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A B S T R A C T

In a paper published in the International Journal of Production Economics (IJPE) [Zhang, R., Kaku, I., Xiao, Y.,
2012. Model and heuristic algorithm of the joint replenishment problem with complete backordering and
correlated demand. International Journal of Production Economics 139 (1), 33–41], the authors proposed a joint
replenishment problem (JRP) model with complete backordering and correlated demand caused by cross-selling.
The model was transformed into minimizing a function with respect to multiples of a major item's order cycle, and
a heuristic algorithm was developed for near-optimal solutions. In this paper, we reinvestigate the problem and
analyze the mathematical property of the model to develop an exact algorithm. The algorithm can obtain global
optima and exhibits polynomial complexity.
1. Introduction

The multi-item inventory management problem has been studied for
several decades, for which the joint replenishment problem (JRP) is the
most representative topic (Goyal, 1974; Khouja and Goyal, 2008). The
classic JRP supposes that the demand for items is deterministic and in-
ventory replenishments are related to one another due to sharing of the
common/major ordering cost. In recent years, the JRP model has been
further extended to deal with transportation costs (Venkatachalam and
Narayanan, 2016), stochastic demand (Braglia et al., 2016a; Lee and Lee,
2018), and perishable or deteriorating items (Kouki et al., 2016; Ai et al.,
2017), among others. Certain extensions simultaneously consider mul-
tiple factors, including stochastic demand, the backorders-lost sales
mixture, controllable lead time, and changeable ordering costs (Braglia
et al., 2016b, 2017). Cunha et al. (2017) proposed a model for the
multi-item economic lot-sizing problem, which extends JRP to remanu-
facturing contexts.

It is noticeable that the above work related to the multi-item in-
ventory/production problem holds an implicit assumption: the item has
no externalities, which means that the demand for a given item does not
affect that for any other items. However, item demands are frequently
interrelated in numerous economic systems due to the externalities of
products and consumption (Turnovsky and Monteiro, 2007; Hashimoto
and Matsubayashi, 2014). In recent decades, commodity externalities
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have been introduced into inventory models, which can be classified as
two types: positive and negative (Netessine and Zhang, 2005). For in-
ventory management, negative externality frequently emerges as sub-
stitution among items (Parlar, 1988; Lippman and McCardle, 1997;
Netessine and Rudi, 2003; Zhao and Atkins, 2008; Huang et al., 2011),
while positive externality, often emerging as a type of association be-
tween items, can be caused by cross-selling (Zhang et al., 2012, 2014).

Cross-selling implies that the demand for or sale of an item will lead
to an additional demand for its associated items; conversely, if an item is
stocked out, the demand for its associated items will decrease. Consid-
ering this phenomenon, Zhang et al. (2012) assumed that the sale of a
major item affects the demands for multiple minor items. That is, the
demand rate of the minor associated items will be increased due to
cross-selling with the sale of the major item, but decreased to a certain
extent when the major item is stocked out, resulting in an absence of
cross-selling. In their model, all stocked out demand for the major item is
completely backordered. Based on the above assumption, Zhang et al.
(2012) proposed a JRP model considering correlated demand caused by
cross-selling. We furthermore note that Park and Seo (2013) proposed an
inventory model considering purchase dependence, which is similar to
cross-selling; however, they did not consider backordering.

Zhang et al. (2012) asserted that the problemwas essentially identical
to the NP-hard JRP model; thus, they developed a heuristic algorithm for
the near-optimal solution. However, the problem is in fact similar to the
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JRP with a strict-cyclic policy (JRPSC), and it has been proven that the
JRPSC has polynomial algorithms (Viswanathan, 1996; Wildeman et al.,
1997; Lee and Yao, 2003). In this paper, we demonstrate that the in-
ventory model proposed by Zhang et al. (2012), which considers demand
association caused by cross-selling, holds similar mathematical proper-
ties. It follows that an exact algorithm with polynomial complexity
should exist for determining the global optima.

The remainder of the paper is organized as follows. In section 2, we
briefly introduce the inventory model and heuristic algorithm proposed
by Zhang et al. (2012). Section 3 provides the properties of the inventory
cost function, based on which the exact algorithm with polynomial
complexity is presented. Section 4 discusses a numerical example for
illustration, and reports on the performance of the proposed algorithm
for solving larger-scale problems. The paper is concluded in section 5.

