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A B S T R A C T

Graph pattern matching is a key problem in many applications which data is represented in the form of a graph,
and this problem is generally defined as a subgraph isomorphism. In this paper, we analyze an incremental
hybrid genetic algorithm for the subgraph isomorphism problem considering various design issues to improve
the performance of the algorithm. An incremental hybrid genetic algorithm was previously suggested to solve the
subgraph isomorphism problem and have shown good performance. It decomposes the problem into a sequence
of consecutive subproblems which has an optimal substructure. Each subproblem is solved by the hybrid genetic
algorithm and the solutions obtained are extended to be applied to the next subproblem as initial solutions.
We examine a wide range of schemes that determine the overall performance of the incremental process and
make a number of experiments to verify the effectiveness of each scheme with the synthetic dataset of random
graphs. We show that the performance of incremental approach can be significantly improved compared to the
previous representative studies by applying appropriate schemes found by the experiments. In addition, we also
investigate the effect of different genetic parameters and identify the scalability of our method by conducting
experiments using real world dataset with large-sized graphs.

1. Introduction

Graph is a simple and universal data representation to model pair-
wise relationships among a set of objects. One of the interesting prob-
lems encountered when handling graph data is a graph pattern match-
ing arising from pattern recognition, knowledge discovery, biology,
cheminformatics, dynamic network traffic and intelligence analysis
[1–4]. And this matching is typically formulated in terms of the sub-
graph isomorphism problem.

Given two graphs G and H, the subgraph isomorphism problem is to
determine whether H contains a subgraph that is isomorphic to G and
this decision problem is well-known NP-Complete [5]. Many algorithms
have been proposed to solve this problem starting with the backtracking
algorithm by Ullmann [6]. VF2 [7], QuickSI [8], GraphQL [9], GADDI
[10] and SPath [11] improved the performance by exploiting different
join orders, pruning rules, and auxiliary information from the Ullmann
algorithm [12]. The maximum common subproblem, the generalized
problem of the subgraph isomorphism problem, also has been tackled
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by many algorithms [13–15]. However, these algorithms for both prob-
lems have exponential time complexity, their scalability are limited and
they only work with auxiliary information such as vertex or edge labels.

On the other hand, metaheuristic algorithms, especially a genetic
algorithm, have been used to address this problem [16–22]. They can
usually find good quality solutions within a reasonable amount of time,
but most algorithms does not have enough search capability to cover
large and complex problem space of the subgraph isomorphism prob-
lem.

In order to address this problem effectively through a metaheuris-
tic algorithm, it is necessary to improve the search capability of the
algorithm. Generally, it is done by newly designing effective search
operators or local heuristics to directly improve the search capability.
However, this is very complex work. There is another way to improve
the performance by reforming the search strategy to handle the algo-
rithm instead. If we divide the whole problem space into subspaces
with suitable size for the search capability of the algorithm, sequen-
tially apply the method of searching one subspace and expanding the
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solutions obtained for the next space search, the solutions to the original
problem can be obtained efficiently. This is the motivation of introduc-
ing the incremental genetic algorithm [23], and it has been successfully
applied to the real world problem [24].

In this paper, we investigate the characteristics and performance of
the incremental hybrid genetic algorithm (IHGA). First, the structure of
the algorithm is described by a rigourous representation, and the the-
oretical background and conditions for the algorithm to work well are
inspected. We define the process of dividing the original problem as
a sequence of successive subproblems with optimal substructure, and
clarify the solving process, that is, solving subproblems and extend-
ing the solutions. In addition, the conditions for finding high quality
solutions in IHGA are revealed through the characteristics of the sub-
graph isomorphism problem and the population-based algorithm. The
schemes for designing a sequence of subproblems, which is an impor-
tant factor in determining the performance of IHGA, are also discussed.
Second, for the synthetic dataset, we experimentally analyze the effect
of designing a sequence of subproblems and extending solutions, which
are the key elements of IHGA, on the performance of the algorithm.
We also compare the performance and the running time of IHGA with
those of the previous algorithms. Finally, we confirm the performance
of IHGA with various genetic parameter settings and real world dataset
with large-sized graphs. From the experiments with two datasets, we
will show that our algorithm has better performance and scalability
than previous algorithms.

The paper is organized as follows: Section 2 provides the formal
definition of the subgraph isomorphism problem and the overview of
previous studies. In Section 3, we describe the incremental process and
related design issues. Genetic framework is introduced in Section 4.
Section 5 provides the experimental results and discussions. Conclu-
sions are in Section 6.

2. Backgrounds

2.1. Subgraph isomorphism

Definition 1 (Subgraph Isomorphism). Given two graphs
G = (VG,EG) and H = (VH,EH), the subgraph isomorphism is an
injective function g ∶ VG → VH such that (u, v) ∈ EG if and only if
(g(u), g(v)) ∈ ES where S = (VS,ES) ⊆ H. g is an induced subgraph
isomorphism in addition if (u, v) ∉ EG, then (g(u), g(v)) ∉ ES.

The difference between subgraph isomorphism and induced sub-
graph isomorphism is that, in induced subgraph isomorphism, the
absence of an edge in G implies that the corresponding edge in H must
also be absent.

2.2. Subgraph isomorphism problem

Given two graphs G and H, the subgraph isomorphism problem is to
determine whether there exists a subgraph S ⊆ H such that f ∶ VG → VH
is an isomorphism from G to S. This decision problem is a well-known
NP-Complete problem [5].

The first practical algorithm for the subgraph isomorphism prob-
lem was proposed in Ullmann’s research [6]. It is a recursive back-
tracking algorithm to find all subgraph isomorphisms between two
graphs. After this study, several algorithms [7–11] have been proposed
to enhance and to improve Ullmann’s algorithm. These algorithms com-
monly improved the vertex join order and pruning rules to lop off infea-
sible candidates as early as possible. The subgraph isomorphism prob-
lem can be generalized to the maximum common subgraph problem,
which finds the largest subgraph of two given graphs that are isomor-
phic to each other. The McGregor [13], Durand and Pasari [14] and
Balas and Yu [15] proposed representative algorithms. However these
algorithms have exponential time complexity, they have limited scala-
bility or only work with auxiliary information such as vertex or edge
labels.

