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A B S T R A C T

In this paper an efficient first-order multi-objective optimization scheme is adopted for the design of linear viscous dampers for the seismic retrofitting of frame
buildings. A retrofitting cost function serves as one objective while the expected losses serve as the other objective. These two objectives are well understood by
decision makers that may not be engineers. Furthermore, with the Pareto front for these two objectives at hand, the decision maker can make his decisions with the
whole picture at hand. To allow achieving the Pareto front with a reasonable computational effort, a first-order multi-objective optimization approach is adopted.
The gradients of the expected loss function, required for the optimization, are analytically derived using the very efficient Adjoint Variable method. This considerably
improves the computational efficiency of the methodology. The efficacy of the framework is illustrated with a 2D four storey frame and an eight-storey 3D
asymmetric building.

1. Introduction

Recent seismic events have shown that, when it comes to modern
countries with modern seismic codes, loss of human lives due to col-
lapse of buildings is considerably smaller compared to that in the past.
For example, the 1994 Northridge and the 2011 Christchurch earth-
quakes caused a total of 57 and 185 deaths, respectively. As saving
human lives has been the major task of earthquake engineering, this is
indeed an achievement for the structural engineering community.
However, with the relatively small number of deaths due to these
events, came huge monetary losses. The 1994 Northridge and 2011
Christchurch led to losses estimated at∼US $44 billion and

NZ $40billion (corresponds to approximately 20% of the GDP), re-
spectively (direct and indirect). This motivates a design considering
expected losses in parallel to reducing loss of human lives [2].

Adopting such a design approach is necessary for new buildings,
where new technologies to limit damage could be easily included. One
such loss based design approach is the Loss Optimization Seismic Design,
commonly referred as LOSD [3,4]. This may highly affect the losses to
be expected in the far future. Nonetheless, in the foreseen future, most
buildings to experience earthquakes are ones that have already been
designed and built based on the sole goal of saving human lives. Thus,
new technologies and design approaches for their retrofitting are re-
quired to reduce expected losses.

Such new technologies for seismic protection have shown to be

beneficial for mitigation of damage to regular structures [5–9]. These
technologies may even be more beneficial for mitigation of damage to
irregular structures [10–15]. It has been observed that such irregular
structures are more seismically vulnerable than their regular counter-
parts [16]. For example, many of the buildings to be damaged due to
the 2010 Chile earthquake presented some source of irregularity (either
vertical, horizontal or both) [17]. This is not surprising as plasticity and
damage are well known to concentrate in the vicinity of irregularity,
while presenting very high local ductility demands [18]. This is one of
the reasons that new technologies for seismic damage mitigation, if
applied wisely, could very well reduce such damage in irregular
structures.

Fluid viscous dampers (FVDs) are such a new technology. They have
been shown to be very efficient in reducing inter-story drifts in frame
structures [6]. Inter-story drifts are the main engineering demand
parameter (EDP) associated with structural damage and damage to drift
sensitive non-structural components. Thus, FVDs are expected to effi-
ciently reduce seismic losses. In addition to reducing inter-story drifts, a
careful use of linear FVDs for seismic retrofitting has been shown to
efficiently reduce total accelerations (e.g. Ref. [19]. Such accelerations
are the main EDP associated with damage to acceleration sensitive non-
structural components. This further enhances the efficiency of FVDs in
reducing seismic losses. As a careful use of FVDs for seismic retrofitting
may reduce total accelerations and forces, or at least may not increase
them as other technologies, it may prevent the need for columns and
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foundation strengthening [6,20]. This may have a huge effect on the
initial cost of retrofitting. It should be noted that the performance of the
structure may be very much affected by the damping distribution [21].
Thus, there is much room for damping optimization. This is expected to
be even more pronounced in irregular structures.

Indeed, many approaches for the optimal design of FVDs, especially
for the purpose of seismic retrofitting of frame structures, have been
proposed over the years. Early works targeted the design of the dampers
based on energy considerations (e.g. Zhang and Soong [22–33]. For
example, the SSA [33] and the SSSA [25] algorithms focused on max-
imizing the energy dissipated by the dampers. Using these approaches
the designer sequentially adds dampers at the locations where they are
expected to dissipate the most energy. Another suit of approaches
aimed at minimizing some energy (elastic, kinetic) responses of the
parent structure [22,23]. Designing based on energy measures makes a
lot of sense. It is believed, also by the authors, that such a design may
reduce some overall response measures of the structure. Nonetheless,
the actual responses of interest remain un-known. Furthermore, while
overall responses may reflect on the performance of regular buildings,
this is not the case when it comes to irregular buildings. As noted above,
the behaviour of irregular structures is characterized by excessive local
deformation demands at the region of irregularity. Thus, while some
distributions of dampers may reduce some overall performance mea-
sure, the local deformations at the region of irregularity may not be
efficiently mitigated. This may, in some cases, lead to collapse, or a
financial total loss of the structure where the structure cannot be fixed
after an event due to excessive local deformations.

A step forward was made when design methodologies based on
actual EDPs were proposed (e.g. Refs. [14,19,22,30,32,34-51]. For ex-
ample, Takewaki [38] proposed using the sum of amplitudes of inter-
story drifts' transfer function evaluated at the natural period of the
structure. Lavan and Levy [45] suggested using the envelope peak inter-
story drifts at selected locations as performance measures (each one
separately or the maximum between all). This was an important step
forward as, with some of these approaches, the design could be made
for a desired seismic performance of the building, from an engineering
point of view. That is, local deformation demands could be treated
explicitly, and collapse or financial total loss could be prevented.

