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A B S T R A C T

Intelligence mindset, which denotes individual beliefs about whether intelligence is fixed versus malleable,
shapes academic success, but the neural mechanisms underlying mindset-related differences in learning are
unknown. Here, we probe the effects of individual differences in mindset on neural responses to negative
feedback after a competence threat manipulation. We hypothesized that when their competence was threatened,
participants with fixed mindsets would interpret further negative feedback as punishing. After receiving either
no score or a competence-threatening IQ score, participants performed a learning task with feedback that em-
phasized either the evaluative or informational weight of negative feedback. Participants who experienced the
competence threat had the strongest predictive relationships between mindset, performance, and caudate ac-
tivation. The competence threat may have compounded the subjective punishment of negative feedback for fixed
mindsets relative to growth mindsets, causing poorer learning from negative feedback in the evaluative context
and inflexible striatal responses to negative feedback across feedback contexts.

1. Introduction

Self-belief has been found to have a powerful effect on academic
success. One influential line of research has focused on differences in
academic achievement and motivation due to intelligence mindset,
which refers to individual beliefs about whether intelligence is malle-
able or fixed (Dweck, Mangels, Good, Dai, & Sternberg, 2004; Dweck,
2006). Those who believe that intelligence is malleable have "growth
mindsets" and are referred to as incremental theorists, while those who
believe that intelligence is fixed have "fixed mindsets" and are referred
to as entity theorists. Holding a fixed mindset can impede goal pursuit
and impair test performance (Cury, Da Fonseca, Zahn, & Elliot, 2008),
especially in the presence of a competence threat (e.g., an intelligence
test). Such threats can strengthen the relationship between goal pursuit
and intelligence mindset (Burnette, O’Boyle, VanEpps, Pollack, &
Finkel, 2013). For entity theorists, who believe that their performance
reflects their abilities in a fixed and unchangeable way, the threat in-
duced by an intelligence test may enhance the threat carried by nega-
tive feedback and thus the subjective sense of punishment that it en-
genders. Whether this interaction between competence threat and
intelligence mindset is reflected in neural learning signals remains
unknown.

Several studies have examined the behavioral and neural correlates

of intelligence mindset (Mangels, Butterfield, Lamb, Good, & Dweck,
2006; Moser, Schroder, Heeter, Moran, & Lee, 2011; Myers, Wang,
Black, Bugescu, & Hoeft, 2016; Schroder, Moran, Donnellan, & Moser,
2014, 2017). Entity theorists, relative to incremental theorists, de-
monstrate a stronger alerting response to negative performance eva-
luative feedback (Mangels et al., 2006) and a reduced attentional al-
location to post-error adjustments (Moser et al., 2011; Schroder et al.,
2014, 2017). In contrast, incremental theorists have greater co-activa-
tion at rest between learning related regions (e.g., the striatum) and
other executive function regions (Myers et al., 2016), presumably to
support their flexible learning capacity. To date, however, no studies
have examined task-based functional magnetic resonance imaging
(fMRI) activation related to intelligence mindset or the interaction be-
tween intelligence mindset and competence threat. In educational set-
tings, students are consistently presented with standardized tests that
challenge their competence. It is thus important to understand the
motivational factors that affect educational outcomes and elucidate the
neural mechanisms that support differences in learning styles between
the theorists.

A brain region implicated in learning, the striatum has been linked
with reward and punishment contingencies (Delgado, Nystrom, Fissell,
Noll, & Fiez, 2000; Delgado, Locke, Stenger, & Fiez, 2003). Feedback-
based learning particularly relies on the caudate nucleus, which
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facilitates learning through neural signals reflecting the subjective
value of response outcomes (Bartra, McGuire, & Kable, 2013; Clithero &
Rangel, 2014; Daniel & Pollmann, 2014; Tricomi & Lempert, 2015).
Striatal value signals are sensitive to individual differences in intrinsic
motivation (DePasque & Tricomi, 2015) and achievement goals
(DePasque Swanson & Tricomi, 2014) as well as contextual influences,
such as the availability of other outcomes (Bischoff-Grethe, Hazeltine,
Bergren, Ivry, & Grafton, 2009; Nieuwenhuis et al., 2005) and feedback
timing (Dobryakova & Tricomi, 2013).