Messmer and Bunke [25] introduced the method of decomposing
model graphs into a set of subgraphs in advance. And then, when given
the input graph, they recombined these small subgraphs into the com-
plete subgraph isomorphism. They showed recombining the answers of
small size problems recursively is helpful to build answers of the origi-
nal problem.

2.3. Genetic algorithm for subgraph isomorphism problem

In order to apply the genetic algorithm to the subgraph isomorphism
problem, it is necessary to introduce a fitness function and convert it to
the form of an optimization problem, rather than addressing the deci-
sion problem of the subgraph isomorphism directly.

First, we describe the formal definition of the optimization problem
for the subgraph isomorphism.

Definition 2 (Subgraph Isomorphism Problem). Given two directed
graphs G = (VG,EG) and H = (VH,EH) where |VG| ≤ |VH|, the subgraph
isomorphism problem, denote by SIP(G,H), is to find an injective function
g ∶ VG → VH that minimizes the fitness function f. The optimal solution, with
the fitness value of 0, is the subgraph isomorphism from G to H.

The fitness function has been commonly defined as a number of
edges that match or mismatch over the mapping. And real world appli-
cations have been studied by applying this fitness function into the sub-
graph isomorphism problem and solving it with a genetic algorithm.
Brown et al. [16] applied it to 2D Chemical structure matching. Zhong
et al. [21] used it for the resource assignment in the real time digi-
tal simulator and Kim and Moon [19] proposed the malware detection
system by solving the subgraph isomorphism problem with this fitness
function.

Because these algorithms showed limitation in terms of performance
or scalability, several studies were proposed to improve performance of
a genetic algorithm for the subgraph isomorphism problem. Choi et al.
[26] introduced the multi-objective fitness function. They added the
degree comparison result of the matched vertices between two graphs
to the fitness function as a penalty function and showed that the multi-
objective function is more globally convex than the previous single
objective function. After then, Choi et al. [23] proposed a new hybrid
genetic algorithm using an incremental process. Kim et al. [24] applied
this methods to measure the source similarity and showed the similar-
ity measure of this approach reflects the actual likeliness between the
codes.

3. Incremental genetic algorithm

3.1. Overview

The incremental genetic algorithm (IGA) is a method of dividing a
problem into successive subproblems and solving them sequentially to
obtain solutions to the original problem [23]. In this process, each sub-
problem is solved by a genetic algorithm and the obtained solutions are
extended as the initial solutions of the next subproblem. We explain
in detail how this algorithm works for the subgraph isomorphism
problem.

Let a substructure of a graph G = (V,E) be a subset of V and their
connected edges in the graph G. In this problem, it means a subgraph.
On the same problem structure, if the input is changed from the original
graph to its substructure, we call it a subproblem. For example, in the
subgraph isomorphism problem, SIP(G′,H) is a subproblem of SIP(G,H)
where G′ ⊆ G.

Consider a finite subsequence of n consecutive subproblems
{SIP(G1,H), SIP(G2,H),… , SIP(Gn,H)}, where G1 ⊆ G2 ⊆… ⊆ Gn(=
G). Let G1 be a sufficiently small subgraph of G and Gn be the same
graph as G. In this case, if we add extra mappings to the solutions
obtained after solving the subproblem SIP(Gi,H), these extended solu-
tions are likely to be good-quality initial solutions for the next subprob-
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Fig. 1. Overview of the process of an incremental genetic algorithm.

lem SIP(Gi+1,H). If we repeat this task sequentially, we will eventually
get the solutions of the original problem. Fig. 1 shows an overview of
an incremental genetic algorithm.

The rationale behind IGA is that high-quality solutions of the one
subproblem probably provide good initial points of the next subprob-
lem [23,27–30]. If the order of the subproblems in the sequence are
sorted by the graph size of the subproblems, the optimal solutions of
the subproblem with small size graph can be found easily and these are
expected to be extended as good solutions for the next subproblem.

To precisely illustrate these aspects, we say that a sequence of sub-
problems has an optimal substructure, if one of the optimal solutions of
each subproblem could be extended to the optimal solution of the next
subproblem. Existence of an optimal substructure conceptually explains
that we are able to solve the original problem by enumerate all of the
optimal solutions for each of the subproblems. Of course, the presence
of an optimal structure does not guarantee that IGA can always find
optimal solutions. Not every sequence having an optimal substructure
leads to a good solution. If there exist a large number of optimal solu-
tions for intermediate subproblems, and only a few of them are extend-
able to optimal solutions for the original problem, then IGA is less likely
to find promising solutions.

Therefore, in order to increase the probability that IGA obtains an
optimal solution, the solutions of one subproblem must be extended to
a good initial population of next subproblem, and the following two
conditions are required. The first is that the quality should be main-
tained even if the solution is extended. In the subgraph isomorphism
problem, every sequence of the subproblems has the optimal substruc-
ture because the subgraph relation is transitive, i.e, if G1 is a subgraph
of G2 and G2 is a subgraph of G3, then G1 is a subgraph of G3. This
means that the quality of the existing part does not change when the
solution is extended in this problem. This property makes the applica-
tion of an incremental approach to the subgraph isomorphism problem
more appropriate than other combinatorial optimization problems such
as MAX-CUT or TSP. Second, the diversity of solutions must be ensured.
If the solutions are converged in a specific space, it may become difficult
to cover the increased space when the problem space is expanded for
the next subproblem. If we intentionally maintain the population diver-
sity, the solutions are more uniformly distributed over the expanded
problem space, and the exploration and exploitation become much eas-
ier and this is why the population-based metaheuristic is suitable to
solve these subproblems.