2. Model and heuristic algorithm

Consider a multi-item inventory system consisting of one major item
and n minor items. The demand rate for the major item, denoted by D, is
independent; however, demand for minor item i ði ¼ 1;…; nÞ will be
increased by major item sales as a result of the cross-selling effect.
Conversely, if the major item is stocked out, the demand for minor item
decreases to a certain degree. Denote by Di the demand rate for minor
item iwithout stock-outs of the major item, and by λi the loss rate; that is,
the lost sales of i caused by one unit shortage of the major item. Then, the
demand rate of minor item i will be decreased to Di � λiD (� 0) when the
major item is stocked out.

Suppose that the unmet demand for the major item is completely
backordered because of monopolization, while the minor item demand
must be met without stock-outs for the sake of management convenience.
Let Cb denote the cost of maintaining one major item unit backordered
for one unit time. Moreover, let A and Ai denote the ordering cost of the
major item and minor item i, respectively, where Ch and Chi are the
corresponding inventory holding costs. Let T and F denote the order
cycle and fill rate (percentage of demand satisfied from the shelf stock) of
the major item, respectively. Based on the strict-cyclic policy whereby
the minor item order cycle is a positive integer multiple (denoted by ki) of
the major item order cycle, the total cost (per unit time) function is
formulated as:

ΓðK;T ;FÞ ¼ AþPn
i¼1Ai=ki
T

þ Cb þ C'
h

2
DTF2 � CbDTF

þ Cb �
Pn

i¼1λiChi

2
DT þ

Pn
i¼1ChiDiki

2
T (1)

where C0
h ¼ Ch þ

Pn
i¼1λiChi and K ¼ fk1;…;kng.

For a given K, the optimal cost of ΓðK;TÞ is ΓðKÞ ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G0ðG3 � G2

2=ð4G1ÞÞ
q

, where G0 ¼ Aþ P
Ai=ki, G1 ¼ ðCb þ C0

hÞD=2,
G2 ¼ CbD, and G3 ¼ ½G2 þ

PðkiDi � λiChiDÞ�=2. Zhang et al. (2012)
developed a heuristic algorithm by improving Nilsson's method (Nilsson
et al., 2007) in order to minimize function ΓðKÞ. The heuristic iteratively
selects K to balance the ordering and inventory holding costs as far as
possible, until no further improvement can be made on the total cost. To
this end, the algorithm introduces the ratio of the ordering cost to the
sum of the inventory holding and backordering costs for each item, and
adjusts the value of ki, causing the ratio to be as close as possible to 1.

Zhang et al. (2012) reported that at least 70% of small-scale numer-
ical examples (where each includes no more than 25minor items) in their
computational experiment can reach the optima by means of the heu-
ristic, while the maximum error is no larger than 2.89% if threshold
values of the ratio are appropriately selected (for their numerical ex-
amples, 0.6 and 0.4 were suggested as the thresholds for the low and high
major ordering costs, respectively). They furthermore demonstrated that
the heuristic is thousands of times faster than the branch-and-bound (BB)
algorithm provided by Lingo 9.0 (programming software). Overall,
194
Zhang's heuristic for their JRP model performs rather effectively.
However, the heuristic performance is affected by the threshold of the

ratio, which must be set in advance, and for which they did not provide
effective methods for determining an appropriate value. According to the
computational experiment, the maximum error could even reach 4.72%
if the ratio threshold was not appropriately selected (Zhang et al., 2012).
Moreover, as the heuristic algorithm does not guarantee global opti-
mality, we cannot evaluate its performance for larger-scale problems.

3. Exact algorithm

3.1. Model transformation

It is easy to establish that ΓðK;T; FÞ is convex in F. Thus, the first-
order optimality condition with respect to F yields the optimal value of
F, as follows:

F* ¼ Cb

Cb þ Ch þ
Pn

i¼1λiChi
¼ Cb

Cb þ C'
h

(2)

Substituting F* into ΓðK;T; FÞ and rearranging terms, the optimal cost
function is recast as

ΓðK;TÞ ¼ A
T
þ hT

2
þ 1
T

Xn
i¼1

Ai=ki þ T
2

Xn
i¼1

hiki (3)

where h ¼ ðF*C0
h �

Pn
i¼1λiChiÞD and hi ¼ ChiDi. It can easily be proven

that
P

hi > jhj as a result of Di � λiD � 0, which guarantees that the
optimal value of T is finite and the optima of function ΓðK;TÞ exist.