Previously we have found that manipulating the predictability of
feedback receipt altered the informational value of negative feedback
(Lempert & Tricomi, 2015). Whereas positive feedback is both in-
trinsically rewarding and informative, negative feedback is punishing
but still informative. When feedback and no feedback trials were pre-
sented separately ("blocked feedback"), negative feedback evoked a dip
in striatal activation, consistent with evidence that it typically elicits a
punishment response (Marco-Pallarés, Müller, & Münte, 2007; Tricomi,
Delgado, McCandliss, McClelland, & Fiez, 2006). In contrast, when
feedback trials were intermixed with no feedback trials ("mixed feed-
back"), emphasizing the informational rather than evaluative weight of
negative feedback, negative feedback elicited greater striatal activity
than no feedback. Moreover, negative feedback was rated as more
preferable in the mixed than in the blocked feedback condition, sug-
gesting that participants experienced and valued negative feedback
differently depending on the framing context (evaluative/informative).
Whether this change in the subjective value of negative feedback in the
mixed feedback context results from different types of curiosity (e.g.,
curiosity about feedback presence versus valence) is unknown. Sa-
tisfying curiosity through information receipt has been shown to acti-
vate the ventral striatum (Ligneul, Mermillod, & Morisseau, 2018).
Valuation of negative feedback may also be further modulated by af-
fective manipulations.

Recent evidence suggests that striatal responses may reflect the af-
fective context of negative feedback. After a competence threat, in-
dividual differences in achievement goals modulated striatal responses
to negative feedback (DePasque, Rivera, Laws Backstrom, & Tricomi,
submitted) such that individuals whose learning goals were more or-
iented towards avoidance, rather than approach, had stronger decreases
in striatal signal (i.e., a stronger "punishment" response). Goals to avoid
failure under a competence threat may thus prevent individuals from
recognizing the informational value of negative feedback. Because our
mixed feedback paradigm manipulated the informational and evalua-
tive weight of negative feedback, we employed it, in conjunction with a
competence threat, to isolate the differences in learning from negative
feedback that arise due to intelligence mindset.

In our neuroimaging study, we examined how a competence threat
would change neural responses to feedback during learning for in-
dividuals varying in intelligence mindset. Because intelligence mindset
is particularly likely to influence perceptions of negative feedback as
threatening under emotionally salient contexts, we hypothesized that a
competence threat manipulation would differentially affect individuals
varying in mindset when they learned from negative feedback. After
taking a purported IQ test, which resulted in either no score or a
competence-threatening score, participants performed a word-associa-
tion task during which feedback was "definitely" received or omitted
(blocked condition) or "maybe" presented (mixed condition), thus
biasing the subjective weight of negative feedback. We predicted that
the competence threat would impact performance and striatal re-
sponses to negative feedback, and that striatal activation, particularly
in the mixed feedback context, would depend on individual differences
in intelligence mindset. Our study was designed to highlight the in-
terplay between contextual and motivational factors influencing the
ability to learn from negative feedback.

2. Methods

2.1. Participants

Forty participants (20 male, 20 female; mean age=23.48,
SD=6.06), were recruited via posted advertisements. Participants
were diverse in ethnicity and race (13 White/Caucasian, 12 Asian, 6
Black/African American, 5 Hispanic or Latino, and 4 self-reported
Other (2 Biracial, 1 African, 1 Indian)). All gave written informed
consent. The experiment was approved by the institutional review
board of Rutgers University.

2.2. Stimuli information

All words were matched for word length (4–8 letters and 1–2 syl-
lables) and frequency (Kučera–Francis frequencies of 20–650 words per
million) at the trial level, and had imageability ratings of over 400
according to the MRC database (Coltheart, 1981). Words presented on
the same trial had low semantic relation (i.e., had a score of less than
0.2 on the latent semantic analysis similarity matrix (Landauer, Foltz, &
Laham, 1998)). Likewise, none rhymed or began with the same letter.