3.2. The structure of the algorithm

The key to determining the performance of IHGA is how to design a
sequence of subproblems. First, the order in which vertices are added to
expand a graph, determines the overall search path, which has already
been identified in previous backtracking methods. Second, the expan-
sion size between the subproblems, that is, a number of vertices to
expand a graph from one subproblem to the next, determines the size
of the problem space searched by GA. If we set the expansion size to be
small, GA will be able to exploit the problem space in detail for each
problem, but it takes a lot of time and is inefficient in terms of overall
execution time. On the other hand, too large expansion size makes it
difficult for GA to evolve previous solutions into good solutions. There-
fore, it is necessary to set the appropriate expansion size and the order
of subproblems considering the search ability of GA for each subprob-
lem.

Algorithm 1 Incremental process for the subgraph
isomorphism problem.
Input: G = (VG,EG), H = (VH,EH)
Output: An injective function g ∶ VG → VH
1: V′ ← Reordering (VG)
2: n ← the number of subproblems
3: m = {m1,… ,mn} ← the sequence of expansion size
4:
5: G0 ← ∅
6: P0 ← random initial population of SIP(G0,H)
7: for i = 1 to n do
8: Vcurr ← {V′

1,… ,V′
mi
}

9: V′ ← V′ − Vcurr
10: Gi ← inducedsubgraphG[VGi−1

∪ Vcurr]
11: Pi ← initial population generated by Pi−1
12: Pi ← hybrid GA (Pi)
13: end for
14: return the best in Pn

We present the structure of IHGA for the subgraph isomorphism
problem in Algorithm 1. The first half of the algorithm sets up the incre-
mental process by decomposing the original problem into the sequence
of consecutive subproblems. The sequence is determined by the number
of subproblems, n, the number of vertices to be added at each subprob-
lem, m, and the order of vertices, V′. In line 1, the order of vertices
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added is determined by the vertex reordering scheme. According to
previous study [23], the vertex join order is one of the most impor-
tant factors for the performance of an incremental genetic algorithm.
The reordering schemes we used are described in detail in the next
subsection. The number of subproblems and the expansion size of each
subproblem are determined in line 2 and 3, which decide the prob-
lem space size of each subproblem. If we improve the performance of
hybrid genetic algorithm, we can increase the size of problem space of
each subproblem.

In the second half of the algorithm, it is shown how to solve the sub-
problems and extending solutions to obtain the original solution prob-
lems. We starts from the problem SIP(G0,H) with an empty domain
graph, G0 = ∅. For every ith subproblem, we expand Gi−1 into Gi by
adding mi vertices and edges between VGi−1

and new added vertices.
And then, hybrid genetic algorithm takes the results of the previous
subproblem to build an initial population of SIP(Gi, H) and evolves
it over generations. The solution of the original problem SIP(G,H) is
obtained from the results of the SIP(Gn,H).

Fig. 2 shows how the incremental process works. Consider two
graphs in Fig. 2(a). In this case, the number of subproblems is 3 and
the expansion size for each subproblem, mi, is 1. Fig. 2(b) describes
the second subproblem SIP(G2,H) and the population P2 evolved by
hybrid GA. From the second subproblem SIP(G2,H) and the popula-
tion P2, Fig. 2(c) shows how to obtain the graph G3 from G2 and the
population P3 from P2 for initializing the third subproblem SIP(G3,H).
Graph G2 is expanded into G3 by adding one vertex 3 and two edges
(1,3) and (2,3). And the population P3 is initialized from P2 by
adding extra mappings for a new added vertex 3, which are denoted in
bold.

3.3. Vertex reordering

The vertex join order is one of the most important design issues to
determine the performance of an incremental genetic algorithm. Well-
designed ordering scheme can prune out infeasible problem space early
in the search process and allow to select an efficient overall search
path. Information on vertex adjacency and the degree of vertices has
been used in the ordering method of graph based problem [12,31] and
we applied three reordering schemes for the vertices of G from Ref. [23]
and considered an ordering newly.

• Max-degree ordering (MD)
We sort the vertices in non-increasing order of degree. The degree
of a vertex is the sum of both ingoing and outgoing degrees.

• BFS ordering (BFS)
We randomly select a starting vertex, and then run the breadth-
first search on G. When the graph is disconnected and not all of the
vertices are visited, we randomly choose another unvisited vertex
and continue the traverse.

• Max-adjacency ordering (MA)
We randomly select a starting vertex, and repeatedly select one of
the most attractive vertex in a greedy manner. The attractiveness
of a vertex v is the number of adjacent vertices that are already
ordered. Two vertices are adjacent to each other if there is an edge
in any direction.

• Max-degree-adjacency ordering (MDA)
We add a tie-breaking rule to Max-degree ordering; in a case of a tie,
the vertex having more adjacency to vertices in previous subproblem
comes earlier in the ordering. This is a combination of the Max-
degree ordering and Max-adjacency ordering for a synergy effect.

3.4. Stopping criterion

Basically, we use a fixed number of generations for all of the
subproblems. But this may lead to an excessive number of genera-
tions in earlier subproblems, because hybrid GA may converge very

Fig. 2. Description of expanding graph Gi and initializing population Pi in the
incremental algorithm.

fast for relatively small problems. Moreover, keeping some solutions
that are not converged in the population may preserve the diver-
sity of solutions. Both the quality and the diversity of population
in the one subproblem can have a decisive effect on the next sub-
problem. So, if a certain percentage of the population for the one
subproblem converges to the optimal solution, we terminate GA and
move on the next subproblem. Initially, we regard |VH| generations
as the unit of time and completely distributed a fixed number of

78



H. Choi et al. Swarm and Evolutionary Computation 49 (2019) 75–86

Fig. 3. Description of chromosome representation as a permutation. Each vertex
i in G is mapped by a vertex P[i] in H, drawn by dashed line.

generations equally to each subproblem. Before starting each sub-
problem, we redistribute the remaining generations equally to the
remaining subproblems. By this procedure, we expect that more gen-
erations are assigned to the later larger subproblems to be evolved
longer.

3.5. Expansion size

The number of vertices to be added also determines the prob-
lem space of each subproblem. A naive method is to add a sin-
gle vertex at each step. But it will be a waste of time to run
hybrid GA when the graph expanded is too simple. Adding more
vertices at a step enables efficient space search, but an immod-
erate expansion size may cause the problem space to be too
large for hybrid GA to cover. It is required to strike a balance
between efficiency and difficulty by selecting an appropriate expansion
size.