It appears that Eq. (3) has a similar formulation to the traditional
JRPSC problem, the global optima of which may be determined by
Goyal's enumeration algorithm (Goyal, 1974; Khouja and Goyal, 2008).
However, because of the additional term hT

2 compared to the standard
JRPSC model, Goyal's algorithm cannot in fact be directly applied to our
“quasi” JRP problem (see computational results in section 4). In the
following section, we develop an exact algorithm that can determine the
global optima.

3.2. Properties of inventory cost function

Denote ΓðK;TÞ ¼ 1
T

Pn
i¼1Ai=ki þ T

2

Pn
i¼1hiki, and define a new function

as

ΓðTÞ ¼ minKΓðK; TÞ
Optimizing function ΓðK;TÞ is equivalent to optimizing function (4),

as follows:

ΓðTÞ ¼ A
T
þ hT

2
þ ΓðTÞ ¼ A

T
þ hT

2
þminKΓðK;TÞ (4)

It has been proven that, as a function in the form of Eq. (4), ΓðTÞ
exhibits the following properties (Viswanathan, 1996; Wildeman et al.,
1997; Lee and Yao, 2003).

Property 1. ΓðTÞ is a piecewise convex function and all the junction
points are determined by

tiðkiÞ ¼
ffiffiffiffiffiffiffi
2Ai

hi

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ki
� 1
ki þ 1

r
; ki ¼ 1; 2;…; i ¼ 1;…; n (5)

Eq. (5) indicates that the junction points decrease in ki; therefore, we
have tið1Þ > tið2Þ > … > tiðkiÞ > tiðki þ 1Þ > … (i ¼ 1;…;n).

Property 2. With a given T, the optimal value of ki is determined by

kiðTÞ ¼
�
1; if tið1Þ � T
ki; if tiðkiÞ � T � tiðki � 1Þ; ki � 2

; i ¼ 1;…; n; (6)



R.-Q. Zhang et al. International Journal of Production Economics 199 (2018) 193–198
which is equivalent to kiðTÞ ¼ � 1
2þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8Ai

hiT2

q
. Here, X represents the

smallest integer that is not smaller than X. Therefore, if T is located be-
tween two adjacent junction points of function ΓðTÞ, namely tiðkiÞ < T �
tiðki � 1Þ, the corresponding optimal value of multiple ki can be deter-
mined by Eq. (6), so that the optimum may easily be obtained. Because
the intervals formed by adjacent junction points contain all possible
values of T, searching all of these intervals will yield the global optimal
solution.

Moreover, in order to complete the search procedure within finite
steps, we need to determine the bounds of the optimal order cycle T*.
Considering Eq. (3) for a given K, the optimal value of order cycle T is

TðKÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
�
AþPn

i¼1Ai=ki
�

hþPn
i¼1hiki

s
(7)

When ki ¼ 1 for all i, TðKÞ takes its maximum value, implying that

T* �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

 
Aþ

Xn
i¼1

Ai

!, 
hþ

Xn
i¼1

hi

!vuut
For all ki ¼ 1;  ði ¼ 1; …; nÞ, the best inventory cost is C ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðAþPn

i¼1AiÞðhþ
Pn

i¼1hiÞ
p

. Obviously, the optimal inventory cost
should not be larger than C; thus, we have

Γ
�
K;T*� ¼ A

T* þ
1
T*

Xn
i¼1

Ai=ki þ T*

2

 
hþ

Xn
i¼1

hiki

!
� C

All terms in the above inequality are positive, and it follows that
A=T* � C; that is,

T* � A
�
C ¼ A

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

 
Aþ

Xn
i¼1

Ai

! 
hþ

Xn
i¼1

hi

!vuut
Hence, for the optimal order cycle T*, the upper bound U and lower

bound L can be determined, respectively, as

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

 
Aþ

Xn
i¼1

Ai

!, 
hþ

Xn
i¼1

hi

!vuut (8)

