RSS SS RRIS RRSS RSIS RSSS

0.077 0.059 0.666 0.095 0.030 0.026 5.498
0.112 0.072 1.035 0.138 0.040 0.035 10.115
0.019 0.011 0.311 0.023 0.006 0.005 18.061
0.013 0.004 0.427 0.013 0.003 0.002 23.361
0.068 0.049 0.644 0.084 0.026 0.022 9.474



Table 9
Performance comparison among MCF-ABC and nine ABC variants [34].

oliver30 eil51 berlin52 st70 pr76 kroA100 eil101 tsp225 a280

ABC [RS] 12.77 18.06 21.64 37.01 36.10 58.61 30.37 87.08 118.12
ABC [RSS] 0.00 0.50 0.24 1.48 1.58 3.74 5.22 26.12 42.46
ABC [RI] 4.88 8.02 11.29 14.21 15.04 21.47 12.78 27.40 38.04
ABC [RIS] 0.03 1.61 0.62 1.59 1.71 3.35 5.06 22.32 36.80
ABC [RRS] 0.33 2.59 3.05 2.67 1.53 2.63 5.30 8.07 11.27
ABC [RRIS] 0.00 0.35 0.00 0.55 0.62 1.89 3.51 21.62 33.48
ABC [RRSS] 0.00 0.32 0.00 0.80 0.64 1.89 3.59 20.93 38.01
ABC [RS, RSS, RRSS] 0.00 0.28 0.04 1.04 0.93 2.17 3.93 19.83 31.72
ABC [RI, RIS, RRIS] 0.00 0.39 0.00 0.56 0.45 1.04 2.90 12.41 23.92
MCF-ABC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 10
Performance comparison among MCF-ABC and ACO-ABC [70].

Instances ACO-ABC MCF-ABC

oliver30 0.00 0.00
eil51 3.39 0.00
berlin52 0.00 0.00
st70 3.47 0.00
eil76 2.31 0.00
pr76 6.39 0.00
kroA100 5.40 0.00
eil101 6.39 0.00
ch150 2.21 0.00
tsp225 7.74 0.00

Table 11
Performance comparison between MCF-ABC and TSPoptBees [9].

Instances TSPoptBees MCF-ABC Instances TSPoptBees MCF-ABC

att48 0.33 0.00 lin105 0.43 0.00
eil51 0.72 0.00 pr107 0.36 0.00
berlin52 0.32 0.00 pr124 0.84 0.00
st70 0.87 0.00 bier127 0.36 0.00
eil76 1.26 0.00 pr136 2.98 0.00
pr76 0.43 0.00 kroA150 1.51 0.00
kroA100 0.35 0.00 kroB150 1.54 0.00
kroB100 0.66 0.00 rat195 1.69 0.00
kroC100 0.70 0.00 kroA200 0.98 0.00
kroD100 1.18 0.00 kroB200 2.25 0.00
kroE100 0.57 0.00 tsp225 2.25 0.00
rd100 1.66 0.00 a280 2.02 0.00
eil101 0.77 0.00 lin318 2.34 0.00

Table 12
Performance comparison between MCF-ABC and BCO [73].

Instances BCO MCF-ABC Instances BCO MCF-ABC

eil101 0.000 0.000 pr299 0.029 0.000
lin105 0.000 0.000 lin318 0.159 0.000
pr107 0.000 0.000 rd400 0.229 0.000
gr120 0.078 0.000 fl417 0.130 0.000
pr124 0.000 0.000 gr431 0.582 0.000
bier127 0.000 0.000 pr439 0.041 0.000
ch130 0.000 0.000 pcb442 0.423 0.000
pr136 0.018 0.000 d493 0.354 0.002
gr137 0.000 0.000 att532 0.351 0.002
pr144 0.000 0.000 ali535 0.103 0.000
ch150 0.000 0.000 si535 0.034 0.100
kroA150 0.000 0.000 pa561 0.948 0.004
kroB150 0.000 0.000 u574 0.697 0.000
pr152 0.000 0.000 rat575 0.537 0.020
u159 0.000 0.000 p654 0.048 0.000
si175 0.000 0.000 d657 0.445 0.006
rat195 0.198 0.000 gr666 0.553 0.016
d198 0.072 0.000 u724 0.622 0.016
kroA200 0.000 0.000 rat783 0.895 0.000
kroB200 0.002 0.000 pr1002 0.853 0.011
gr202 0.027 0.000 si1032 0.000 0.000
ts225 0.000 0.000 vm1084 0.495 0.011
tsp225 0.000 0.000 pcb1173 0.924 0.010
pr226 0.000 0.000 d1291 0.447 0.084
gr229 0.010 0.000 d1655 1.062 0.151
gil262 0.000 0.000 u1817 1.356 0.268
pr264 0.000 0.000 u2152 1.496 0.270
a280 0.000 0.000 pr2392 1.044 0.137

Table 13
Performance comparison between MCF-ABC and HDABC [89].

Instances HDABC MCF-ABC Instances HDABC MCF-ABC

eil101 0.05 0.00 lin318 0.26 0.00
pr107 0.10 0.00 rd400 0.26 0.00
pr124 0.00 0.00 gr431 1.01 0.00
pr144 0.02 0.00 pr439 0.22 0.00
ch150 0.31 0.00 pcb442 0.15 0.00
kroA150 0.05 0.00 u574 0.37 0.00
pr152 0.00 0.00 rat575 0.75 0.02
rat195 0.61 0.00 u724 0.33 0.02
d198 0.27 0.00 rat783 0.91 0.00
kroA200 0.05 0.00 pr1002 0.71 0.01
kroB200 0.02 0.00 pcb1173 0.77 0.01
ts225 0.00 0.00 d1291 1.64 0.08
pr226 0.00 0.00 d1655 1.28 0.15
gr229 0.38 0.00 fnl4461 1.30 0.24
gil262 0.00 0.00 pla7397 1.47 0.27
pr264 0.00 0.00 pla85900 2.23 0.77
pr299 0.06 0.00

S.S. Choong et al. Swarm and Evolutionary Computation 44 (2019) 622–635
1155.83 and 4271.83. As the source code of CLK [105] is available in the
Concorde TSP solver software,1 CLK is re-executed on the TSP instances
in Classes C and D (as defined in Section 4.2) for comparison. CLK is a
single-solution-based model (popSize¼ 1), and it is allowed to run for 10,
000 iterations. Except this maximum iteration, the default settings in
Concorde are retained for other configurations, which include the level of
backtracking (i.e. (4, 3, 3, 2)-breadth), choice of the kick (i.e. 50-step
random-walk kick), and the initialisation method (i.e. Quick-Boruvka).
For the comparison with ABC [34], ACO-ABC [70], 2-opt ABC [86],
TSPoptBees [9], BCO [73], HDABC [89], and CLK [105], themaxIteration
of MCF-ABC is set to 1000, while for the comparison with ESACO [60],
QPSO [115], and HBMO [72], it is set to 300, 10,000, and 5000
respectively. The δavg results obtained by the benchmark algorithms are
shown in Tables 9–17. The Wilcoxon signed rank test with 95% confi-
dence interval is conducted for statistical comparison between MCF-ABC
and each benchmark algorithm.