4. Genetic framework

The hybrid genetic algorithm we used in the incremental process for
the subgraph isomorphism problem is described below.

• Representation
Given two graphs G = (VG,EG) and H = (VH,EH) where|VG| ≤ |VH|, a chromosome represents a permutation of VH as an
integer array. A mapping g ∶ VG → VH, a solution of SIP(VG, VH), is
decoded by first |VG| genes in the chromosome. A vertex vG, i ∈ VG
is mapped to vH,p[i] ∈ VH and an edge (vG, i, vG,j) ∈ EG is mapped
to (vH,p[i], vH,p[ j]) ∈ EH. Fig. 3 shows an example. The main advan-
tage of this representation is the flexibility toward the problem size
expansion. Since a chromosome already has a full permutation of
VH, we can easily crossover and mutate without extend the map-
ping at each subproblem without modifying values of the genes.

• Fitness Function
We use the fitness function introduced in Ref. [26]. It combines a
number of mismatched edges defined as

f1 =
∑

e∈EG

I(e,ES) +
∑
e∈ES

I(e,EG)

where

I(e,E) =
{

0 if e ∈ E
1 otherwise

and a number of mismatched vertices

f2 =
∑

v∈VG

J(v)

where

J(v) =
{

0 if d+(v) ≤ d+(g(v)) and d−(v) ≤ d−(g(v))
1 otherwise

and d+ denotes outgoing-degree and d− denotes incoming-degree.
The fitness function is defined as

f = w · f1 + (1 − w) · f2

where w = 10∕|VH|. The optimal fitness value is zero and it means
that GA has found a subgraph isomorphism from G to H.
The function f1, typically used in previous studies [16,19,21],
can not accurately evaluate invalid mappings which violate the
degree constraint of subgraph isomorphism. Therefore, by intro-
ducing a penalty function, f2, and using a multi-objective fit-
ness function combined f1 and f2, a solution can be evaluated
more precisely. Choi et al. [26] showed that the multi-objective
fitness function f facilitates optimizing the fitness function and
improves the performance of local heuristics and genetic algorithms,
because this function transforms the fitness landscape more globally
convex.

• Population management
The population size of each subproblem in the incremental process
is fixed to 100. The only initial population for the first subproblem
is randomly generated. From the second subproblem, GA takes the
population evolved in the previous subproblem as initial population
of the current subproblem.

• Selection
The tournament selection is used. We pick two chromosomes ran-
domly and return better one with 80 percent of chance, otherwise
return the worse one.

• Crossover and Mutation
We used cycle crossover [32]. For the mutation, we select a number
of genes to shuffle them in random order. Each of the gene indepen-
dently has 40 percent of mutational chance.

• Local Heuristics
We hybridize the local optimization algorithm with the GA, by
applying the algorithm to the initial solutions at the first subprob-
lem, and to the offsprings after crossover and mutation. We ran-
domly swap two vertices when there is an improvement; this oper-
ation is repeated until there is no way to improve. The details are
described in Algorithm 2.

• Replacement
We generate 50 offsprings per generation and take 100 best solu-
tions out of the existing solutions and the offsprings.

• Stopping Criterion
The hybrid GA is terminated when a certain ratio of the solutions in
the population becomes optimal solutions. We use the ratio values
(TH) of 1%, 50%, and 100%. Regardless of this criterion, in the last
step, in which, the subproblem is the same as the original one, the
algorithm stops if it finds the optimal solution. If we set TH as ∞, the
hybrid GA unconditionally executes a fixed number of generations
and ends.
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Algorithm 2 Vertex swap local optimization algorithm.
Input: A chromosome C of SIP(G,H)
1: L ← {(i, j) ∣ 1 ≤ i ≤ |VG|, i < j ≤ |VH|}
2: repeat
3: flag ← false
4: for all (i, j) ∈ L in random order do
5: swap(C[i],C[j])
6: calculate the difference
7: if improved then
8: flag ← true
9: else
10: swap(C[i],C[j]) //cancel
11: end if
12: end for
13: until flag

5. Experimental results

We had experiments with the proposed incremental hybrid genetic
algorithm for two kinds of datasets. The effects of design schemes pro-
posed in Section 3 were verified and our algorithm was compared with
previous algorithms on synthetic data consisting of random graphs. We
also tested our algorithm for the real world data with large size graphs.
All algorithms implemented with in C++ language, compiled by g++
4.8.4 with -O3 option and executed with Intel Xeon CPU E5-2660 v3 @
2.60 GHz and 1 GB memory.

5.1. Synthetic data

5.1.1. Dataset and evaluation
We generated random graphs by following a widely-used graph

generation process for the subgraph isomorphism problem [26,33,34].
First, a graph H is generated by randomly selecting 𝜂|VH|2 directed
edges among |VH| vertices without any other constraint, where 𝜂

denotes the edge density of a graph H. And then, a smaller graph G is
generated by sampling |VG| vertices from H and selecting the induced
subgraph H[VG]. This means that there is always a subgraph isomor-
phism from G to H and the optimal fitness function value is always
zero.

We selected 20 classes using 4 kinds of 𝜂 values of H and 5 kinds of|VG| values, and independently generated 10 pairs of graph instances
for each class, so that a total 200 pairs of graph instances were used for
our experiments. We chose 0.01, 0.05, 0.1 and 0.5 for 𝜂 and 10, 30, 50,
70 and 90 for |VG|. The number of vertices of the larger graph, |VH|,
was fixed to 100.

We conducted 1000 runs for each instance to test the algorithms
and averaged the results of all instances in each class. We measured the
average fitness value, the average running time, and the ratio of finding
optimal solutions.

We compared the proposed incremental hybrid genetic algorithm
(IHGA) with the conventional hybrid genetic algorithm without the
incremental process (BASE).