L ¼ A

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

 
Aþ

Xn
i¼1

Ai

! 
hþ

Xn
i¼1

hi

!vuut (9)

where T* 2 ½L; U�.
It should be noted that Eq. (9) provides an initial lower bound for the

optimal order cycle T*. For an iterative algorithm, we can dynamically
update the lower bound as follows:

T* � A
�bC (10)

where bC is the lowest cost obtained thus far.
Fig. 1. Procedure of exact algorithm.
3.3. Algorithm

ΓðTÞ provides a piecewise convex function, so that we can determine
the optimal value piece by piece. Specifically, we firstly calculate all the
junction points within L and U using Eq. (5). Then, we sort all these
points together and the interval of ½L; U� is split into multiple sub-
intervals by each pair of sorted adjacent junction points. For each sub-
interval, function ΓðTÞ is smoothly convex, and the optimal value of
the multiples K ¼ fk1;…; kng can be determined by Eq. (6), so we can
easily obtain the local optima for each sub-interval. Among all of these
local optima, that with the minimal inventory cost provides the global
195
optimal solution.
The above procedure is depicted in Fig. 1, and detailed as follows.

Step 1. Determine the optimal fill rate as F* ¼ Cb
CbþC'

h
. Let h ¼ ðF*C'

h �Pn
i¼1λiChiÞD and hi ¼ ChiDi (i ¼ 1;…;n). Calculate the bounds of the

optimal order cycle T* using Eqs. (8) and (9), yielding the upper
bound U and lower bound L, respectively.
Step 2. For minor item i (i ¼ 1;…;n), exhaust all ki 2 ½li; ui� in order to
determine all junction points tiðkiÞ on interval ½L; U� using Eq. (5),
where U � tiðliÞ > … > tiðuiÞ � L. As a result, n groups of junction
points are yielded for all minor items: ft1ðl1Þ;…; t1ðu1Þg, …, ftiðliÞ;…;

tiðuiÞg, …, ftnðlnÞ;…; tnðunÞg.
Step 3. Sort all the junction points of n minor items in increasing
order, and if multiple junction points are identical, merge these.
Denote by fτ0; τ1; τ2;…; τj; τjþ1;…; τS; τSþ1g all the increasingly sor-
ted junction points, where τ0 ¼ L and τSþ1 ¼ U.
Step 4. On each sub-interval ½τj; τjþ1� (j ¼ 0; 1; …; S), determine the

optimal value of K as bKj ¼ fbk1;…; bkng from Eq. (6). Moreover,

substituting bKj into Eq. (7) yields the corresponding optimal order

cycle TðbKjÞ on sub-interval ½τj; τjþ1�.
Make judgment: Considering the convexity of function ΓðTÞ, if
TðbKjÞ 2 ½τj; τjþ1�, the optimal order cycle on sub-interval ½τj; τjþ1� isbT j ¼ TðbKjÞ; if TðbKjÞ � τj, bT j ¼ τj; otherwise, bT j ¼ τjþ1. SubstitutingbT j and bKj into Eq. (3) yields the local optimal inventory cost on sub-

interval ½τj; τjþ1� (j ¼ 0;…;S), which is denoted by bΓ j.