Inter-story drifts are very important EDPs that structural engineers
understand very well. They serve as a good measure for how close the
building is to collapse (physical or financial). Furthermore, they reflect
on the damage state of the structural system as well as some non-
structural components. However, stakeholders and decision makers are
often not engineers. Thus, they may not have a sense to the implications
of inter-story drifts, or any other EDP. In addition, EDPs are indeed
correlated to damage and, in turn, to losses. Nonetheless, they do not
directly represent losses, that are the ones one wishes to reduce (as-
suming collapse and loss of human lives are prevented). This makes the
design based on EDPs somewhat limited as engineers, that understand
EDPs, are not the ones to make the decisions. On the other hand, the
decision makers do not understand EDPs. Thus, to allow the decision
makers make their decisions based on parameters they understand, the
design should be based on expected losses.

A design based on financial considerations has been proposed by
Park et al. [48]. They made use of a genetic algorithm (GA) approach
for the minimization of the life-cycle cost of structures equipped with
visco-elastic dampers. The life-cycle cost combines the upfront cost
(initial cost of the structure with the dampers) with the expected losses
(or damage cost). The expected damage cost required for the life-cycle
cost evaluation was evaluated using a frequency domain analysis of the
structure. That is, a linear model of the structure and the dampers is
adopted. Such a model can be justified in many cases, when dampers
are added to the structure. A year later, Dargush and Sant [43] devel-
oped a GA based computational framework for the optimal design of
dampers in nonlinear shear frames. They considered VDs, VEs and
yielding devices. Their fitness function comprised of the economic

benefit derived from the structure, the negative of cost of the dampers
and the negative of a damage cost associated with the behaviour of the
structure under the considered seismic environment. The framework
was able to trace trends in the characteristics of optimal designs. The
algorithm tended to favour the rate dependent devices over the yielding
devices. Recently, GA frameworks for the optimization of designs based
on financial considerations have been proposed as well [52,53]. They
minimized the life-cycle cost of retrofitted nonlinear buildings. A clo-
sely related measure for the expected losses is the probability of ex-
ceeding a given damage state. In this direction Altieri et al. [54]
minimized a measure of the retrofitting cost using fluid viscous dam-
pers while constraining the probability of failure of the retrofitted
structure. For the optimization, they made use of a constrained opti-
mization by linear approximation method.

While the approaches mentioned above for financial based optimi-
zation present an important step forward, the optimization of the pro-
blem using zero order methods often requires a large number of func-
tion evaluations. In the cases considered, each function evaluation
(computation of the life-cycle cost or probability of failure) requires
multiple structural analyses (in some approaches nonlinear time-history
analyses). Thus, there is a need for a more computationally efficient
optimization approach. Furthermore, it would be beneficial for the
decision maker to separate the initial cost of retrofitting from the ex-
pected losses. Indeed, this can be done by minimizing the initial cost
and constraining the expected losses or vice versa. Nonetheless, this will
enforce deciding a priori on an upper bound for either the initial cost or
the expected loss. Such a decision, that is made a priori, may have a
huge effect on the resulted optimal design. Thus, an alternative ap-
proach should be taken.

A very well-established way of enabling the decision to be made
without setting any parameter a priori is by the notion of Pareto op-
timality [55]. The philosophy behind Pareto optimality is that rather
than attempting to identify a single optimal design, one seeks to de-
termine an entire family of designs. For each of these designs an im-
provement in one objective can be achieved only with a degrade in at
least one other objective. This philosophy has been adopted in the
context of seismic retrofitting while minimizing both inter-story drifts
and total accelerations by Lavan and Dargush [19]. They indicated that
using a multi-objective optimization approach may sometimes have a
huge benefit over single objective optimization. This is because the
selection of the solution can be done with the whole picture at hand,
without setting any parameters a-priori. This is because some optimi-
zation problems may be very sensitive to the choice of values set for
some parameters.

An efficient approach for the multi-objective optimal design of
seismic retrofitting using FVDs is the purpose of this paper. It is sug-
gested to adopt the initial cost as one objective and the expected losses
as the other, within a multi-objective framework. Within this frame-
work, the Pareto front is efficiently computed using a gradient based
approach. Thus, the Pareto front can be practically obtained within a
reasonable time using a personal computer. With the Pareto front, the
decision maker can choose the best compromise between two com-
peting objectives he understands, while having the whole picture at
hand. This may give the decision maker the freedom of choosing the
best compromise between the initial investment and the expected
losses, without setting any parameter a priori.

2. Problem formulation

In this paper a multi-objective loss optimization framework is pro-
posed. The problem deals with the seismic retrofitting of existing frame
structures using fluid viscous dampers. Fluid viscous dampers are po-
tentially allocated in various locations determined by the engineer
considering architectural and functional constraints. Their damping
coefficients serve as the design variables. Although the number of po-
tential locations for the dampers may be large, a particular case is when
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the optimization sets a zero value for the damping coefficient of a given
potential damper. This indicates that no damper is required at the
specific location. It should be noted that in the current paper the
damping coefficients are continuous variables. Hence, some post-pro-
cessing may be required from the engineer to group dampers of close
sizes to a single size group. An alternative approach to that for the case
of single objective optimization is given in Refs. [56–59].

The problem discussed is a bi-objective problem. The two com-
peting objectives are the initial cost of retrofitting and the today's worth
of the expected losses. A Pareto front with these two objectives allows
the decision maker to choose the best compromise between the ex-
penses he needs to meet today versus today's worth of the financial
losses he is expected to suffer in the future. From physical reasons, non-
negativity constraints are added on the damping coefficients of the
dampers.