5.1.2. Effect of vertex reordering
Table 1 shows the average fitness value of the conventional hybrid

GA (BASE) and IHGA with five different reordering schemes. For
each subproblem, the expansion size is set to 1, and the stopping
criterion threshold TH is set to ∞, which means the hybrid GA is
set to run for a fixed number of generations in each subproblem.
The best results are shown in bold. Adding the incremental process
to the hybrid GA with randomized vertex reordering degraded the
performance in all of the 9 classes. On the other hand, the other
schemes reflecting the information of the vertices show improved
results, and we have found that the vertex ordering, which deter-
mines the order of expanding the graph G, is very important in the
incremental process. The best reordering schemes for the incremental
process is max-degree-adjacency (MDA), even showed better perfor-
mance than the previous work [23]. We therefore will fix the reorder-
ing scheme as MDA in the rest of our experiments for the incremental
process.

5.1.3. Effect of partial random initialization
Through the experiment in 5.1.2, we could conclude that perfor-

mance improvement can be achieved by only applying the basic incre-
mental process with the reordering scheme. In fact, in order to verify
the effectiveness of the incremental process itself, we randomly initial-
ized a certain ratio of solutions before running the hybrid GA in each
subproblem. We used 0%, 10%, 20%, 30%, 40% and 50% for the ratios.
Table 2 denotes the average fitness value of each partial randomization.
For most of the classes, the random initialization degraded the quality
of solutions. And through correlation coefficients between random ini-
tialization ratio and the average fitness value, it can be shown that the
quality of solutions is declined more if more solutions are randomly ini-
tialized in each subproblem. Therefore, it is useful to evolve and extend
solutions gradually and we will extend and reuse all solutions of the
one subproblem as the initial solutions for the next subproblem.

5.1.4. Stopping criterion
Table 3 denotes the average fitness value of IHGA with three differ-

ent stopping criteria for each subproblem. The stopping criteria were
applied to the algorithm with two reordering schemes, RAND and MDA.
For each reordering scheme, we also denoted the result of an algorithm
when threshold value is ∞. We marked the best result in bold for each
class.

In general, reducing the threshold value showed better perfor-
mance for both reordering schemes. In the case with random reordering
scheme, the case of lowest threshold value gave the best performance
in all classes. When MDA reordering scheme was applied, there was no

Table 1
Comparative analysis of IHGA with different reordering schemes.

|VG| 𝜂 f average

BASE RAND BFS MD MA MDA

10 0.05 0.0002 0.0026 0.0009 0.0001 0.0005 0.0000
0.1 0.0002 0.0042 0.0006 0.0002 0.0007 0.0002
0.2 0.0427 0.0962 0.0691 0.0256 0.0495 0.0229

30 0.05 0.2412 0.8088 0.2106 0.0959 0.0903 0.0560
0.1 0.4723 1.1702 0.6226 0.2622 0.2151 0.1973
0.2 0.0047 0.1227 0.0973 0.0049 0.0224 0.0062

50 0.01 0.0043 0.0899 0.0005 0.0001 0.0006 0.0000
0.05 0.0015 0.1758 0.0483 0.0209 0.0112 0.0000

70 0.01 0.0126 0.0914 0.0069 0.0013 0.0068 0.0001
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Table 2
Comparative analysis of IHGA with different partially random initialization ratio values.

|VG| 𝜂 f average Corr.

0% 10% 20% 30% 40% 50%

10 0.05 0.0000 0.0001 0.0003 0.0004 0.0005 0.0003 0.8448
0.1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003 0.2015
0.2 0.0229 0.0225 0.0242 0.0234 0.0259 0.0274 0.8956

30 0.05 0.0560 0.0892 0.1445 0.2586 0.4503 0.6462 0.9573
0.1 0.1973 0.2417 0.3454 0.5938 0.8790 1.2312 0.9619
0.2 0.0062 0.0050 0.0165 0.0280 0.0702 0.1766 0.8537

50 0.01 0.0000 0.0002 0.0026 0.0101 0.0202 0.0318 0.9421
0.05 0.0000 0.0057 0.0113 0.0458 0.1774 0.3129 0.8898

70 0.01 0.0001 0.0151 0.0374 0.0647 0.0847 0.1023 0.9972

Table 3
Results of di_erent stopping criteria.

|VG| 𝜂 f average Running time (s)

∞ 100% 50% 1% 100% 50% 1%

a RAND reordering
10 0.05 0.0026 0.0003 0.0003 0.0001 0.20 0.19 0.16
0.1 0.0042 0.0006 0.0004 0.0003 0.33 0.28 0.20
0.2 0.0962 0.0652 0.0583 0.0478 1.18 1.16 0.90
30 0.05 0.8088 0.6528 0.6304 0.5350 6.40 6.45 6.35
0.1 1.1702 1.0699 1.0533 0.9319 6.81 6.79 6.16
0.2 0.1227 0.1335 0.1483 0.1034 6.33 6.26 6.00
50 0.01 0.0899 0.0464 0.0396 0.0189 12.89 13.21 11.26
0.05 0.1758 0.0973 0.1027 0.0935 15.00 14.86 14.07
70 0.01 0.0914 0.0915 0.0915 0.0731 28.61 28.54 25.99

b MDA reordering
10 0.05 0.0000 0.0000 0.0000 0.0001 0.17 0.16 0.14
0.1 0.0002 0.0001 0.0000 0.0001 0.25 0.23 0.18
0.2 0.0229 0.0157 0.0127 0.0137 0.69 0.70 0.40
30 0.05 0.0560 0.0406 0.0388 0.0347 3.96 3.74 3.36
0.1 0.1973 0.1718 0.1695 0.1680 4.25 4.19 4.04
0.2 0.0062 0.0061 0.0049 0.0088 4.63 4.58 4.72
50 0.01 0.0000 0.0000 0.0000 0.0000 9.89 9.04 7.71
0.05 0.0000 0.0008 0.0008 0.0000 11.96 11.92 11.81
70 0.01 0.0001 0.0001 0.0001 0.0002 25.10 24.064 22.27

significant difference in the average fitness value between the case of
1% threshold value and that of 50% threshold value, but the case of 1%
threshold value executed slightly more rapidly than the case of 50%
threshold value. Since reducing the threshold value increases the diver-
sity of solutions, focusing on exploration in intermediate steps seems to
be more helpful than focusing on exploitation. Than evolving from a
population full of local optima, it was better to evolve from a diverse
population where only one of the solutions is locally optimal.