Step 5. Let bΓ r ¼ minfbΓ0; bΓ1;…; bΓ j;…; bΓSg; then, bΓ r is the global

optimal inventory cost, and the corresponding order cycle bTr and

multiples bKr are the global optimal solution.
3.4. Computational complexity

Eq. (5) demonstrates that when tiðkiÞ is sufficiently small, kiðTÞwill be
sufficiently large and linearly proportional to 1=tiðkiÞ. Furthermore, the
minimum value of lower bound L is bounded by Oð1=nÞ (see Eq. (9)), as
with tiðkiÞ. Thus, the maximum value of kiðTÞ, that is, the maximum
number of junction points for item i, is bounded by OðnÞ. It follows that
for all minor items, at most Oðn2Þ junction points will be obtained. It
should be noted that the OðnÞ junction points of each item have been
sorted when deriving from Eq. (5). The further sorting of n groups of OðnÞ
sorted points carries a computational complexity of Oðn2lognÞ, based on
the heap structure (Chowdhury and Kaykobad, 2001).
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Moreover, the algorithmmust check all sub-intervals for n items; thus,
in step 4, in total we check at most Oðn� nÞ ¼ Oðn2Þ sub-intervals. For
each sub-interval, the algorithm calculates the optimal value of ki for
each item, which requires a total of n computation times. Obviously, in
order to check all sub-intervals, the computational effort is bounded by
Oðn� n2Þ ¼ Oðn3Þ. With the sorting manipulation, the total computa-
tional effort of the above algorithm is bounded by Oðn2lognÞþ Oðn3Þ,
implying that the proposed algorithm is polynomial.

4. Numerical computations

4.1. Illustrative numerical example

Consider an inventory system consisting of one major item and three
minor items, the parameters of which are listed in Table 1. We use the
proposed algorithm to solve the problem.

Step 1. The optimal fill rate is F* ¼ Cb
CbþC'

h
¼ 0:7667; the values of h

and hi (i ¼ 1;…;3) are h ¼ ðF*C'
h �

Pn
i¼1λiChiÞD ¼ 214:7692, h1 ¼

Ch1D1 ¼ 85:5, h2 ¼ Ch2D2 ¼ 16:92, and h3 ¼ Ch3D3 ¼ 4:2. Calculate
the upper and lower bounds of the optimal order cycle T* using Eqs.
(8) and (9), respectively, yielding U ¼ 1:2962 and L ¼ 0:2400.
Step 2. Determine junction points on interval ½0:2400;1:2962� for all
minor items using Eq. (5), which are listed in Table 2.

We observe that for item 2, when k2 < 2 or k2 > 11, the junction
point jumps out of interval ½L;U� ¼ ½0:2400;1:2962�. Thus, we need only
select the junction points of item 2 for 2 � k2 � 11. Similarly, we
consider junction points with 1 � k1 � 5 for item 1, and 2 � k3 � 12 for
item 3.

Step 3. Sort the end points of interval ½L;U� and the 26 junction points
selected above in increasing order, which yields 27 sub-intervals: I0 ¼
½0:2400; 0:2471�, I1 ¼ ½0:2471; 0:2498�, …, I26 ¼ ½1:2599; 1:2962�
(see Table 3).
Step 4. On each sub-interval, determine the optimal value of K. On
the first sub-interval I0 ¼ ½0:2400;0:2471�, for item 1, we have (see
Table 2):

I0 ¼ ½0:2400; 0:2471� � ½0:2111; 0:2498� ¼ ½t1ð6Þ; t1ð5Þ�
According to Eq. (6), the optimal value of k1 on sub-interval I0 ¼

½0:2400;0:2471� is bk1 ¼ 6; similarly, we have bk2 ¼ 12 and bk3 ¼ 13.

Substituting bK0 ¼ ðbk1; bk2; bk3Þ ¼ ð6; 12;13Þ into Eq. (7) yields TðbK0Þ ¼
0:4950 for sub-interval ½0:2400;0:2471�.

Make judgment: As the extreme point TðbK0Þ ¼ 0:4950 > 0:2471,
Table 1
Numerical example for illustration.

Parameters Major item Minor items

1 2 3

Ordering cost (A;  Ai) 100 80 70 20
Holding cost (Ch;  Chi) 0.5 0.095 0.0235 0.01
Demand rate (D;  Di) 600 900 720 420
Loss rate (λi) – 1.0 0.5 0.2
Backordering cost (Cb) 2 – – –

Table 2
Junction points of all minor items.

ki 1 2 3 4 5 6

t1ðk1Þ 0.9673 0.5585 0.3949 0.3059 0.2498 0.2111
t2ðk2Þ 2.0340 1.1743 0.8304 0.6432 0.5252 0.4439
t3ðk3Þ 2.1822 1.2599 0.8909 0.6901 0.5634 0.4762

The bold faced numbers are the junction points with the given k.
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considering the convexity of function ΓðTÞ, the local optimum on the sub-

interval should be the upper end point, namely bT 0 ¼ 0:2471.
Substituting bT 0 and bK0 into Eq. (3) yields the optimal inventory costbΓ0 ¼ 610:26 on the first sub-interval I0 ¼ ½0:2400;0:2471�.