Table 9 shows the performance comparison among MCF-ABC and
nine ABC variants [34]. The neighbourhood search heuristic(s) used in
each variant is stated in the parentheses. For example, ABC [RS] denotes
1 Available: http://www.math.uwaterloo.ca/tsp/concorde/.

631
an ABC variant with Random Swap as the neighbourhood search heu-
ristic, while ABC [RI, RIS, RRIS] denotes an ABC variant with Random
Insertion, Random Insertion of Subsequence, and Random Reversing
Insertion of Subsequence as the neighbourhood search heuristics. The

http://www.math.uwaterloo.ca/tsp/concorde/


Table 14
Performance comparison between MCF-ABC and CLK [105].

Instances CLK MCF-ABC Instances CLK MCF-ABC

pr1002 0.126 0.011 pr2392 0.283 0.137
si1032 0.005 0.000 fl3795 0.732 0.184
vm1084 0.038 0.011 fnl4461 0.145 0.239
pcb1173 0.041 0.010 rl5915 0.277 0.435
d1291 0.216 0.084 pla7397 0.275 0.273
d1655 0.170 0.151 rl11849 0.409 0.512
u1817 0.361 0.268 pla85900 0.698 0.774
u2152 0.546 0.270

Table 15
Performance comparison between MCF-ABC and ESACO [60].

Instances ESACO MCF-ABC Instances ESACO MCF-ABC

lin105 0.000 0.000 rat783 0.043 0.000
d198 0.000 0.000 pr1002 0.179 0.007
kroA200 0.000 0.000 fl3795 0.388 0.178
a280 0.004 0.000 fnl4461 0.482 0.215
lin318 0.059 0.000 rl5915 0.669 0.439
pcb442 0.050 0.000 pla7397 0.553 0.233
att532 0.055 0.004 rl11849 0.764 0.479

Table 16
Performance comparison between MCF-ABC and QPSO [115].

Instances QPSO MCF-ABC Instances QPSO MCF-ABC

swiss42 0.000 0.000 pr1002 0.000 0.000
gr229 0.010 0.000 pcb1173 0.002 0.000
pcb442 0.000 0.000 d1291 0.096 0.010
gr666 0.029 0.003 u1817 0.073 0.136
dsj1000 0.026 0.003 fl3795 0.025 0.022

Table 17
Performance comparison between MCF-ABC and HBMO [72].

Instances HBMO MCF-ABC Instances HBMO MCF-ABC

eil101 0.000 0.000 pr439 0.000 0.000
lin105 0.000 0.000 pcb442 0.000 0.000
pr107 0.000 0.000 d493 0.000 0.000
pr124 0.000 0.000 rat575 0.000 0.007
bier127 0.000 0.000 p654 0.000 0.000
ch130 0.000 0.000 d657 0.000 0.002
pr136 0.000 0.000 rat783 0.000 0.000
pr144 0.000 0.000 dsj1000 0.012 0.004
ch150 0.000 0.000 pr1002 0.001 0.000
kroA150 0.000 0.000 vm1084 0.005 0.007
pr152 0.000 0.000 pcb1173 0.003 0.000
rat195 0.000 0.000 d1291 0.000 0.042
d198 0.000 0.000 d1655 0.122 0.008
kroA200 0.000 0.000 u1817 0.028 0.172
kroB200 0.000 0.000 u2152 0.390 0.140
ts225 0.000 0.000 pr2392 0.028 0.027
pr226 0.000 0.000 fl3795 0.370 0.041
gil262 0.000 0.000 fnl4461 0.350 0.121
pr264 0.000 0.000 rl5915 0.012 0.186
a280 0.000 0.000 pla7397 0.009 0.132
pr299 0.000 0.000 rl11849 0.098 0.273
rd400 0.000 0.000 pla85900 0.210 0.447
fl417 0.000 0.000

S.S. Choong et al. Swarm and Evolutionary Computation 44 (2019) 622–635
description of each LLH can be found in Table 1. Besides that, these nine
ABC variants are integrated with a 2-opt local search strategy. The values
shown in Table 9 are the δavg results obtained by the algorithms when
solving each TSP instance. The results indicate that MCF-ABC consis-
tently solves all the nine instances to the known optimum, and it out-
performs all nine ABC variants reported in Kıran et al. [34].

Table 10 shows the performance comparison between MCF-ABC and
632
ACO-ABC [70]. In ACO-ABC, ACO is applied to generate initial solutions
for ABC and subsequently, the ABC algorithm utilises RI, RIS, and RRIS
with a random selectionmethod as its neighbourhood searchmechanism.
The proposed MCF-ABC model is able to consistently solve all the ten
instances to the known optimum, and it outperforms ACO-ABC.

Table 11 shows the performance comparison between MCF-ABC and
TSPoptBees [9]. MCF-ABC is able to obtain better δavg as compared with
TSPoptBees for all instances. Besides that, MCF-ABC consistently solves
all the 26 instances to the known optimum for 30 replications.

Table 12 shows the performance comparison between MCF-ABC and
BCO [73]. MCF-ABC obtains better δavg than BCO for 33 instances, while
BCO outperforms MCF-ABC in solving si535. MCF-ABC is able to
consistently solve 39 out of 56 instances to the known optimum as
compared with 22 out of 56 instances by BCO.

Table 13 shows the performance comparison between MCF-ABC and
HDABC [89]. MCF-ABC obtains better δavg than HDABC for 27 instances.
For the other six instances, bothMCF-ABC and HDABC obtain δavg¼ 0.00.
MCF-ABC is able to solve 23 out of 33 instances to the known optimum,
as compared with 6 out of 33 instances by HDABC.

Table 14 shows the performance comparison between MCF-ABC and
CLK [105]. MCF-ABC and CLK employ the same implementation of the
LK local search strategy. Comparing with CLK, MCF-ABC obtains better
δavg in solving smaller-scale instances (dim�3795). However, CLK out-
performs MCF-ABC for larger-scale instances, i.e. fnl4461, pla7397,
rl11849, and pla85900.