2.1. Design variables and the behaviour of fluid viscous dampers

In this paper, the general force-velocity relation of fluid viscous
dampers to be designed is given by:

=F C x xsgn( ) (1)

where.
F represents the damper force, C represents the damper coefficient,

x represents the velocity and α represents the velocity exponent ranging
from 0.15 to 2.0. It is well accepted that with a small exponent, α, the
force in a damper does not increase considerably with an increase of the
velocity between its ends. Thus, if a stronger earthquake than designed
for takes place, the forces the dampers apply to their neighbouring
structural elements are limited. As a result, brittle failure may be
avoided. This is in contrast to linear dampers (i.e. with an exponent of
one) where the force in the damper increases linearly with its relative
end velocity. Nonetheless, it has been also shown that, with a small
exponent, a stronger earthquake than designed for would lead to much
larger deformations in the building compared to the same building
retrofitted with linear dampers [60,61]. Thus, in the context of this
paper, linear dampers are to be optimized. With the value of α set to
one, the sole parameter that controls the behaviour of the damper is its
damping coefficient. The damping coefficients of the various dampers
(potentially allocated in various locations in the building) are set as the
design variables. It should be noted that damper limit states may also
affect the behaviour of the retrofitted structure (see e.g. Ref. [62].
Nonetheless, in this work the damper is an element to be designed, and
not an element with given properties. Thus, the designer could assess
the force and stroke demands from the damper and design it accord-
ingly.

2.2. Retrofitting cost estimation

Various levels of detail have been proposed for the retrofitting cost
of frames using fluid viscous dampers. In the present work, the sum of
added damping coefficients is adopted. Under some circumstances, this
may be a reasonable approximation for the cost of manufacturing the
dampers (see e.g. Ref. [57]. It should be noted that retrofitting cost
estimations that account for the prototype testing of a damper from
each group of similar dampers, as well as for the cost of installation of
each damper, are available (see e.g. Ref. [57]. Nonetheless, these re-
quire tools and techniques from topology optimization that are not yet
suited for a gradient based multi-objective optimization.

Formally, the retrofitting cost estimation adopted in this paper can
be written as follows:

=
=

c c( )d
i

N

d i
1

,

dampers

(2)

where c( )d is the total damper quantity which represents the total cost

of dampers, cd i, is the damper coefficient and Ndampers represent the total
number of dampers.

2.3. Expected loss computation

This section summarizes detail loss assessment framework as re-
ported in Aslani and Miranda [63]. In classical detail loss assessment
framework (PEER format), the expected annual loss or the loss expected
over a period of time is computed as,

=E L e E L IM dv IM[ ] 1 [ | ] ( )T
t

T
0 (3)

where.
E L[ ]T is the expected annual loss;λ is the discount rate;t is the

period for which the rate is applied; it can be the design life of the
building or remaining life of the structure; E L IM[ | ]T is the expected loss
conditioned on the intensity measure IM; v(IM) is the mean annual rate
of exceedance of the intensity measure.

E L IM[ | ]T can be divided into two components,

= +
×

E L IM E L NC IM P NC IM Total building value
P C IM

[ | ] [ | , ] ( | )
( | )

T T

(4)

Over here.
E L NC IM[ | , ]T is the expected loss in non-collapse case; P NC IM( | ) is

the probability of non-collapse for the specific ground motion intensity;
P C IM( | ) is the probability of collapse for the specific ground motion
intensity.

The addition of viscous dampers reduces the collapse probability
considerably in a major event. So, it could be argued that only non-
collapse case need be considered while using viscous dampers which
means no probability of collapse be computed. An alternative approach
is to use a modified framework in which the whole loss is computed in
such a way that there is no collapse and the effect of collapse is in-
troduced through a Heaviside step function in such a way that when
drift exceeds a certain value in any of the ground motions considered, it
is deemed as a total loss. This approach is adopted in the present study.
So first the loss is computed assuming no collapse and then the obtained
equation is modified by introducing the Heaviside step function term.
This aspect is described in more detail in section 2.3.1.

Assuming no global collapse =P NC IM( ( | ) 1.0), eq. (4) becomes,

=E L IM E L NC IM[ | ] [ | , ]T T (5)

Now

=
=

E L NC IM a E L IM[ | , ] ( [ | ])T
j

N

j j
1 (6)

Over here.
aj is the cost of a new jthcomponent; E L IM[ | ]j is the expected loss of

the jthcomponent conditioned on the ground motion intensity. Note
that from here on “NC” is not being explicitly stated as the computation
is only done for the non-collapse case.

Now the expected loss of the jthcomponent conditioned on the
ground motion intensity is given as,

=E L IM E L EDP dP EDP edp IM[ | ] [ | ] ( | )j j j j
0 (7)

Over here.
E L EDP[ | ]j j Is the expected loss in the jth component when it is sub-

jected to an EDPjwhen no collapse occurs; P EDP edp IM( | )j is the
probability of the EDP exceeding edp in the jthcomponents when no
collapse occurs. Again,

= =
=

E L EDP E L DS P DS ds EDP[ | ] [ | ] ( | )j j
i

m

j i i j
1 (8)
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E L DS[ | ]j i is the expected loss conditioned on damage state i. In other
words, it is the loss in the jth component when the component is in
damage state i and can be obtained from experimental database [63].

=P DS ds EDP( | )i j is the probability of the jth component being in da-
mage state dsi when the EDPj is experienced by the jthcomponent and is
given as follows [63].

= = =

=

= =
+

P DS ds EDP P DS ds EDP edp P

DS ds EDP edp

P DS ds EDP edp

( | ) ( | )

( | )

( | )

i j i

i

i
Ln edp Ln EDP

1
( ) ( )mean

LnEDP (9)

Here, LnEDP is the logarithmic standard deviation of EDP.
A simplified loss computation methodology is adopted for the pre-

sent study. A discrete lumped loss estimation approach in which loss in-
curred is computed as a function of the structural response of each
degree of freedom is used for the present study. This is mainly moti-
vated from the studies of Ramirez and Miranda [64] in which a storey-
based loss estimation was introduced as a more pragmatic framework
for performing loss estimation. To further illustrate this aspect, Fig. 1
represents a two bay two storey frame with a partition wall in the first
bay in the first-floor level.