2.3. Experimental procedure

This experiment followed the procedures outlined in previous work
(Fig. 1) (DePasque, Rivera, Laws Backstrom, & Tricomi, submitted;
Lempert & Tricomi, 2015). All participants had a twenty-minute time
limit to complete a fake, but believable, computerized intelligence test,
comprised of 15 items ostensibly related to verbal and reasoning abil-
ities (cf. Laws & Rivera, 2012). The researcher introduced the test as a
separate study on "cognitive factors" being conducted in collaboration
with a colleague (see Supplementary Text for manipulation checks).
Participants were pseudorandomly assigned into two gender-matched
groups: those who were not evaluated and received no score upon
completion of the IQ test (non-threat) and those who received a low
score of the 47th percentile, meant as a threat to their perceived
competence (threat).

Next participants performed a paired-associate word learning task,
similar to those in our other feedback-based learning work (Dobryakova
& Tricomi, 2013; Lempert & Tricomi, 2015; Tricomi & Fiez, 2008,
2012). Participants first completed the "study phase," in which 220
distinct target words were presented for six seconds above their two
possible word matches, with the correct match highlighted in green.
Participants were told to remember the correct match for each target
word, since their memory would be tested later.

Inside the scanner, participants then completed the "learning phase"
(Fig. 1). Prior to each set of 8 trials, participants were informed of the
block condition (mixed feedback, labeled, "maybe feedback" or blocked
feedback, labeled, "definite feedback" and "no feedback"). This was
followed by a jittered inter-trial interval of 1–8 seconds. One hundred
and sixty of the target words from the study phase were then randomly
presented; however, their correct matches were no longer highlighted.
Sixty words from the study phase were not included here so that we
could quantify the effect of receiving feedback on later memory relative
to mere memorization of the paired-associates. Within a four-second
period, participants registered their responses by pressing the button
associated with the word that they believed correctly matched the
target word. Feedback lasted one second.

In "maybe feedback" blocks (i.e., the mixed feedback condition),
half of the trials yielded veridical feedback (an image of a green check
mark for a correct response; a red X for a wrong response), while the
other half yielded no feedback (a gray pound sign). Participants un-
derstood that whether feedback was presented on "maybe feedback"
trials was random, but veridical when it was presented. In "definite
feedback" blocks, feedback was always delivered contingent on parti-
cipants' actual response accuracy, while in "no feedback" blocks, the
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pound sign was always presented irrespective of accuracy. The blocked
feedback condition consisted of "definite feedback" and "no feedback"
blocks so that the receipt or omission of feedback was always pre-
dictable. Mixed and blocked feedback runs alternated within partici-
pants, and block order was counterbalanced across participants, so that
participants either performed blocked/mixed/blocked/mixed or
mixed/blocked/mixed/block runs.

After the scan, participants completed the self-paced "test phase" in
which a target word and its two possible matches were presented in a
randomized order; this included all study phase trials. Participants
again selected the word they believed correctly matched the target
word and rated their confidence for their choice along a 1–7 scale (1 =
complete guess, 7 = completely sure). Finally, participants filled out a
battery of post-test questionnaires, including the six-item Theory of
Intelligence scale (TOI; Dweck, 2006; Blackwell, Trzesniewski, &
Dweck, 2007), which measures the extent to which individuals believe
that intelligence is malleable (incremental) versus fixed (entity) on a
scale from one (strongly disagree) to six (strongly agree). TOI questions
were scored such that lower scores (e.g., 1–3) indicate incremental
beliefs that intelligence is fluid and malleable, while higher scores (e.g.,
4–6) indicate entity beliefs that intelligence is fixed and nonmalleable.
Both pre-screen (taken outside of lab as part of a survey ensuring MRI
eligibility) and post-test TOI scores had high reliability (Cronbach’s
alpha= 0.92 and 0.96, respectively), and removing any one item re-
sulted in worse α. Participants also answered questions about their
preferences for the feedback conditions as well as their subjective
feelings after receiving or having not received their IQ test score. Be-
cause previous literature has indicated that intelligence mindset groups
differ in achievement goals (e.g., Dweck, 2006), we had participants fill
out the Achievement Goal Questionnaire (Elliot & Church, 1997),
which measures individual differences in goal orientations. For ex-
ploratory purposes, we had participants fill out the Cognitive Inter-
ference Scale (Sarason, 1978), which measures mind-wandering and
the frequency of off-task thoughts, and the Cognitive Appraisal Index
(Lazarus & Folkman, 1984), which measures individual differences in
coping with cognitive demands.

All questionnaires were presented in a randomized order.
Experimental scripts can be found at: https://github.com/
christinabejjani/mindset_fMRI.