Table 15 shows the performance comparison between MCF-ABC and
ESACO [60]. Both MCF-ABC and ESACO are able to solve lin105, d198
and kroA200 to the known optimum. However, for the TSP instances
with dim>200, MCF-ABC outperforms ESACO. MCF-ABC is able to solve
7 out of 14 instances to the known optimumwithin 3000 neighbourhood
search operations as compared with 3 out of 14 instances by ESACO.

Table 16 shows the performance comparison between MCF-ABC and
QPSO [115]. Both MCF-ABC and QPSO employ an LK-based local search.
MCF-ABC obtains better or equal δavg as compared with QPSO in solving
all the ten instances except u1817. MCF-ABC is able to solve 5 out of 10
instances to the known optimum within 10,000 neighbourhood search
operations as compared with 3 out of 10 instances by QPSO.

Table 17 shows the performance comparison between MCF-ABC and
HBMO [72]. The local search strategy employed by HBMO is known as
ENS. ENS is similar to the LK local search because they both use multiple
neighbourhood structures. For the instances with smaller dimensions
(i.e. dim<500), both MCF-ABC and HBMO are able to yield the known
optimum within 5000 neighbourhood search operations. MCF-ABC out-
performs HBMO in solving several medium-scale instances, i.e. u2152,
pr2392, fl3795, and fnl4461. However, for larger-scale instances, i.e.
rl5915, pla7397, rl11849, and pla85900, HBMO yields better δavg as
compared with MCF-ABC.

To statistically compare the overall performance of MCF-ABC and
other algorithms, the Wilcoxon signed rank test with 95% confidence
interval is employed. The results of the Wilcoxon signed ranks test are
summarised in Table 18. Table 18 indicates that, based on the 95%
confidence interval, the proposed MCF-ABC model significantly out-
performs 15 algorithms, with W�WCri,N and Rþ>R�. Besides, it is
comparable with CLK, QPSO and HBMO (W>WCri,N).

5. Conclusions

The Artificial Bee Colony (ABC) algorithm is a swarm-intelligence-
based model for solving various optimisation problems. One of the
crucial components of ABC is the neighbourhood search, which is per-
formed by the employed and onlooker bees. When ABC is used to solve
combinatorial discrete optimisation problems, single or multiple
problem-specific perturbative heuristics are adopted as the neighbour-
hood search mechanism of the employed and onlooker bees. When there
are multiple neighbourhood search heuristics, the selection of these
heuristics has a significant impact on the performance of the ABC



Table 18
The Wilcoxon signed ranked test for the comparison of MCF-ABC and state-of-
the-art algorithms.

Comparisons
(MCF-ABC vs …)

Citation N Rþ R- W WCri,N Significant
Difference

ABC [RS] [34] 9 45 0 0 5 yes
ABC [RSS] 8 36 0 0 3 yes
ABC [RI] 9 45 0 0 5 yes
ABC [RIS] 9 45 0 0 5 yes
ABC [RR] 9 45 0 0 5 yes
ABC [RRIS] 7 28 0 0 2 yes
ABC [RRSS] 7 28 0 0 2 yes
ABC [RS, RSS,
RRSS]

8 36 0 0 3 yes

ABC [RI, RIS,
RRIS]

7 28 0 0 2 yes

ACO-ABC [70] 8 36 0 0 3 yes
2-opt ABC [86] 8 36 0 0 3 yes
TSPoptBees [9] 26 351 0 0 98 yes
BCO [73] 34 587 8 8 182 yes
HDABC [89] 27 378 0 0 107 yes
CLK [105] 15 84 36 36 25 no
ESACO [60] 11 66 0 0 10 yes
QPSO [115] 7 22 6 6 2 no
HBMO [72] 17 71 82 71 34 no

S.S. Choong et al. Swarm and Evolutionary Computation 44 (2019) 622–635
optimisation model. In this study, we have proposed the use of a hyper-
heuristic method, namely Modified Choice Function (MCF), to guide the
selection of the neighbourhood search heuristics in ABC. Ten low-level
heuristics (LLHs) have been adopted in the proposed MCF-ABC model.
Besides that, the Lin-Kernighan (LK) local search strategy is incorporated
into MCF-ABC to further enhance its usefulness.

The proposed MCF-ABC model has been evaluated with 64 TSP in-
stances. The experimental results show that MCF-ABC significantly out-
performs MCF-ABC(4), which uses four LLHs with basic operations. This
indicates that a variety of LLHs brings advantages to the search process.
In addition, MCF-ABC statistically outperforms Random-ABC, which
utilises a random LLH selection strategy. The comparison studies indicate
that MCF-ABC is competitive among the state-of-the-art algorithms.

Acknowledgement

The authors gratefully acknowledge the support of the Research
University Grant of Universiti Sains Malaysia (Grant No: 1001/PKOMP/
814274) for this research. Also, the first author acknowledges the Min-
istry of Higher Education of Malaysia for the MyPhD scholarship to study
for the PhD degree at the Universiti Sains Malaysia (USM).

References

[1] C. Blum, X. Li, Swarm intelligence in optimization, in: Swarm Intelligence,
Springer, 2008, pp. 43–85.

[2] J. Kennedy, Particle swarm optimization, in: C. Sammut, G.I. Webb (Eds.),
Encyclopedia of Machine Learning, Springer US, Boston, MA, 2010, pp. 760–766.

[3] M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization, Comput. Intell.
Magazine, IEEE 1 (4) (2006) 28–39.

[4] X.-S. Yang, A new metaheuristic bat-inspired algorithm, in: J.R. Gonz�alez,
D.A. Pelta, C. Cruz, G. Terrazas, N. Krasnogor (Eds.), Nature Inspired Cooperative
Strategies for Optimization (NICSO 2010), Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010, pp. 65–74.

[5] X.-S. Yang, Firefly algorithm, stochastic test functions and design optimisation,
Int. J. Bio-Inspired Comput. 2 (2) (2010) 78–84.

[6] A.H. Gandomi, X.-S. Yang, A.H. Alavi, Cuckoo search algorithm: a metaheuristic
approach to solve structural optimization problems, Eng. Comput. 29 (1) (2013)
17–35.

[7] D. Karaboga, An Idea Based on Honey Bee Swarm for Numerical Optimization,
Erciyes University, Engineering Faculty, Computer Engineering Department,
2005. Technical report-tr06.