It is very clear that damage to the partition wall will be a function of
the inter-storey drift of these nodes. Lumping of loss philosophy as-
sumes that if the value of the partition wall is say χ then each node
connecting it will be assigned an equal share of the value; i.e. 4. In
other words, an influence factor is introduced which transforms the
value of each component and lumps it to a specific degree of freedom.
The loss incurred will then be a function of the inter-storey drift asso-
ciated with that degree of freedom. This type of approach may be
conveniently adopted for predominantly drift sensitive non-structural
components mainly because all the drift sensitive items would be di-
rectly or indirectly connected to the parent structural members.

Damage to acceleration sensitive items would be a function of the
specific floor mass acceleration alone; so, losses may be lumped to the
specific floor masses and will be very similar to the Ramirez and
Miranda [64] approach. Losses may also be lumped to the acceleration
felt by a specific degree of freedom by computing/assessing the proxi-
mity of the structural node to the component under consideration.

2.3.1. Simplified loss framework including collapse consideration
The first simplification comes from the fact that only intensity-based

loss assessments are used in this study. So only EDP corresponding to a
specific intensity of ground motion is adopted and the resulting loss is

termed as total expected loss. Except for step 8, all the steps which are
detailed below are adopted from Aslani and Miranda [63] and Ramirez
and Miranda [64]. The steps are as follows:

1. Perform linear/nonlinear time history analyses using n ground
motions compatible with a target spectrum.

2. Compute the mean response history from the n response histories
3. For the jth component, determine the probability of being in a da-
mage state by computing eq. (9).

4. Determine E L NC DS[ | , ]j i , expected loss of jthcomponent conditioned
on damage state i from the loss database. For the present study the
loss database given in Aslani and Miranda [63] is adopted.

5. For the jth component, compute E L EDP[ | ]j j , expected loss of
jthcomponent subjected to EDPjfor no collapse state using eq. (8).

6. Repeat steps 3–5 for all components
7. Compute the total normalized expected loss conditioned on EDP for
no collapse as follows,

=
=

=E L EDP E L EDP
a

[ | ] [ | ]T j
N

j j

j j

1

(10)

where T represents the spatial influence factor which determines the
lumping.

8. Introduce the Heaviside function to reflect the collapse scenario as
shown below,

= + ×

=

E L NC EDP H d X Total building value H X d

Env abs t abs t

abs t

H u H u

H u

[ | , ] ( ) ( )

max max( ( ( ))), max( ( ( ))), .., max

( ( ( )))

T al al

i t
T

t
T

t

T N

1 2

gm

(11)

Over here, Ψrepresents the expected total loss conditioned on EDP,
dal refers to the capping drift, H refers to the Heaviside step function,

tH u ( )T i refers to the drift, Env refers to envelope. In eq. (11) X re-
presents the envelope of the maximum of the maximum at any instant
in any storeys. The use of Heaviside step function reflects the fact that
when the computed drift exceeds an allowable capping drift, total loss
is assumed. It should be understood here that, exceeding this capping
drift does not mean physical collapse of the structure, but mainly relates
to a situation of complete financial loss as the structure gets written off
due to non-reparability or non-usability. So, the selection of capping
drift is very important. Even the definition of no-reparability or non-
usability is subjective and depends on lots of other associated societal
aspects.

First order gradient-based optimization schemes are used for the
optimization framework described in the next section. Because of this,
to integrate seismic loss into this framework, the expected loss func-
tions need to be described as smooth functions. One way to describe the
functions is by using interpolation techniques. The simplest interpola-
tions that can represent these functions are polynomial functions. Using
polynomial functions, expected loss function of the jth component is
expressed as,

=
=

E L NC EDP A EDP[ , ] ( )j j
i

k

i j
1

i
(12)

Here, A ,i i are the constants in the polynomial. These constants
differ for different components and need to be explicitly evaluated.

A more robust methodology of interpolation would be to use cubic
spline functions; but to the knowledge of the authors, as this the first
time an attempt is initiated to integrate the seismic loss aspect into the
first order gradient multi-objective optimization framework, the

Fig. 1. two storey two bay frame with partition wall.
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simplest polynomial based interpolation technique is adopted in this
study; considering the other uncertainties associated with the loss es-
timation process, this methodology is deemed to be acceptable.

2.4. Optimization problem formulation

This section presents the generic framework for multi-objective
optimization. First order gradient-based schemes are employed to solve
the optimization problem. The optimization problem involves mini-
mizing simultaneously the initial cost described in section 2.2 and the
expected total loss described in 2.3. In this study, seismic losses due to
downtime and injury are not accounted for; thereby resulting in un-
derestimation of the benefits of optimal intervention.

The framework presented here is applicable equally to strength-
ening existing buildings and to new buildings. In a new building, both
stiffness and damping may be considered as variables and maybe op-
timized to achieve a target performance; but in this present work only
the added damping is considered as the variable. If only damping is
considered as the variable, then the initial cost in the case of enhancing
seismic performance with viscous dampers can be assumed as the cost
of added dampers and their installation.