By the same manipulation, we can obtain all TðbKjÞ for each sub-

interval, as well as the corresponding local optima bT j and bΓ j.

Step 5. The global optimal inventory cost is Γ� ¼ minfbΓ0; bΓ1;…;bΓ26g ¼ bΓ22 ¼ 390:67, while the optimal solution is F� ¼ 0:7667,
K� ¼ bK22 ¼ f2; 3;4g, and T� ¼ bT 22 ¼ 0:8618.

The shape of function ΓðTÞ for the illustrative numerical example,
which is a piecewise convex function, is depicted in Fig. 2.

4.2. Application of enumeration algorithm

As mentioned previously, Goyal's enumeration algorithm (GE algo-
rithm for short) is not applicable to our problem, because of the term hT

2 in
the objective function. However, we can equally recast the problem as8>><>>:

minΓðK;TÞ ¼ A
T
þ 1
T

 Xn
i¼1

Ai=ki þ A0=k0

!
þ T

2

 Xn
i¼1

hiki þ hk0

!
s:t:            k0 ¼ 1

; (11)

where A0→0 is a sufficiently small positive number, so that the problem
is transformed into a JRPSCmodel with nþ 1 items. We can adapt the GE
algorithm to solve the equivalent model (11) by setting k0 to 1.

For the illustrative example above, the smallest cost yielded by the
adapted GE algorithm is Γ ¼ 392:59, which is inferior to that of the exact
algorithm, implying that the GE algorithm cannot be directly applied to
the JRP model in this study. Further numerical computations also indi-
cate that the adapted GE algorithm cannot determine the optimal solu-
tion based on model (11), as reported below.

4.3. Application of algorithm to larger-scale problems

In order to evaluate the computational performance of the algorithm
when solving larger-scale problems, we construct 100 numerical exam-
ples by randomly selecting the parameters D 2 ½100; 10000�, A 2 ½10;
1000�, Ch 2 ½0:1; 10�, Cb 2 ½1; 100�, λi 2 ½0:05; 1�, Di 2 ½λiD; 5D�,Ai 2 ½10;
100�, and Chi 2 ½0:001; 5�, each of which includes 25 minor items (n ¼
25). Under the same scheme, for n ¼ 50; 100; 150; 200; 300; 400; 500;
600; 700; 800; 900; 1000, we also respectively generate 100 numerical
examples, and in total we test 13 groups of data (where each group in-
cludes 100 examples).

All examples are solved by the adapted GE and exact algorithm, on a
computer with a Duo processor with Core i7-7700 CPU, 3.60 GHz, and
32.00 G memory. Table 4 displays the average and maximum computa-
tional times (Avg. time and Max. time) of the two algorithms, as well as
the average and maximum relative deviations from the optima (Avg. dev.
and Max. dev.) of the adapted GE algorithm.

Table 4 demonstrates that the adapted GE algorithm cannot obtain
the optimal solution. For various examples, the relative deviation of the
total cost of the adapted GE algorithm reaches more than 10%, compared
with the exact algorithm. It appears that the adapted GE algorithm based
7 8 9 10 11 12 13

…

0.3844 0.3390 0.3032 0.2743 0.2504 0.2303 …

0.4124 0.3637 0.3253 0.2942 0.2686 0.2471 0.2288



Table 3
Optimal solution on each sub-interval.

Sub-intervals
τj 0.2400 0.2471 0.2498 0.2504 0.2686 0.2743 0.2942 0.3032 0.3059 0.3253 0.3390 0.3637 0.3844 0.3949
τjþ1 0.2471 0.2498 0.2504 0.2686 0.2743 0.2942 0.3032 0.3059 0.3253 0.3390 0.3637 0.3844 0.3949 0.4124

bk1 6 6 5 5 5 5 5 5 4 4 4 4 4 3bk2 12 12 12 11 11 10 10 9 9 9 8 8 7 7bk3 13 12 12 12 11 11 10 10 10 9 9 8 8 8