[8] L.P. Wong, M.Y.H. Low, C.S. Chong, A bee colony optimization algorithm for
traveling salesman problem, in: Proceedings of the Second Asia International
Conference on Modeling & Simulation, 2008, pp. 818–823.

[9] T.A.S. Masutti, L.N. de Castro, TSPoptBees: a bee-inspired algorithm to solve the
traveling salesman problem, in: Proceedings of the 2016 5th IIAI International
Congress on Advanced Applied Informatics, IIAI-AAI), 2016, pp. 593–598.
633
[10] M.S. Kıran, H. Hakli, M. Gündüz, H. Uguz, Artificial bee colony algorithm with
variable search strategy for continuous optimization, Inf. Sci. 300 (2015)
140–157.

[11] M.S. Kıran, M. Gündüz, The analysis of peculiar control parameters of artificial bee
colony algorithm on the numerical optimization problems, J. Comput. Commun. 2
(04) (2014) 127.

[12] X. Li, G. Yang, M.S. Kıran, Search experience-based search adaptation in artificial
bee colony algorithm, in: Proceedings of the 2016 IEEE Congress on Evolutionary
Computation, CEC), 2016, pp. 2524–2531.

[13] M. Metlicka, D. Davendra, Chaos driven discrete artificial bee algorithm for
location and assignment optimisation problems, Swarm Evolut. Comput. 25
(2015) 15–28.

[14] B. Jayalakshmi, A. Singh, A hybrid artificial bee colony algorithm for the p-
median problem with positive/negative weights, OPSEARCH 54 (1) (March 01
2017) 67–93.

[15] M. Basti, M. Sevkli, An artificial bee colony algorithm for the p-median facility
location problem, Int. J. Metaheuristics (IJMHeur) 4 (1) (2015) 91–113.

[16] B. Jayalakshmi, A. Singh, A swarm intelligence approach for the p-median
problem, Int. J. Metaheuristics (IJMHeur) 5 (2) (2016) 136–155.

[17] A. Singh, An artificial bee colony algorithm for the leaf-constrained minimum
spanning tree problem, Appl. Soft Comput. 9 (2) (2009) 625–631.

[18] S. Sundar, A. Singh, A swarm intelligence approach to the quadratic minimum
spanning tree problem, Inf. Sci. 180 (17) (2010) 3182–3191.

[19] A. Singh, S. Sundar, An artificial bee colony algorithm for the minimum routing
cost spanning tree problem, Soft Comput. 15 (12) (2011) 2489–2499.

[20] A.K. Alshamiri, A. Singh, B.R. Surampudi, Artificial bee colony algorithm for
clustering: an extreme learning approach, Soft Comput. 20 (8) (2016) 3163–3176.

[21] C. Ozturk, E. Hancer, D. Karaboga, Dynamic clustering with improved binary
artificial bee colony algorithm, Appl. Soft Comput. 28 (2015) 69–80.

[22] V.R. Dokku, A. Singh, An artificial bee colony algorithm for the minimum average
routing path clustering problem in multi-hop underwater sensor networks, in:
Global Trends in Computing and Communication Systems, Springer, 2012,
pp. 212–219.

[23] M.S. Kiran, E. €Ozceylan, T. Paksoy, Artificial bee colony algorithm for solving
uncapacitated facility location problems, in: Proceedings of the 25th European
Conference on Operational Research, 2012, p. 165.

[24] M.S. Kıran, The continuous artificial bee colony algorithm for binary optimization,
Appl. Soft Comput. 33 (2015) 15–23.

[25] M.S. Kıran, M. Gündüz, XOR-based artificial bee colony algorithm for binary
optimization, Turk. J. Electr. Eng. Comput. Sci. 21 (Sup. 2) (2013) 2307–2328.

[26] S. Sabet, F. Farokhi, M. Shokouhifar, A novel artificial bee colony algorithm for
the knapsack problem, in: Proceedings of the 2012 International Symposium on
Innovations in Intelligent Systems and Applications, INISTA), 2012, pp. 1–5.

[27] S. Pulikanti, A. Singh, An artificial bee colony algorithm for the quadratic
knapsack problem, in: Proceedings of the International Conference on Neural
Information Processing, 2009, pp. 196–205.

[28] S. Sundar, A. Singh, A. Rossi, An artificial bee colony algorithm for the 0–1
multidimensional knapsack problem, in: Proceedings of the International
Conference on Contemporary Computing, 2010, pp. 141–151.

[29] R. Zhang, S. Song, C. Wu, A hybrid artificial bee colony algorithm for the job shop
scheduling problem, Int. J. Prod. Econ. 141 (1) (2013) 167–178.

[30] A. Banharnsakun, B. Sirinaovakul, T. Achalakul, Job shop scheduling with the
best-so-far ABC, Eng. Appl. Artif. Intell. 25 (3) (2012) 583–593.

[31] A. Rossi, A. Singh, M. Sevaux, A metaheuristic for the fixed job scheduling
problem under spread time constraints, Comput. Oper. Res. 37 (6) (2010)
1045–1054.

[32] S. Iqbal, M. Kaykobad, M.S. Rahman, Solving the multi-objective vehicle routing
problem with soft time windows with the help of bees, Swarm Evolut. Comput. 24
(2015) 50–64.

[33] A.S. Bhagade, P.V. Puranik, Artificial bee colony (ABC) algorithm for vehicle
routing optimization problem, Int. J. Soft Comput. Eng. 2 (2) (2012) 329–333.

[34] M.S. Kıran, H. _Işcan, M. Gündüz, The analysis of discrete artificial bee colony
algorithm with neighborhood operator on traveling salesman problem, Neural
Comput. Appl. 23 (1) (2013) 9–21.

[35] H.E. Kocer, M.R. Akca, An improved artificial bee colony algorithm with local
search for traveling salesman problem, Cybern. Syst. 45 (8) (2014) 635–649.

[36] E.K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. €Ozcan, et al., Hyper-
heuristics: a survey of the state of the art, J. Oper. Res. Soc. 64 (12) (2013)
1695–1724.

[37] J. Denzinger, M. Fuchs, M. Fuchs, High Performance ATP Systems by Combining
Several AI Methods, University of Kaiserslautern, 1996. Technical Report, SEKI-
Report SR-96-09.

[38] E.K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. €Ozcan, J.R. Woodward,
A classification of hyper-heuristic approaches, in: M. Gendreau, J.Y. Potvin (Eds.),
Handbook of Metaheuristics, Springer, US, 2010, pp. 449–468.

[39] E. €Ozcan, B. Bilgin, E.E. Korkmaz, A comprehensive analysis of hyper-heuristics,
Intell. Data Anal. 12 (1) (2008) 3–23.