5.1.5. Expansion size
Table 4 shows the average fitness value and the average running

time when different expansion sizes were applied. Since there are

classes of graphs with |VG|, we used expansion sizes less than or equal
to five. We used MDA reordering scheme and set the stopping criterion
threshold as 1%. Among the five different sizes, the best results were
marked in bold for each class.

Although it takes a long time to run, decreasing the expansion size
showed better results for the average fitness value. There was no big
difference in the results of size 1 and size 2, but we chose size 1 because
we saw a tendency to improve performance as the overall expansion
size decreased.

Table 4
Comparative analysis of IHGA with different expansion sizes.

|VG | 𝜂 f average Running time(s)

1 2 3 4 5 1 2 3 4 5

10 0.05 0.0001 0.0000 0.0001 0.0001 0.0002 0.14 0.09 0.09 0.08 0.07
0.1 0.0001 0.0001 0.0001 0.0000 0.0002 0.18 0.11 0.12 0.09 0.10
0.2 0.0137 0.0174 0.0233 0.0220 0.0375 0.398 0.42 0.53 0.49 0.83

30 0.05 0.0347 0.0297 0.0315 0.0386 0.0322 3.36 2.19 1.89 1.95 1.78
0.1 0.1680 0.1603 0.1712 0.1685 0.1745 4.04 2.55 2.07 1.95 1.69
0.2 0.0088 0.0024 0.0037 0.0025 0.0012 4.72 3.16 2.45 2.30 1.81

50 0.01 0.0000 0.0000 0.0000 0.0002 0.0002 7.71 4.34 3.33 2.92 2.41
0.05 0.0000 0.0032 0.0025 0.0008 0.0016 11.81 6.34 4.83 4.14 3.38

70 0.01 0.0002 0.0006 0.0008 0.0011 0.0010 22.27 12.78 10.18 8.48 7.09
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5.1.6. Overall result
We tested the incremental hybrid genetic algorithm using the

schemes that showed the best results in the previous experiments.
We selected MDA reordering, the stopping criterion with 1% thresh-
old value, and the expansion size value of 1. All of the 20
classes were tested and the results of IHGA were compared to
those of three metaheuristic algorithms, Kim et al. [19], Choi et
al. [26], and Li et al. [22], which did not apply the incremental
process.

Table 5 denotes the overall results. The average fitness value, the
standard deviation of the values, the average running time in seconds
and the ratio of runs in which an optimal solution has been found are
shown in the table.

For the nine relatively difficult classes, the results of IHGA that were
better than those of previous studies are shown in bold. The minimum
ratio of finding an optimal solution, in the class that |VG| is 30 and 𝜂 is
0.05 was dramatically increased to 95.61% by using IHGA. Compared
with the result of Choi et al. [26] which showed the best performance
among the previous algorithms, the overall ratios for the 9 difficult
classes were also improved from 92.36% to 98.37% and from 96.56%
to 99.27% for all classes by IHGA. The experimental results showed
that the well-designed incremental process is helpful to improve the
performance of the hybrid genetic algorithm and IHGA outperforms the
previous studies.

In addition, we applied Wilcoxon’s signed rank test at 5% sig-
nificance level, one of the nonparametric statistical hypothesis tests,
to compare the performance among the previous algorithms with
the proposed algorithm, as guided in Ref. [35]. The test results are
shown in Table 6. Except for the classes in which the previous
algorithms find the optimal solution, we found that the p-value is
smaller than 0.05 in 12, 8, and 11 classes, respectively. This con-
firms that IHGA improves performance in general, not only in certain
examples.

One disadvantage of IHGA revealed through the experimental
results was that it takes longer time to execute than the conventional
hybrid GA. However, if we look at the results by class, we can see that
the running times of typical GA were short for easy classes, but for
the difficult classes, the running times of IHGA were shorter. There-
fore, we performed two additional experiments to analyze the running
time of the Choi et al. [23] and IHGA and the results are shown in
Table 7.

First, we set 1% threshold value for the stopping criterion and
counted the number of generations the two algorithms would termi-
nate. In most classes, both algorithms found the optimal solution in a
very short generations. Since even if the subproblems are easy, at least
one generation should be executed for all subproblems. For this rea-
son, the running time of IHGA seems to be longer. However, as the
number of generations increases for difficult classes, there was a differ-
ent tendency in running time. For difficult classes where the number
of generations of the typical GA exceeded 30, such as the class (30,
0.05), IHGA found the optimal solution with a relatively small number
of generations. In this case, IHGA is more effective in terms of running
time, and the results reflecting these are shown in Table 5. This trend
can be confirmed by the running time obtained when TH was set to ∞
so that the both algorithms run the same number of generations. Thus,
although there are some penalties for running time for easy problems,
we can conclude that the more difficult the problem is, IHGA shows
better performance in terms of accuracy and running time than the pre-
vious works.

5.2. Real world data

5.2.1. Used dataset and common parameter setting
In previous experiments, we tested several design schemes to verify

the effectiveness of the incremental process and compared the perfor-
mance of IHGA with other algorithms. In this subsection, we tested the Ta
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Table 6
Performance comparison by Wilcoxon’s signed rank test among the previous
algorithms with IHGA.

|VG| 𝜂 Kim et al. [19] Choi et al. [26] Li et al. [22]

10 0.01 – – –
0.05 3.214e − 05 7.125e − 03 ≈ 0
0.1 5.672e − 06 1.732e − 03 ≈ 0
0.2 1.026e − 12 ≈ 0 ≈ 0

30 0.01 7.225e − 15 – ≈ 0
0.05 ≈ 0 ≈ 0 ≈ 0
0.1 ≈ 0 ≈ 0 ≈ 0
0.2 0.7928 0.8174 ≈ 0

50 0.01 ≈ 0 ≈ 0 ≈ 0
0.05 ≈ 0 7.865e − 03 ≈ 0
0.1 2.274e − 03 0.8414 ≈ 0
0.2 – – ≈ 0