The optimization problem is formulated as given below,

= ×

+ ×

+ + + =
= =

=

=

= = =

here
H d C

H d c A abs t

where t follows
t t t u t

r N

Env abs t abs t

abs t

u t

c c

H u

u
Mu C C c u Ku Mr
u u

c

H u H u

H u

min( ( ), ( ))
,
{ ( )}

{ ( )} max( ( ( )))

( )
¨ ( ) [ ( )] ( ) ( ) ¨ ( )
(0) 0; (0) 0

0
1

max max( ( ( ))), max( ( ( ))), .., max

( ( ( )))

¨ ( )

d d

al total

al j
N

j i
k

i N r
N

t
T r

r

r damper d r r g r

r r

d

gm

i t
T

t
T

t

T N

g r

1 1
1

1

,

1 2

,

d
gm

gm
i

gm

(13)

In eq. (13) H refers to the Heaviside step function; HT refers to the
drift transformation matrix; cdrefers to the damper vector; u u,r r and
ürare displacement vector, velocity vector and acceleration vector for
the rthground motion; Ngm represents the number of ground mo-
tions;M,C and K are the mass, inherent damping and stiffness matrices;
C c( )damper d is the added viscous damper matrix; r is the directionality
vector; üg r, is the rth ground motion acceleration vector; Ctotal is the total
cost of the structure; cj is the cost of the jth component; Ai is the con-
stant multiplier associated with the loss function, i represents the
power, N represents the degrees of freedom. Eq. (13) represents the
simultaneous minimization of damper quantities and expected total
loss. The effect of collapse is considered by incorporating the Heaviside
step function with a kernel function comprising of capping drift dal and
envelope drift.

Heaviside step function is used in eq. (13) to introduce a control on
the limiting acceptable loss. The kernel of the Heaviside step function
involves the envelope computed drift which is basically the maximum
of the drifts at all levels considering all ground motions and the al-
lowable acceptable capping drift dal. In the present study, dal is chosen
to make the frame remain predominantly linear.

One aspect of eq. (13) is that when the envelope computed drift
exceeds thedal, it is assumed that the structure would be completely
written off. To emphasize this point, in the recent 2016 Kaikoura
earthquake in New Zealand, one multi-story building was demolished

mainly classing it as non-repairable. The main damage in the building
was in one of the columns where there was a reasonable hinge forma-
tion. Albeit the experienced engineer's belief that it could be repaired,
and building be re-used, the building was marked for demolition mainly
because the health and safety laws prevented the workers from going
inside the building to do the repair. This is a very significant societal
aspect which drives what is deemed as acceptable in the modern so-
ciety. The selection of dalin eq. (13) may be used to indirectly reflect
these societal aspects. This epitomizes the significance of eq. (13) from
a pragmatic view point as it gives direct control of allowable acceptable
damage to the designer.

Similar justifications for this approach may again be obtained from
the Christchurch sequence of earthquakes. It had been observed during
the Christchurch sequence of earthquakes that so many buildings
though did not collapse had to be demolished as the damage was
classed as non-repairable; it was also observed that owners or stake
holders had a strong tendency to write off their assets (buildings) when
it suffered moderate repairable inelasticity mainly because they could
claim insurance (Personal communications with experienced en-
gineers). There are also so many other non-technical reasoning that
maybe attributed to the demolition of many buildings. This is a huge
economic burden on the society and gives a strong motivation for for-
cing the capping drift to a value so that the system is predominantly
elastic in a design event.

Eq. (13) presents a nonlinear optimization problem. In the present
study, this problem is solved by discretizing the nonlinear objective
functions and are solved by using an aggregate gradient based metho-
dology [65].

3. Optimization procedure

The problem presented in Eq. (13) is a multi-objective optimization
problem. Most of the optimization approaches for solving such a pro-
blem are zero-order methods. That is, they require the ability to eval-
uate the values of the objective functions only (and constraints, if ap-
plicable) for given designs. Such approaches usually require the
evaluation of the objective functions for many designs. For the problem
at hand, where the evaluation of one of the objective functions requires
multiple time-history analyses, this leads to a tremendous computa-
tional effort. Recently, Izui et al. [65] presented a first-order multi-
objective optimization approach. As a first-order optimization method,
it requires the evaluation of not only the objective functions for given
designs, but also their gradients w.r.t the design variables. This may be
mistakenly thought of as a disadvantage of the approach. However, it
has been observed that this approach requires the evaluation of the
objective functions and their gradients for a much smaller number of
designs compared to zero-order methods (see e.g. Izui et al., [65,66].
Thus, if the gradients could be efficiently evaluated, this approach is
very beneficial, from a computational effort point of view. In addition,
the Pareto fronts that this approach converges to have been shown to
dominate those obtained using GA, as well as more diverse.

In the next sections, the application of the approach proposed by
Izui et al. [65] for the problem at hand, as well as the gradient deri-
vation, will be presented in detail.

3.1. Main stages of the aggregate gradient-based methodology (adapted
from Izui et al. [65])

In much similarity to GA, the gradient based approach starts with a
set of initial designs and generates a new set of designs (or a new
generation) in each iteration of the optimization. In each iteration, the
objective functions and their gradients are evaluated for each design. In
turn, design is updated using the information from all other designs.
This is done by converting the multi-objective problem for each design
into a single objective problem using an adaptive weighting technique.
The weights are computed while considering the locations of all the
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designs within the iteration in the design space. The obtained single
objective problem for each design is then solved using a sequential
linear programming (SLP) method and the design variables are up-
dated. Brief overview of the main stages of the method as applied to the
viscous damper optimization is as follows:

Step 1. Selection of a suite of ground motions matching the specified
intensity

An ensemble of ground motions is selected to match the target mean
spectrum corresponding to the specific intensity level of interest. It
must be noted that the procedure outlined in this section is equally
applicable to time-based assessments in which case the expected annual
loss will be minimized instead of the total expected loss used in the
present study.

Step 2. Initialization of design variables and generation of initial design
points

Design point is basically obtained by computing the two objective
functions given in eq. (13) assuming a specific random distribution for
the design variable which are the damper coefficients. Mathematically
this means, for q design variables (damper coefficients), generate K
design points using random values for the design variables. For e.g. if
we assume q=2 and K=7, then there are seven random distributions
of the two dampers and each design point in the objective function
space as shown in Fig. 2 corresponds to evaluation of the objective
functions in eq. (13) subject to the constraint on the damper coeffi-
cients.