TðbKjÞ 0.4950 0.4963 0.5251 0.5313 0.5329 0.5395 0.5412 0.5484 0.5879 0.5900 0.5991 0.6014 0.6114 0.6682bT j 0.2471 0.2498 0.2504 0.2686 0.2743 0.2942 0.3032 0.3059 0.3253 0.3390 0.3637 0.3844 0.3949 0.4124bΓ j 610.26 606.34 605.40 579.78 572.72 550.38 541.65 539.13 521.11 510.07 492.85 480.93 475.48 465.98

Sub-intervals
τj 0.4124 0.4439 0.4762 0.5252 0.5585 0.5634 0.6432 0.6901 0.8304 0.8909 0.9673 1.1743 1.2599
τjþ1 0.4439 0.4762 0.5252 0.5585 0.5634 0.6432 0.6901 0.8304 0.8909 0.9673 1.1743 1.2599 1.2962

bk1 3 3 3 3 2 2 2 2 2 2 1 1 1bk2 7 6 6 5 5 5 4 4 3 3 3 2 2bk3 7 7 6 6 6 5 5 4 4 3 3 3 2

TðbKjÞ 0.6714 0.6848 0.6883 0.7040 0.7968 0.8019 0.8251 0.8313 0.8618 0.8701 1.0747 1.1308 1.1462bT j 0.4439 0.4762 0.5252 0.5585 0.5634 0.6432 0.6901 0.8304 0.8618 0.8909 1.0747 1.1743 1.2599bΓ j 451.74 439.88 426.78 420.10 418.85 403.67 397.74 390.94 390.67 390.88 390.80 392.34 394.35

The bold faced column is the optimal solution with the optimal inventory cost (390.67) underlined.

Fig. 2. Shape of piecewise convex function ΓðTÞ of illustrative numeri-
cal example.

Table 4
Computational results.

n Adapted GE Exact algorithm

Avg.
time (s)

Max. time
(s)

Avg.
dev.

Max.
dev.

Avg. time
(s)

Max.
time (s)

25 0.005 0.02 4.47% 13.27% 0.009 0.05
50 0.02 0.05 6.33% 12.33% 0.03 0.11
100 0.12 0.20 8.12% 13.85% 0.14 0.69
150 0.35 0.48 9.04% 13.63% 0.28 1.05
200 0.77 1.08 9.59% 13.29% 0.52 1.75
300 2.41 3.05 10.07% 12.39% 1.07 3.20
400 5.63 7.09 10.33% 12.42% 2.05 9.31
500 10.87 13.30 10.64% 12.49% 3.15 8.91
600 18.63 23.28 10.86% 13.07% 4.47 8.75
700 29.79 35.70 10.85% 12.31% 5.98 11.77
800 44.92 53.36 10.96% 12.44% 7.87 14.58
900 62.85 75.59 10.94% 12.54% 10.14 17.14
1000 86.88 102.69 11.16% 12.69% 12.41 17.88
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on model (11) always leads to inferior solutions. The explanation for this
is that the absolute value of h ¼ ðF*C0

h �
Pn

i¼1λiChiÞDmay be significantly
larger than hi ¼ ChiDi, so the term hT

2 plays an important role in the cost
function and should not be ignored by setting k0 as equal to 1. Specif-
ically, the data in the Avg. dev. column of Table 4 indicate that with the
adapted GE algorithm, the average deviation from the optima becomes
larger for more minor items. The reason for this is that more minor items
result in a larger absolute value of h, resulting in a greater impact by the
term hT

2 .
Moreover, the computational results demonstrate that the polynomial

algorithm can efficiently obtain the exact optima for problems with up to
1000 minor items, which will provide a highly competent solution in
practical applications.

5. Conclusion

This paper presents an exact algorithm for the problem of JRP with
complete backordering and correlated demand, as studied by Zhang et al.
(2012). We prove that the proposed algorithm is of polynomial
complexity and thus the problem is not NP-hard, which amends the
197
previous study. The computational results demonstrate that the proposed
polynomial algorithm is highly efficient for large-scale problems, which
offers a competent solution for practical applications.

It should also be mentioned that our algorithm can be applied to
solving inventory models related to JRPSC. Moreover, the trick of
determining the optimal solution based on piecewise convexity or con-
cavity can be used in various other contexts, such as those of Zhou et al.
(2013, 2017) and Li et al. (2017).
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