70 0.01 ≈ 0 ≈ 0 5.141e − 08
0.05 7.299e − 11 – –
0.1 – – –
0.2 – – –

90 0.01 ≈ 0 – –
0.05 – – –
0.1 – – –
0.2 – – –

Table 7
Running time analysis between the hybrid GA and IHGA.

|VG| 𝜂 The number of generations Running time (s)

(When TH = 1) (When TH = ∞)

Choi et al. [23] IHGA Choi et al. [23] IGA

10 0.01 1.00 10.00 0.88 0.42
0.05 3.11 10.37 1.21 0.61
0.1 5.03 10.47 1.47 0.73
0.2 42.64 21.38 2.10 0.97

30 0.01 4.13 30.02 6.16 3.79
0.05 67.15 40.67 10.90 6.53
0.1 37.34 38.21 14.36 7.30
0.2 7.01 31.72 17.28 8.65

50 0.01 41.49 50.14 17.06 11.11
0.05 8.53 51.07 29.28 16.89
0.1 4.75 52.39 34.11 19.29
0.2 2.02 51.66 46.40 24.78

70 0.01 34.92 70.33 40.71 30.80
0.05 1.00 70.00 51.38 39.02
0.1 1.00 70.00 59.25 46.42
0.2 1.00 70.00 83.56 60.85

90 0.01 6.42 90.00 72.46 52.82
0.05 1.00 90.00 77.13 63.38
0.1 1.00 90.00 94.26 77.68
0.2 1.00 90.00 128.24 102.89

performance and scalability of IHGA for the real world data consisting
of large graphs. We also observed the performance of IHGA according
to different genetic parameter settings. We collected 7 kinds of biolog-
ical networks from Network Repository1 [36], which have hundreds
to thousand number of vertices. Table 8 shows the statistics of these
biological networks.

The one whole network was set to H. And for one problem case
of H and |VG|, we independently generated 10 problem instances by
sampling G in the same way as Section 5.1.1. We chose 50, 100 as |VG|
and conducted 100 runs for each instance using IHGA and averaged the
results of all instance in each problem case. We set MDA reordering for
vertex ordering scheme and 1% threshold value for stopping criterion.
And we measured the average fitness value and running time with 5
different expansion size, S, from 1 to 5.

1 Network repository: biological networks, http://networkrepository.com/
bio.php.

5.2.2. Result on biological networks
To verify the performance of IHGA on the realworld graphs, we

compared the performance with VF2 algorithm [7], one of the rep-
resentative algorithm for the subgraph isomorphism problem. Since
VF2 algorithm is deterministic, it always finds the optimal solu-
tion no matter how long it takes. For each instance, the run-
ning time of VF2 was limited to twice the average running time
of IHGA and the ratio of finding the optimal solutions and aver-
age execution time of VF2 algorithm were measured within this
time. Table 9 shows the performance comparison between the two
algorithms.

First of all, in terms of the average fitness value, IHGA found the
optimal solution in most cases, even though the graphs G and H become
larger. However, in terms of running time, increasing the expansion
size shortened the time by 3–4 times. The instances of previous syn-
thetic data were relatively easy to solve, so that reducing the expansion
size and exploiting the subspace in detail improved the quality of solu-
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Table 8
Statistics of 7 biological networks.

Name |V| |E| 𝜂 dmax davg Assortativity

H1 celegans 453 2025 0.0197796 237 8 −0.225821
H2 diseasome 516 1188 0.00894107 50 4 0.0666456
H3 SC-TC 636 3959 0.0196058 66 12 0.921112
H4 DM-LC 658 1129 0.00522315 50 3 −0.121817
H5 CE-GT 924 3239 0.00759569 151 7 −0.159339
H6 grid-mouse 1455 3272 0.00311463 222 4 −0.153014
H7 yeast 1458 1948 0.00183401 56 2 −0.209541

Table 9
The ratio of finding the optimal solutions and the average running time of IHGA and VF2 on biological networks.

|VG| ALG. S Ratio Running time (s)

H1 H2 H3 H4 H5 H6 H7 H1 H2 H3 H4 H5 H6 H7

50 IHGA 1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 44.49 43.67 59.08 55.67 88.93 126.58 138.82
2 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 25.16 24.34 33.30 30.65 49.42 66.87 73.58
3 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 18.98 18.26 24.95 22.93 37.07 48.98 54.17
4 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 15.88 15.06 20.55 18.93 30.68 40.04 44.29
5 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 12.83 11.67 15.84 14.81 23.94 30.78 34.16

VF2 – 30.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 17.98 0.012 2.43 0.0017 0.67 0.0022 0.0026
100 IHGA 1 29.90% 86.50% 99.80% 100.00% 100.00% 100.00% 100.00% 848.50 485.57 458.57 420.22 761.45 991.44 1077.79

2 33.20% 85.80% 99.90% 100.00% 100.00% 100.00% 100.00% 738.14 359.40 261.41 233.04 457.14 527.73 577.75
3 33.60% 86.30% 100.00% 100.00% 100.00% 100.00% 100.00% 717.83 313.23 194.85 173.07 360.90 388.41 427.29
4 33.30% 85.40% 100.00% 100.00% 100.00% 100.00% 100.00% 677.70 288.77 148.49 130.57 288.89 289.60 321.39
5 30.50% 85.60% 99.90% 100.00% 100.00% 100.00% 100.00% 686.64 272.82 125.71 108.24 258.06 241.78 267.37

VF2 – 0.00% 80.00% 60.00% 90.00% 70.00% 100.00% 100.00% – 218.34 233.77 43.75 344.04 0.0026 0.0026

tion. However, in this experiment, we found that it is efficient to set
the search space larger for each subproblem because the instances are
difficult and the problem space size is large. Although it took a long
time to execute as |VG| grows in size, but we can shorten the running
time while maintaining the quality of solutions well by increasing the
expansion size.