2.4. fMRI data acquisition

A 3 T Siemens Trio scanner was used for data acquisition at the
Rutgers University Brain Imaging Center. Anatomical images were
collected using a T-1 weighted protocol (a 256×256 matrix, 176 1-
mm sagittal slices). Using a single-shot EPI sequence (TR =2500ms, TE
=30ms, flip angle= 90°, FOV=192 x 192mm, slice gap=0mm),
forty-one contiguous slices of 3mm isotropic voxels were acquired
parallel to the AC-PC line in an interleaved order.

Each scanning session consisted of four functional runs comprised of
172 2.5 s TRs. The trial conditions were presented in their own runs and
alternated. The two possible orders were counterbalanced across par-
ticipants.

2.5. Data analysis

Accuracy (proportion correct) was analyzed for the learning and test
phase data. For the learning phase, we ran paired t-tests to compare the
number of positive and negative feedback events from the learning
phase between the mixed and blocked conditions as confirmation that
their fMRI power was roughly matched. We also ran a repeated-mea-
sures ANOVA on learning phase accuracy data, using feedback condi-
tion (mixed/blocked) and feedback availability (received/omitted) as
within-subjects factors, IQ test group (threat/non-threat) as a between-
subjects factor, and Theory of Intelligence (TOI) scores as a covariate
(see Supplementary text for learning phase analysis). Test phase accu-
racy was similarly analyzed with a repeated-measures ANOVA, using
feedback condition (mixed/blocked), feedback availability in the
learning phase (received/omitted), and learning phase accuracy (cor-
rect/incorrect) as within-subject factors, IQ test group (threat/non-
threat) as a between-subjects factor and TOI scores as a covariate (see
Supplementary text for comparisons between threat and non-threat on
test phase accuracy). All results were Greenhouse-Geisser corrected
where appropriate.

Imaging data was analyzed with Brain Voyager QX, version 2.4.2
(Brain Innovation, Maastricht, The Netherlands). Six parameters cor-
rected for three-dimensional motion, while cubic spline interpolation
corrected for slice scan time. Spatial smoothing using a three-dimen-
sional Gaussian filter (6 mm FWHM), as well as a high-pass filtering of
frequencies (three cycles per time course), were performed. All

Fig. 1. Summary of Task Procedure.
Participants took a fake, but believable, in-
telligence test ostensibly related to verbal rea-
soning abilities. Upon completion, participants
either received no test score (non-threat) or a
score of the 47th percentile as a challenge to
their competence (threat). Next participants
performed a paired-associate learning task. In
the study phase, participants learned the as-
sociations between a target word and its cor-
rect match highlighted in green. During the
learning phase, participants used feedback,
when available, and encoded the correct word-
associations. Each trial began with a label in-
dicating the trial condition (mixed feedback
i.e., "maybe feedback," or blocked feedback
i.e., "no feedback" and "definite feedback").
Following a jittered interval of 1–8 seconds,
participants had four seconds to choose via
button press which response option matched
the presented target word. Veridical or no
feedback was then delivered contingent upon
response accuracy as well as trial condition,
and lasted for one second. There were an equal

number of blocked and mixed feedback trials, ensuring that feedback was expected on half of the trials and intermittent on the other half. Participants indicated their
knowledge of the word-associations in the test phase. The experiment ended after participants answered a post-test questionnaire (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article).
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structural and functional data were transformed to standard Talairach
stereotaxic space (Talairach and Tournoux, 1988).

After image preprocessing, the functional data was analyzed with a
random-effects general linear model (GLM). The onsets of each feed-
back event were modeled as stick functions and then convolved with a
canonical hemodynamic response function to create regressors of in-
terest for the different conditions (i.e. positive, negative, and no feed-
back events for both mixed and blocked feedback). To ensure that our
model covered the entire experiment, regressors of no interest included
the motion parameters generated during preprocessing, trials for which
no response was recorded, and stimulus presentation events.