Step 3. Compute weighting coefficients as per Data Envelopment
Analysis (DEA)

To generate the Pareto front, the design points shown in Fig. 2 need
to move towards the Pareto frontier that is closest to its current position
in the objective function space. But as the Pareto frontier is not known
prior to optimization calculation, the points in the objective function
space need to be updated using an adaptive weighting method. Only a
very brief detail is given in this step and for details interested readers
should refer to Izui et al. [65].

DEA computes the efficiency of the Mth point by solving a linear
programming problem as,
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(14)

Here fi
kis the kth point's ith objective function value and wi

Mrepresents
the weighting coefficients.

Step 4. Compute the sensitivities of the objective functions for the Mth

point

Gradient for the objective function M is trivial as it is a direct
function of the damping vectorcd and the sensitivity will return a vector
1. But the gradient of the objective function M is not trivial. One way
to determine the gradient is by finite difference approach; but this has
serious limitations in terms of computational demand as it requires
n + 1 analysis for n design variables. So, in the present study, gradients
are computed analytically using the Adjoint Variable method as out-
lined in section 3.1.2.

Step 5. Update the design variables of the Mth point
For each point M, a minimization of the weighted sum of the ob-

jective functions is done using sequential linear programming (SLP) and
the design variables are updated. SLP uses a suitable move limit to
arrive at the updated value of the design variable. For the Mth point we
get,

= = =f w cmin M
i
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i
M

j
n f

c dj
c

1 1
( )i d

M

dj
(15)

Subject to

c c cd
L

d d
U (16)

Here f M is the weighted sum of the objective functions, cd
M is the

design variable vector of the Mth point before updating, cd
L and cd

U are
the lower and upper move limits of the design variable. If M = n then
proceed to step 6, else adopt M = M + 1 and proceed to step 4. For
more details on this step interested readers should refer Izui et al. [65].

Step 6. Check for termination condition.
If termination condition is satisfied (maximum number of iteration),

the procedure ends else returns to step 2.

3.1.1. Gradient derivation
In this section an efficient way to compute cd is described in de-

tail.
The gradient derivation in this paper incorporates the differentiate-

then discretize version of the Adjoint Variable Method (AVM) approach
as outlined in the Lavan and Levy [45] and Jensen et al. [74]. To derive
the analytical gradients by AVM approach, non-differentiable functions
like max and abs in eq. (13) need to be replaced by differentiable
functions. In this study a p type norm is used.

Using the differentiable p type norm version,
= abs td H umax( ( ( )))est r

t
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p is a large positive even number; tf is the final time.
Now in differential format eq. (18) can be written as,

=

=

t D td H u 1

d 0

( ) ( ( )) .

(0) ;
mp r f t T r

p

mp r

,
1

,

f

(19)

Now to compute the Env max(..)
i

, a weighted approach is adopted

[45].Fig. 2. Objective function space.
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where q is a large positive value.
Introducing eqs. (19) and (20) in eq. (13), and taking the variation

of the augmented objective function results in a set of differential
equations and boundary conditions when all multipliers of variations
except cd are equated to zero. This is given as follows,
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where r and rare the Lagrangian multipliers.
Solving eq. (21),
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Eq. (22) represents the analytical gradients which is used in step 4 of
the main optimization framework.

4. Numerical study

4.1. Four storey frame

The first example makes use of a 2D four-story reinforced concrete
setback frame. This frame is based on a four story two bay frame that
was designed in accordance with Eurocode 8 (EC8) and Eurocode 2
(EC2) (see Ref. [67]. However, in this example, the left bay of the fourth
story was removed. The frame is designed for high seismicity assuming

a PGA of 0.3 g. The geometric dimensions of the frame with the location
of the partition walls and the arrangement of the dampers are given in
Fig. 3. It should be noted that in the analysis, partition wall was not
modelled and only the bare frame with the dampers are analyzed.

Dynamic Young's modulus of concrete is assumed as × Nm3.5 1010 2.
Geometric properties and nodal masses are given in Tables 1 and 2.

The proposed framework is very generic and can include any
number of components; but as the whole purpose of this example is to
demonstrate the multi-objective optimization framework, only loss to
partition walls and beam column joints are included in the study.
Expected total loss is computed as described in section 2.3.1.

Realistic normalized cost for the two types of components con-
sidered in the loss is adopted from the Rawlinson's cost estimation
schedule [72]. The frame is assumed to be part of a three-dimensional
building system with floor area of 100m2 per floor up to 3rd floor and
50m2 in the fourth floor. As per the Rowlinson's pricing manual 2012
(Rowlinson database, New Zealand), assuming the architectural func-
tionality as hospitality, the floor cost is assumed to be $4750/m2 which
would then total to $475,000 per floor up to third floor and $ 237,500
for the fourth floor. The total estimated cost would be $1,662,500. For
this present example, it is assumed that 70% of this total estimated cost
is assigned to the frame under consideration which would amount to
$1,163,750. It should be remembered that this total cost estimate given
by Rawlinson's schedule consists of approximate cost of all the com-
ponents and as only two components (beam column joints and

Fig. 3. Cdi refers to added dampers and i = 1 …. 4.

Table 1.0
Geometric properties.

Member number Width of the member
(mm)

Depth of the member
(mm)

1,6,11,2,7,12,15,3,8,13, 16 450 450
4,5,9,10,14,17 300 450

Table 2.0
Nodal Mass [67].

Floor level Mass per node (kg)

1st floor 29,800
2nd -3rd floor 29,500
4th floor 19,600
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partitions) are considered in the present study, this total cost
($1,163,750)) must be scaled down. Adopting the fact that partitions
cost ∼7.5% and the beam column junction costs ∼5.2% of the total
cost [72], the total cost gets scaled down to ∼$147,797.