Next, the execution of VF2 algorithm was divided into the cases
where the optimal solution was found in a short time, or the case where
the solution was not found even by using twice the IHGA running time.
Experiments have shown that IHGA can find the optimal solution better
and more stable than VF2 when the graph is large and complex. As
a result, we have confirmed that our algorithm works well and has
scalability for the real world data.

5.2.3. Investigation on different genetic parameter settings
Based on the previous experiments, we observed the relation

between genetic parameters, such as population size, a number of off-
spring per generation, expansion size, and a number of generations, and
the performance of IHGA through additional experiments. On the bio-
logical networks H1 and H2 with |VG| = 100, we measured the ratio of
finding the optimal solutions and the average running time with three
different parameter settings based on the previous experiments.

First, we set the population size to 100, 200, and |VH|, and generate
half of population size offspring at each generation. Table 10 shows
the result. We found that increasing the population size and hence a

number of offspring resulted with respect to a slight improvement in
average fitness value, but on the contrary, it needed a much longer
computation time.

Second, performances of various settings were observed while
changing a number of generations to 100, 200, and |VH|. Table 11
shows the performance of IHGA according to a number of gener-
ation changes. In the first three parameter settings, we confirmed
that reducing the number of generations shortens the running time,
but reduces the performance as well. In the last three parame-
ter settings, we recognized that there is a difference in the perfor-
mance improvement of IHGA according to population change and
generation change. Even if we created the same number of off-
spring during the whole process, increasing a number of generations
resulted in more performance improvement than increasing population
size.

To clarify this tendency, we observed performance by chang-
ing an expansion size and a number of generations to produce the
same number of solutions during the whole incremental algorithm.
As shown in Table 12, we could more reliably confirm the character-
istics of IHGA found in Table 11 through experiments with settings
that produce the same number of solutions. Rather than expanding
each subproblem to a larger scale through a large-sized population,
it has been shown that expanding the subproblem to a smaller scale
and evolving the population gradually over generations will improve
performance.

Table 10
Comparative analysis of IHGA with different population sizes.

|VH| Population offspring Expansion size Generation Time (s) Ratio

H1 453 100 50 5 453 795.72 34.90%
200 100 1400.78 49.10%
453 226 2773.61 63.70%

H2 516 100 50 5 516 588.82 84.50%
200 100 616.55 87.00%
516 258 1345.30 90.00%
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Table 11
Comparative analysis of IHGA with different numbers of generations.

|VH| Population Offspring Expansion size Generation Time (s) Ratio

H1 453 100 50 5 453 795.72 34.90%
100 50 11 200 519.89 9.40%
100 50 22 100 270.00 0.00%
100 50 22 200 496.67 9.00%
200 100 22 100 540.56 0.00%

H2 516 100 50 5 516 588.82 84.50%
100 50 12 200 218.33 74.00%
100 50 25 100 138.41 65.30%
100 50 25 200 206.76 73.80%
200 100 25 100 262.09 67.30%

Table 12
Comparative analysis of different parameter settings which generate the same number of offspring during the whole
process.

|VH| Population Offspring Expansion size Generation Time (s) Ratio

H1 453 100 50 5 453 795.72 34.90%
200 100 10 226 933.14 20.90%
226 113 11 200 1118.42 14.70%
453 226 22 100 1213.38 0.10%

H2 516 100 50 5 516 588.82 84.50%
200 100 10 258 411.79 81.90%
258 129 12 200 510.38 77.60%
516 258 25 100 618.87 70.30%

6. Conclusion

In this paper, we analyzed various aspects of incremental hybrid
genetic algorithm for the subgraph isomorphism problem and improved
the performance. The incremental algorithm starts from decomposing
the original problem into a sequence of consecutive subproblems that
satisfies the optimal substructure property. The each problem is solved
by the hybrid genetic algorithm and the solutions obtained are extended
as initial solutions for the next subproblem. And then we sequentially
solve a sequence of subproblems in this way, finally obtain a solution
of the original problem.

We noticed that how to design a sequence of subproblems is most
important in the performance of the incremental algorithm, so that
we introduced several design schemes. Vertex reordering determines
the entire search path of the incremental genetic algorithm. Exper-
imental results showed that the maximal adjacency-degree reorder-
ing scheme combining adjacency information and degree information
has the best performance. Stopping criterion and expansion size deter-
mine the size of the problem space in which the hybrid genetic algo-
rithm searches for each subproblem. The schemes to preserve the diver-
sity of solutions in solving successive subproblems showed the best
in the experiments. Extending the solutions from the previous sub-
problem showed better performance than initializing solutions par-
tially in each subproblem. We confirm that it is important to continue
succession of solutions in the incremental algorithm by this experi-
ment. The reason why this approach takes more running time than
the conventional hybrid genetic algorithm is that each subproblem
must be solved at least on one generation, regardless of how easy
the subproblem is. Based on this analysis, we have shown through
experiments that the well-designed incremental hybrid genetic algo-
rithm outperforms the previous algorithms. Furthermore, the proposed
algorithm has also been confirmed that it has scalability through
the experiments based on the real world data with a large-sized
graph.

Although we traced the several design schemes for the incremen-
tal algorithm, there are still other issues that have to be figured out
for better performance. As shown in the experiments, our methods for

building a sequence of subproblems and tuning parameters are man-
ually designed. In addition, scalability of the algorithm can be fur-
ther extended by parallel processing using GPUs. Generally, if we gen-
erate and evaluate many offspring in parallel by using many GPUs
in each generation, we can shorten the execution time and increase
the scale of the problem accordingly. If we modify the algorithm
in a way with divide and conquer method and expands the solu-
tions in parallel rather than expanding our problems in sequence,
we can expect additional performance improvement through parallel
processing.

In the future, we are considering the adaptive features which
are able to set parameters automatically and the dynamic config-
urations which can change the schemes in the process of solving
the subproblems. Our final goal is to design a generic incremental
algorithm that can be applied to arbitrary metaheuristic algorithms.
Based on this paper, we will apply the incremental process to other
metaheuristic algorithms in the future and will upgrade it in general
form.
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