[40] W.G. Jackson, E. Ozcan, J.H. Drake, Late acceptance-based selection hyper-
heuristics for cross-domain heuristic search, in: Proceedings of the 2013 13th UK
Workshop on Computational Intelligence (UKCI), 2013, pp. 228–235.

[41] P. Cowling, G. Kendall, E. Soubeiga, A hyperheuristic approach to scheduling a
sales summit, in: Proceedings of the International Conference on the Practice and
Theory of Automated Timetabling III, 2000, pp. 176–190.

[42] J.H. Drake, E. €Ozcan, E.K. Burke, An improved choice function heuristic selection
for cross domain heuristic search, in: T. Bartz-Beielstein, J. Branke, B. Filipi�c,

http://refhub.elsevier.com/S2210-6502(17)30944-6/sref1
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref1
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref1
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref2
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref2
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref2
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref3
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref3
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref3
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref4
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref4
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref4
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref4
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref4
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref4
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref5
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref5
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref5
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref6
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref6
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref6
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref6
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref7
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref7
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref7
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref8
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref8
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref8
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref8
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref8
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref9
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref9
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref9
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref9
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref10
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref10
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref10
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref10
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref11
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref11
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref11
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref12
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref12
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref12
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref12
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref13
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref13
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref13
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref13
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref14
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref14
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref14
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref14
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref15
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref15
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref15
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref16
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref16
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref16
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref17
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref17
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref17
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref18
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref18
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref18
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref19
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref19
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref19
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref20
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref20
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref20
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref21
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref21
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref21
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref22
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref22
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref22
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref22
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref22
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref23
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref23
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref23
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref23
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref24
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref24
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref24
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref25
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref25
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref25
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref26
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref26
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref26
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref26
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref27
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref27
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref27
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref27
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref28
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref28
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref28
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref28
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref28
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref29
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref29
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref29
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref30
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref30
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref30
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref31
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref31
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref31
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref31
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref32
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref32
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref32
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref32
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref33
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref33
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref33
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref34
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref34
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref34
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref34
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref34
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref35
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref35
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref35
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref36
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref36
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref36
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref36
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref36
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref37
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref37
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref37
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref38
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref38
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref38
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref38
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref38
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref39
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref39
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref39
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref39
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref40
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref40
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref40
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref40
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref41
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref41
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref41
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref41
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref42
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref42
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref42
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref42


S.S. Choong et al. Swarm and Evolutionary Computation 44 (2019) 622–635
J. Smith (Eds.), Parallel Problem Solving from Nature-PPSN XII, Springer
International Publishing, Switzerland, 2012, pp. 307–316.

[43] J.H. Drake, E. Ozcan, E.K. Burke, A modified choice function hyper-heuristic
controlling unary and binary operators, in: Proceedings of the IEEE Congress on
Evolutionary Computation (CEC 2015), 2015.

[44] K.Z. Zamli, B.Y. Alkazemi, G. Kendall, A tabu search hyper-heuristic strategy for t-
way test suite generation, Appl. Soft Comput. 44 (2016) 57–74.

[45] P. Dempster, J.H. Drake, Two frameworks for cross-domain heuristic and
parameter selection using harmony search, in: Proceedings of the 2nd
International Conference on Harmony Search Algorithm (ICHSA2015), 2016,
pp. 83–94.

[46] J. Lin, Z.J. Wang, X.D. Li, A backtracking search hyper-heuristic for the distributed
assembly flow-shop scheduling problem, Swarm Evolut. Comput. 36 (Oct 2017)
124–135.

[47] E. €Ozcan, M. Mısır, G. Ochoa, E.K. Burke, A reinforcement learning: great-deluge
hyper-heuristic, Int. J. Appl. Metaheuristic Comput. (IJAMC) 1 (1) (2012) 39–59.

[48] D. Falcao, A. Madureira, I. Pereira, Q-learning based hyper-heuristic for
scheduling system self-parameterization, in: Proceedings of the 2015 10th Iberian
Conference on Information Systems and Technologies (CISTI), 2015, pp. 1–7.

[49] K. Chakhlevitch, P. Cowling, Hyperheuristics: recent developments, in: C. Cotta,
M. Sevaux, K. S€orensen (Eds.), Adaptive and Multilevel Metaheuristics, Springer-
Verlag, Berlin Heidelberg, 2008, pp. 3–29.

[50] M. Kalender, A. Kheiri, E. €Ozcan, E.K. Burke, A greedy gradient-simulated
annealing selection hyper-heuristic, Soft Comput. 17 (12) (2013) 2279–2292.

[51] W. Van Onsem, B. Demoen, P. De Causmaecker, Hyper-criticism: a critical
reflection on todays hyper-heuristics, in: Proceedings of the 28th Anual
Conference of the Operational Research Society, 2014, pp. 159–161.

[52] N.R. Sabar, M. Ayob, G. Kendall, R. Qu, Automatic design of a hyper-heuristic
framework with gene expression programming for combinatorial optimization
problems, IEEE Trans. Evol. Comput. 19 (3) (Jun 2015) 309–325.

[53] S.S. Choong, L.P. Wong, C.P. Lim, Automatic design of hyper-heuristic based on
reinforcement learning, Inf. Sci. 436–437 (2018) 89–107.

[54] S. Lin, B.W. Kernighan, An effective heuristic algorithm for the traveling-salesman
problem, Oper. Res. 21 (2) (1973) 498–516.

[55] G. Reinelt, TSPLIB, Available:, 1991 http://www.iwr.uni-heidelberg.de/groups/
comopt/software/TSPLIB95/.

[56] G. Laporte, The traveling salesman problem: an overview of exact and
approximate algorithms, Eur. J. Oper. Res. 59 (2) (1992) 231–247.

[57] D. Applegate, The Traveling Salesman Problem: a Computational Study, Princeton
University Press, 2006.

[58] M. Akhand, S. Hossain, S. Akter, A comparative study of prominent particle swarm
optimization based methods to solve traveling salesman problem, Int. J. Swarm
Intell. Evol. Comput. 5 (139) (2016) 2.