Losses in the partition walls are assumed to be lumped to the nodes
of the bay to which the wall is attached by assuming a suitable tributary
area. For e.g., for wall 1, 50% of the loss is lumped to node 2 as shown
in Fig. 1. The interstorey drift associated with node 2 which is the same
for the other nodes at the same level (in the case of node 2, the first
floor level) causes the loss in this partition wall. Euler beam elements
are used for the modelling of the frame. Elemental Wilson Penzien
model is adopted to represent the inherent damping matrix. For more
details on implementation of Elemental Wilson Penzien damping
model, please refer to Puthanpurayil et al. [68].

A suite of 7 artificial ground motions scaled to match an EC8 design
spectra with PGA 0.5 g is used for the present study. Fig. 6 shows the
acceleration spectra of ground motions used. As the sole purpose of this
study is to illustrate the efficacy of the proposed framework, the arti-
ficial suite of ground motions was deemed to be acceptable. It must be
mentioned that the framework is very generic and cater to any number
of ground motions; as the purpose of this example is just to demonstrate
the framework, only 7 ground motions are used. Un-controlled frame
analysis has revealed that some the of the ground motions scaled to this
level of intensity may incur inelastic excursions in the parent frame due
to drifts greater than the order of about 1.3% [67]. As already men-
tioned in section 2.4, it has been observed in the public response to the

Christchurch/Kaikoura sequence of earthquakes that when the building
tends to yield or enter inelastic state, the buildings had to be demol-
ished either due to the tendency of owners to claim insurance to build
new ones or due to inaccessibility to repair them. So, an effective
damper based scheme should incur minimum yielding state in the
parent structure. To achieve this objective in the present study, the
capping drift dal is limited to 0.8% so that the parent frame is pre-
dominantly linear. Only drift sensitive loss is accounted in the present
study. Multi-objective optimization is performed as per the metho-
dology described in section 3.0. For the present study only 40 design
points are generated in the objective space, i.e. K = 40 in step 2 and
q = 4 as there are only 4 dampers. Constraint move limit as required by
eq. (16) is adopted as 5% of the design damping vector.

Fig. 4 shows the final Pareto front plotted between initial cost
(damper quantities) and the normalized loss. Each of this point on the
Pareto front corresponds to a specific quantity of dampers and its dis-
tribution. The uncontrolled frame results in a 100% loss as illustrated in
Fig. 4 mainly because the drift generated exceeds dal(which is 0.8% for
the present example) in at least one of the ground motion.

The Pareto front shown in Fig. 4 illustrates a clear trade-off for the
choice of the expected loss and the initial cost. Each point on the pareto
front corresponds to a solution which is obtained by the degraded
performance of one of the objectives. For e.g., a point on to the extreme
right on the x-axis presents a solution where there is a very high loss
with minimum initial cost; similarly a point to left on the x axis shows a
minimum loss scenario but with a very high initial cost. So, a whole
sphere of possible solutions is represented by the Pareto front and en-
ables the decision maker to quantitatively weigh the trade-offs; i.e.
whether to favour one objective in the expense of a degraded perfor-
mance of the other. Also, in the Pareto front obtained, it could also be
seen that there is a substantial decrease in loss with minimum added
damping. To illustrate this further, three points on the Pareto front with
corresponding loss as 10%, 20% and 30% are selected. The respective
quantity of dampers are kN m kN m402 sec/ , 252 sec/
and kN m154 sec/ . The 10% loss corresponds to $14,779, 20% loss
corresponds to $ 29,559 and 30% corresponds to $44,339. It could be
clearly seen that to approximately reduce the loss from 30% to 10%, the
amount of damping needs to be increased by 2.6 times whereas an
increase of ‘1.6 times the damping quantity would give us a reduction of
loss to 20% from 30%. These sorts of information are really useful for

Fig. 4. pareto-front obtained for the four story frame.

Fig. 5. Optimal distribution of dampers of the selected point in the pareto front.
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the stakeholder/owner as he or she can directly see the implications of
their choice mainly because the entire front of solutions are available.

The point corresponding to loss of 30% is selected to generate Fig. 5.
Damper coefficients are plotted in the horizontal axis and the storey
level on the vertical axis. Fig. 5 shows the required quantity of dampers
at each level in damper coefficient terms. It may be clearly seen that for
a further reduction in loss, a much larger quantity of added damping is
required. This quantity corresponds to a first mode damping ratio of
approximately 23%. It should be noted that this normalized loss quoted

Fig. 6. Acceleration spectra of the scaled ground motions.

Fig. 7. Eight storey 3 bay by 3 bay RC structure.

Table 3.0
Geometric properties of the structure.

Element location Beams (width x depth) Columns (width x depth)

Frames 1 & 4 400 mm×600mm 500mm×500mm
Frames 2 & 3 400mm×600mm 700mm×700mm
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is the percentage loss that corresponds to the scaled down total cost
(∼$147,797) as described above. So, the approximate loss in dollars
comes to ∼$44,339 which is 30% of the scaled down total cost.

4.2. Eight storey 3D asymmetric frame RC structure

An eight storey 3 bay by 3 bay asymmetric framed structure in-
troduced by Tso and Yao [69] and further studied by Lavan and Levy
[14] is used for the further study here. Plan and elevations of the
structure is shown in Fig. 7.

The geometric properties of the structure are shown in Table 3.0.
A uniform floor mass of 0.75 ton

m2 is uniformly distributed in all

floors. The fundamental period of the system in the y-direction is 1.15 s
and, in the x-direction it is 1.225 s.