[59] B. Cheng, H. Lu, X. Xu, W. Shen, Improved local search-based chaotic discrete
particle swarm optimization algorithm for solving traveling salesman problem,
J. Comput. Appl. 1 (2016) 028.

[60] H. Ismkhan, Effective heuristics for ant colony optimization to handle large-scale
problems, Swarm Evolut. Comput. 32 (2017) 140–149.

[61] I.D.I.D. Ariyasingha, T.G.I. Fernando, Performance analysis of the multi-objective
ant colony optimization algorithms for the traveling salesman problem, Swarm
Evolut. Comput. 23 (2015) 11–26.

[62] H.S. Chuah, L.P. Wong, F.H. Hassan, Swap-based discrete firefly algorithm for
traveling salesman problem, in: Proceedings of the International Workshop on
Multi-disciplinary Trends in Artificial Intelligence, 2017, pp. 409–425.

[63] L. Zhou, L. Ding, X. Qiang, Y. Luo, An improved discrete firefly algorithm for the
traveling salesman problem, J. Comput. Theor. Nanosci. 12 (7) (2015)
1184–1189.

[64] E. Osaba, X.-S. Yang, F. Diaz, P. Lopez-Garcia, R. Carballedo, An improved discrete
bat algorithm for symmetric and asymmetric traveling salesman problems, Eng.
Appl. Artif. Intell. 48 (2016) 59–71.

[65] Y. Saji, M.E. Riffi, A novel discrete bat algorithm for solving the travelling
salesman problem, Neural Comput. Appl. 27 (7) (2016) 1853–1866.

[66] A. Ouaarab, B. Ahiod, X.-S. Yang, Discrete cuckoo search algorithm for the
travelling salesman problem, Neural Comput. Appl. 24 (7–8) (2014) 1659–1669.

[67] Y. Zhou, X. Ouyang, J. Xie, A discrete cuckoo search algorithm for travelling
salesman problem, Int. J. Collab. Intell. 1 (1) (2014) 68–84.

[68] S. Kumar, J. Kurmi, S.P. Tiwari, Hybrid ant colony optimization and Cuckoo
search algorithm for travelling salesman problem, Int. J. Sci. Res. Publ. 5 (6)
(2015) 1–5.

[69] M. Mahi, €O.K. Baykan, H. Kodaz, A new hybrid method based on particle swarm
optimization, ant colony optimization and 3-opt algorithms for traveling salesman
problem, Appl. Soft Comput. 30 (C) (2015) 484–490.

[70] M. Gündüz, M.S. Kiran, E. €Ozceylan, A hierarchic approach based on swarm
intelligence to solve the traveling salesman problem, Turk. J. Electr. Eng. Comput.
Sci. 23 (1) (2015) 103–117.

[71] E. €Ozceylan, M.S. Kıran, Y. Atasagun, A new hybrid heuristic approach for solving
green traveling salesman problem, in: Proceedings of the 41st International
Conference on Computers & Industrial Engineering, October, 2011, pp. 23–26.

[72] Y. Marinakis, M. Marinaki, G. Dounias, Honey bees mating optimization algorithm
for the Euclidean traveling salesman problem, Inf. Sci. 181 (20) (2011)
4684–4698.

[73] L.P. Wong, A Generic Bee Colony Optimization Framework for Combinatorial
Optimization Problems, PhD thesis, School of Computer Engineering, Nanyang
Technological University, 2012.

[74] L.P. Wong, M.Y.H. Low, C.S. Chong, A generic bee colony optimization framework
for combinatorial optimization problems, in: Proceedings of the 2010 Fourth Asia
634
International Conference on Mathematical/Analytical Modelling and Computer
Simulation (AMS), 2010, pp. 144–151.

[75] L.P. Wong, C.Y. Puan, M.Y.H. Low, Y.W. Wong, Bee colony optimisation algorithm
with big valley landscape exploitation for job shop scheduling problems, Int. J.
Bio-Inspired Comput. 2 (2) (2010) 85–99.

[76] W.M. Choo, L.P. Wong, A.T. Khader, A modified bee colony optimization with
local search approach for job shop scheduling problems relevant to bottleneck
machines, Int. J. Adv. Soft Comput. Its Appl. 8 (2) (2016) 52–78.

[77] L.P. Wong, M.Y.H. Low, C.S. Chong, Solving job shop scheduling problems with a
generic bee colony optimization framework, in: Proceedings of the International
Conrerence on Industrial Engineering and Systems Management, International
Institute for Innovation, Industrial Engineering and Entrepreneurship, 2011,
pp. 269–280.

[78] M.H. Wun, L.P. Wong, A.T. Khader, T.P. Tan, A bee colony optimization with
automated parameter tuning for sequential ordering problem, in: Proceedings of
the Fourth World Congress on Information and Communication Technologies
(WICT 2014), 2014, pp. 314–319.

[79] L.P. Wong, S.S. Choong, A bee colony optimization algorithm with frequent-
closed-pattern-based pruning strategy for traveling salesman problem, in:
Proceeding of the Conference on Technologies and Applications of Artificial
Intelligence (TAAI 2015), 2015, pp. 308–314.

[80] L.P. Wong, M.Y.H. Low, C.S. Chong, An efficient bee colony optimization
algorithm for traveling salesman problem using frequency-based pruning, in:
Proceedings of the 7th IEEE International Conference on Industrial Informatics,
2009, pp. 775–782.

[81] S.S. Choong, L.P. Wong, C.P. Lim, in: A Dynamic Fuzzy-based Dance Mechanism
for the Bee Colony Optimization Algorithm, Computational Intelligence, 2018,
pp. 1–26.

[82] L.P. Wong, A.T. Khader, M.A. Al-Betar, T.P. Tan, Solving asymmetric traveling
salesman problems using a generic bee colony optimization framework with
insertion local search, in: Proceedings of the 13th International Conference on
Intelligent Systems Design and Applications (ISDA 2013), 2013, pp. 20–27.

[83] A. Banharnsakun, T. Achalakul, B. Sirinaovakul, ABC-GSX: a hybrid method for
solving the traveling salesman problem, in: Proceedings of the Second World
Congress on Nature and Biologically Inspired Computing (NaBIC 2010), 2010,
pp. 7–12.

[84] H. Sengoku, I. Yoshihara, A fast TSP solver using GA on JAVA, in: Proceedings of
the Third International Symposium on Artificial Life, and Robotics (AROB III’98),
1998, pp. 283–288.

[85] D. Karaboga, B. Gorkemli, A combinatorial artificial bee colony algorithm for
traveling salesman problem, in: Proceedings of the International Symposium on
Innovations in Intelligent Systems and Applications (INISTA), 2011, pp. 50–53.

[86] B. Akay, E. Aydoǧan, L. Karacan, 2-Opt based artificial bee colony algorithm for
solving traveling salesman problem, in: Proceedings of the 2nd World Conference
on Information Technology (WCIT-2011), 2011, pp. 666–672.

[87] W.H. Li, W.J. Li, Y. Yang, H.Q. Liao, J.L. Li, X.P. Zheng, Artificial bee colony
algorithm for traveling salesman problem, in: Proceedings of the Advanced
Materials Research, 2011, pp. 2191–2196.

[88] G. Tao, Z. Michalewicz, Inver-over operator for the TSP, in: Proceedings of the
International Conference on Parallel Problem Solving from Nature, 1998,
pp. 803–812.

[89] Y. Zhong, J. Lin, L. Wang, H. Zhang, Hybrid discrete artificial bee colony
algorithm with threshold acceptance criterion for traveling salesman problem, Inf.
Sci. 421 (2017) 70–84.

[90] K. Karabulut, M.F. Tasgetiren, A discrete artificial bee colony algorithm for the
traveling salesman problem with time windows, in: Proceedings of the 2012 IEEE
Congress on Evolutionary Computation (CEC), 2012, pp. 1–7.

[91] M. Nawaz, E.E. Enscore, I. Ham, A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem, Omega 11 (1) (1983/01/01/1983) 91–95.

[92] V. Pandiri, A. Singh, Two metaheuristic approaches for the multiple traveling
salesperson problem, Appl. Soft Comput. 26 (2015) 74–89.

[93] V. Pandiri, A. Singh, Swarm intelligence approaches for multidepot salesmen
problems with load balancing, Appl. Intell. 44 (4) (2016) 849–861.

[94] W. Zhong, H. Shan, Z. Chen, L. Xia, Multiple traveling salesman problem with
precedence constraints based on modified dynamic tabu artificial bee colony
algorithm, J. Inf. Comput. Sci. 11 (4) (2014) 1225–1232.

[95] P. Cowling, G. Kendall, E. Soubeiga, A parameter-free hyperheuristic for
scheduling a sales summit, in: Proceedings of the 4th Metaheuristic International
Conference, 2001, pp. 127–131.

[96] G.A. Croes, A method for solving traveling-salesman problems, Oper. Res. 6 (6)
(1958) 791–812.

[97] S. Lin, Computer solutions of the traveling salesman problem, Bell Syst. Technol. J.
44 (10) (1965) 2245–2269.

[98] R. Martí, J.A. Lozano, A. Mendiburu, L. Hernando, Multi-start methods, in:
M. Gendreau, J.Y. Potvin (Eds.), Handbook of Heuristics, Springer, US, 2016,
pp. 1–21.

[99] N. Makrymanolakis, M. Marinaki, Y. Marinakis, Data mining parameters' selection
procedure applied to a multi-start local search algorithm for the permutation flow
shop scheduling problem, in: Proceedings of the 2016 IEEE Symposium Series on
Computational Intelligence (SSCI), 2016, pp. 1–8.

[100] M. Avci, S. Topaloglu, A multi-start iterated local search algorithm for the
generalized quadratic multiple knapsack problem, Comput. Oper. Res. 83 (2017)
54–65.

[101] J. Michallet, C. Prins, L. Amodeo, F. Yalaoui, G. Vitry, Multi-start iterated local
search for the periodic vehicle routing problem with time windows and time
spread constraints on services, Comput. Oper. Res. 41 (2014) 196–207.

http://refhub.elsevier.com/S2210-6502(17)30944-6/sref42
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref42
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref42
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref43
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref43
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref43
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref44
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref44
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref44
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref45
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref45
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref45
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref45
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref45
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref46
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref46
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref46
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref46
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref47
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref47
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref47
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref47
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref48
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref48
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref48
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref48
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref49
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref49
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref49
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref49
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref49
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref50
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref50
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref50
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref50
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref51
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref51
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref51
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref51
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref52
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref52
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref52
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref52
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref53
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref53
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref53
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref53
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref54
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref54
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref54
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref56
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref56
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref56
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref57
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref57
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref58
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref58
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref58
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref59
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref59
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref59
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref60
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref60
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref60
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref61
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref61
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref61
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref61
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref62
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref62
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref62
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref62
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref63
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref63
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref63
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref63
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref64
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref64
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref64
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref64
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref65
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref65
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref65
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref66
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref66
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref66
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref66
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref67
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref67
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref67
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref68
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref68
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref68
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref68
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref69
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref69
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref69
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref69
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref69
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref70
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref70
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref70
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref70
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref70
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref71
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref71
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref71
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref71
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref71
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref71
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref72
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref72
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref72
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref72
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref73
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref73
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref73
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref74
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref74
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref74
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref74
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref74
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref75
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref75
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref75
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref75
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref76
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref76
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref76
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref76
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref77
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref77
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref77
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref77
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref77
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref77
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref78
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref78
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref78
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref78
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref78
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref79
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref79
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref79
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref79
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref79
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref80
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref80
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref80
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref80
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref80
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref81
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref81
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref81
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref81
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref82
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref82
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref82
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref82
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref82
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref83
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref83
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref83
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref83
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref83
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref84
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref84
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref84
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref84
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref85
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref85
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref85
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref85
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref86
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref86
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref86
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref86
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref87
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref87
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref87
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref87
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref88
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref88
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref88
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref88
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref89
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref89
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref89
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref89
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref90
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref90
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref90
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref90
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref91
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref91
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref91
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref92
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref92
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref92
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref93
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref93
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref93
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref94
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref94
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref94
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref94
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref95
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref95
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref95
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref95
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref96
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref96
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref96
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref97
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref97
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref97
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref98
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref98
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref98
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref98
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref99
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref99
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref99
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref99
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref99
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref100
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref100
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref100
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref100
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref101
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref101
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref101
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref101


S.S. Choong et al. Swarm and Evolutionary Computation 44 (2019) 622–635
[102] W. Li, A parallel multi-start search algorithm for dynamic traveling salesman
problem, in: Proceedings of the International Symposium on Experimental
Algorithms, 2011, pp. 65–75.