The modelling of the 3D frame follows the philosophy of assembling
the matrix adopted in Wilson and Dovey [73]. Only three degree of
freedom is assumed in each floor; The axial deformations are neglected
and slab acts as a rigid diaphragm. In majority of the practical struc-
tures with in-situ slab construction the assumption of rigid diaphragm
may be reasonably justified. Stiffness matrix of each independent frame
is assembled first as a plane frame and then the contribution of each of
this plane frames to the global 3D frame is computed. More details on
this is given in Ref. [14].

Since the present example is only used for demonstrating the ap-
plicability of the proposed framework, losses due to structural frame
and partitions are only considered in the present study like the previous
example. The partition walls are assumed to be distributed uniformly
along the height in the outer bays of frame 1 and frame 4. The building
is assumed to be in Christchurch, New Zealand and the functionality is
categorized as hospitality. As per Rawlinson's pricing manual 2012
[72], a typical cost per floor area is approximately NZ$ 4750/m2. The
total floor area is given as 3456m2 which will give an approximate total
cost of the building as NZ$16, 416, 000. This cost includes all compo-
nents like structure, non-structural, services etc. Since only the struc-
tural frame and partitions are considered in the present study, the total
cost had to be scaled down to reflect that and it amounts to NZ$
2,101,248. This value is called the net considered cost in the present
study. This cost is obtained by using the split up that 5.2% of the total
cost is attribute to structural frames and 7.5% is attributed to the par-
titions. Therefore, the obtained Pareto front should be interpreted from
this aspect. The losses are lumped at the relevant degrees of freedom
and a component-based assessment of loss is adopted as described in
section 2.3. To simplify the loss computation, it has been assumed that
the distribution of the total cost is the same in all storeys; i.e. if the total
cost is “X” and there are “n” storeys, cost per storey is taken as “X/n”. In
a more realistic case, explicit storey level cost would need to be com-
puted by summing up.

The re-placement value of each of the component comprising the
storey. The framework proposed in this study is very generic and can
easily incorporate this aspect. Fig. 8 shows the Pareto front. The loss
computed is normalized by the net considered cost as described above.
Fig. 8 shows the obtained Pareto front. The loss computed is normalized
by the net considered cost as described above. For further illustration,
let's consider three points as shown in Fig. 8; red circled point corre-
sponds to ∼84% loss (NZ$ 1,765,048) given with a damper quantity of
62.8MN-sec/m, green circled point refers to ∼40% (NZ$ 840,499)
with a total damper quantity of 64.1MN-sec/m and black circled point
refers to a loss of ∼30% (NZ$ 630,374) with a total damper quantity of
67MN-sec/m. Comparing the red circle and the green circle it is clearly

Fig. 8. Pareto front for the 3D structure.

Fig. 9. Viscous damper distribution on the peripheral frames; frame 1 and
frame 4.

Fig. 10. Migration of the design points to the Pareto front.
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seen that a reduction in loss of ∼52% is obtained by an increase in total
damper quantity by ∼2%; so, basically when we shift from red circled
point to green circled point a saving of ∼NZ $ 924,549 is made; si-
milarly comparing red circle and black circle it may be clearly seen that
a reduction by 64% is achieved (saving of NZ $ 1,134,674) by an in-
crease of just ∼7% increase in the damper quantity. This is a very
useful information and highlights the benefit of Pareto front emphati-
cally.

Fig. 9 shows a typical viscous damper distribution with a damping
ratio of ∼40%, obtained for the peripheral frames for a typical point
identified on the Pareto front of Fig. 8. Although more formal ap-
proaches for the computation of the damping ratio have appeared in the
literature (e.g. Ref. [70]; or [71]; if a Maxwell model is adopted) the
damping ratio here is computed by transforming the damping matrix to
the modal coordinates of the undamped structure and neglecting off
diagonal elements. Such a computation is common in practice and
many researchers and engineers have a feeling to the level of damping
achieved using this approach. This point corresponds to a total expected
loss of 30% of the net considered cost i.e. a loss of NZ$ 630,374; now
with respect to total structural cost this amounts to 3.8% of total
building cost. As described above, only two components (Structural
frames and partitions) are considered in this study and this value will
increase when more and more components are added. For illustration
purpose, this is deemed to be sufficient.

The controlling drift which is the dal in eq. (13) is limited to 0.8% of
the story height; this will ensure a predominant elastic response. The
presented framework is very generic and can cater to any number of
ground motions.

4.2.1. Efficiency of the optimization process
In Fig. 8, only the final Pareto-front is plotted and in Fig. 10, the

entire migration of all the design points to the Pareto-front is being
depicted. It can be clearly seen that as the iteration progresses, the
points migrate to the Pareto front. In Fig. 11 such a migration of one of
the design point is being illustrated. The migration of the point to the
Pareto-front can be clearly seen from the plot. Starting point and end
point have been depicted and the direction of migration is highlighted.

5. Conclusion

In this paper, the design of seismic retrofitting using linear Fluid
Viscous Dampers was casted as a multi-objective optimization problem.
The objective functions to be minimized are the initial cost of retro-
fitting and the expected losses. Thus, the Pareto front generated for this
problem enables the decision maker, who is typically not an engineer,
decide on the level of retrofitting he wishes for based on two competing

objectives he very well understands. Furthermore, his decision could be
made with the whole picture at hand showing the trade-off between the
investment he makes today in retrofitting the building, to the losses he
is expected to suffer in the future.

A first order gradient based optimization scheme is adopted to op-
timally quantify and distribute the dampers in pre-defined potential
locations within the building. Analytical derivation of the first order
gradients using the very efficient Adjoint Variable method is presented
in detail. This leads to a very computationally efficient approach that
can be executed on a personal computer. The approach is applied for
the optimal retrofitting of a 2D four storey frame building and a 3D
eight storey asymmetric frame building to show the efficiency of the
presented scheme and its applicability for the design of retrofitting also
for irregular structures.
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