[103] H.R. Lourenço, O.C. Martin, T. Stützle, Iterated local search: framework and
applications, in: M. Gendreau, J.Y. Potvin (Eds.), Handbook of Metaheuristics,
Springer, US, 2010, pp. 363–397.

[104] O. Martin, S.W. Otto, E.W. Felten, Large-step Markov chains for the traveling
salesman problem, Complex Syst. 5 (1991) 299–326.

[105] D. Applegate, W. Cook, A. Rohe, Chained Lin-Kernighan for large traveling
salesman problems, Inf. J. Comput. 15 (1) (2003) 82–92.

[106] J. Li, P.M. Pardalos, H. Sun, J. Pei, Y. Zhang, Iterated local search embedded
adaptive neighborhood selection approach for the multi-depot vehicle routing
problem with simultaneous deliveries and pickups, Expert Syst. Appl. 42 (7)
(2015) 3551–3561.

[107] M.M. Silva, A. Subramanian, L.S. Ochi, An iterated local search heuristic for
the split delivery vehicle routing problem, Comput. Oper. Res. 53 (2015) 234–249.

[108] R. Kramer, M. Dell'Amico, M. Iori, A batching-move iterated local search algorithm
for the bin packing problem with generalized precedence constraints, Int. J. Prod.
Res. 55 (21) (2017) 6288–6304.

[109] A. Subramanian, M. Battarra, C.N. Potts, An Iterated Local Search heuristic for the
single machine total weighted tardiness scheduling problem with sequence-
dependent setup times, Int. J. Prod. Res. 52 (9) (2014) 2729–2742.

[110] X. Dong, M. Nowak, P. Chen, Y. Lin, Self-adaptive perturbation and multi-
neighborhood search for iterated local search on the permutation flow shop
problem, Comput. Ind. Eng. 87 (2015) 176–185.

[111] S. Nguyen, M. Zhang, M. Johnston, K.C. Tan, Automatic programming via iterated
local search for dynamic job shop scheduling, IEEE Trans. Cybern. 45 (1) (2015)
1–14.

[112] Y. Wu, W. Ma, Q. Miao, S. Wang, Multimodal continuous ant colony optimization
for multisensor remote sensing image registration with local search, Swarm
Evolut. Comput. (2017).
635
[113] L.P. Wong, M.Y.H. Low, C.S. Chong, Bee colony optimization with local search for
traveling salesman problem, in: Proceedings of the 6th IEEE International
Conference on Industrial Informatics, 2008, pp. 1019–1025.

[114] M. Chih, Three pseudo-utility ratio-inspired particle swarm optimization with
local search for multidimensional knapsack problem, Swarm Evolut. Comput. 39
(2018) 279–296.

[115] B.A.L.M. Herrera, L.S. Coelho, M.T.A. Steiner, Quantum inspired particle swarm
combined with lin-kernighan-helsgaun method to the traveling salesman problem,
Pesqui. Oper. 35 (3) (2015) 465–488.

[116] F. Neri, C. Cotta, Memetic algorithms and memetic computing optimization: a
literature review, Swarm Evolut. Comput. 2 (2012) 1–14.

[117] J. Euchi, A. Yassine, H. Chabchoub, The dynamic vehicle routing problem:
solution with hybrid metaheuristic approach, Swarm Evolut. Comput. 21 (2015)
41–53.

[118] J.C. Bansal, A. Gopal, A.K. Nagar, Stability Analysis of Artificial Bee Colony
Optimization Algorithm, Swarm and Evolutionary Computation, 2018.

[119] M.F. Tasgetiren, Q.-K. Pan, P.N. Suganthan, A.H. Chen, A discrete artificial bee
colony algorithm for the total flowtime minimization in permutation flow shops,
Inf. Sci. 181 (16) (2011) 3459–3475.

[120] S. Sundar, A. Singh, A swarm intelligence approach to the early/tardy scheduling
problem, Swarm Evolut. Comput. 4 (2012) 25–32.

[121] M. Balachandran, S. Devanathan, R. Muraleekrishnan, S.S. Bhagawan, Optimizing
properties of nanoclay–nitrile rubber (NBR) composites using face centred central
composite design, Mater. Des. 35 (2012) 854–862.

[122] W.-F. Gao, S.-Y. Liu, L.-L. Huang, Enhancing artificial bee colony algorithm using
more information-based search equations, Inf. Sci. 270 (2014) 112–133.

[123] F. Wilcoxon, S.K. Katti, R.A. Wilcox, Critical values and probability levels for the
wilcoxon rank sum test and the wilcoxon signed rank test, in: H.L. Harter,
D.B. Owen (Eds.), Selected Tables in Mathematical Statistics, vol. 1, American
Mathematical Society, Providence, 1970, pp. 171–259.

http://refhub.elsevier.com/S2210-6502(17)30944-6/sref102
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref102
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref102
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref102
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref103
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref103
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref103
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref103
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref104
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref104
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref104
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref105
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref105
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref105
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref106
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref106
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref106
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref106
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref106
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref107
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref107
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref107
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref108
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref108
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref108
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref108
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref109
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref109
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref109
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref109
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref110
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref110
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref110
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref110
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref111
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref111
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref111
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref111
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref112
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref112
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref112
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref113
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref113
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref113
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref113
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref114
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref114
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref114
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref114
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref115
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref115
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref115
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref115
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref116
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref116
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref116
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref117
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref117
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref117
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref117
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref118
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref118
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref119
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref119
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref119
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref119
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref120
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref120
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref120
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref121
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref121
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref121
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref121
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref121
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref122
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref122
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref122
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref123
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref123
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref123
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref123
http://refhub.elsevier.com/S2210-6502(17)30944-6/sref123

	An artificial bee colony algorithm with a Modified Choice Function for the traveling salesman problem
	1. Introduction
	2. Related work
	2.1. Application of the bee-inspired algorithms to solve TSP
	2.2. Modified Choice Function
	2.3. Local-search-based strategies

	3. The proposed model
	4. Results and discussion
	4.1. Experimental settings
	4.2. Parameter tuning
	4.3. Experimental results of MCF-ABC
	4.4. Competitiveness of MCF-ABC

	5. Conclusions
	Acknowledgement
	References