Because the striatum has been implicated in feedback-based
learning, we selected a priori regions-of-interest (ROIs) in the caudate
and ventral striatum based on previous work (Lempert & Tricomi,
2015). In the caudate, cubic regions of 125mm3 were centered at x =
+/- 12, y= 8, and z= 12, while ventral striatum ROIs were the same
size and centered at x = +/- 10, y= 8, z = −4 (see Supplementary
text for ventral striatum results). Previous studies on performance
feedback and reward processing have used or found peak activation at
these coordinates (Bischoff-Grethe et al., 2009; Delgado et al., 2000;
Lempert & Tricomi, 2015; Tricomi & Fiez, 2012). From these regions,
we extracted parameter estimates of activity for our six event types (i.e.,
positive, negative, and no feedback events for both mixed and blocked
feedback) and ran correlations with our individual difference measures.
Paired and independent samples t-tests were run when further clar-
ification was needed.

We performed an ANCOVA on positive, negative, and no feedback
events within both the mixed and blocked feedback runs (see
Supplementary text for whole-brain pairwise activation analysis). Using
TOI scores as our covariate, we contrasted feedback types between
conditions (positive/negative/no feedback blocked > positive/nega-
tive/no feedback mixed). Whole-brain statistical maps were generated
based on correlations between TOI scores and pairwise activity, and
cluster threshold corrected to a whole brain p-value of 0.05 from an
uncorrected voxel-wise p-value of p < 0.001.

3. Results

3.1. Test phase accuracy

On average, participants performed above chance on the test phase,
regardless of IQ test group (Fig. 2; mean accuracy=0.67, 95% CI
[0.64, 0.71], t(39)= 9.89, p < 0.001, Cohen's d=1.56; threat accu-
racy=0.64, 95% CI [0.59, 0.69], t(19)= 6.39, p < 0.001, Cohen's
d=1.43; control accuracy= 0.70, 95% CI [0.65, 0.76], t(19)= 7.92,
p < 0.001, Cohen's d=1.77).

Consistent with motivational differences due to achievement goals
(see Supplementary text), intelligence mindset also influenced test
phase accuracy in the omnibus ANOVA. There was a significant inter-
action between feedback availability, condition, and TOI (F
(1,36)= 9.80, p= 0.003, ƞp2=0.21) and an interaction that ap-
proached significance between learning phase accuracy, condition, IQ
test group, and TOI (F(1,36)= 2.86, p= 0.100, ƞp2=0.08). Because
we were primarily interested in how participants would process and
learn from negative feedback across the mixed and blocked feedback
contexts (cf. Lempert & Tricomi, 2015), we decompose these interac-
tions from the omnibus ANOVA by focusing on how participants learn
from negative feedback.

Note that we index whether a participant learned from negative
feedback by comparing test phase accuracy on trials for which parti-
cipants had previously received negative feedback in the learning phase
relative to trials for which participants had been likewise incorrect in
the learning phase but had received no learning-related feedback. In
such cases, we infer that participants used the feedback to encode the
correct paired-associates. For illustration and analytic purposes, a
median split separated participants into incremental (low TOI scores

(M=1.48, SD=0.41); growth mindsets, beliefs that intelligence is
malleable) and entity (high TOI scores (M=3.95, SD=0.86); fixed
mindsets, beliefs that intelligence is fixed) groups. To better understand
the significant three-way and trending four-way interactions in the
omnibus ANOVA as a function of learning from negative feedback and
intelligence mindset, we therefore dropped the within-subjects learning
phase accuracy factor and included TOI as a between-subjects factor.

Consistent with the omnibus ANOVA, we still find a three-way in-
teraction between feedback availability, condition, and TOI (F
(1,36)= 6.97, p= 0.012, ƞp2=0.16). We first addressed the extent to
which incremental theorists were able to learn from negative feedback
across the feedback contexts. As shown in Fig. 2a, incremental theorists
learned from blocked negative feedback (M=0.60, 95% CI [0.53,
0.67] vs. blocked no feedback (incorrect trials): M=0.42, 95% CI
[0.35, 0.48]) but did not learn from mixed negative feedback
(M=0.51, 95% CI [0.44, 0.59] vs. mixed no feedback (incorrect trials):
M=0.49, 95% CI [0.43, 0.56]). Indeed, incremental theorists learned
more from blocked negative feedback (M=0.60, 95% CI [0.53, 0.67])
than from mixed negative feedback (M=0.51, 95% CI [0.44, 0.59]),
suggesting that they learn from the informational content of negative
feedback in the context that emphasizes its evaluative sting but may
become distracted in the intermittent feedback context.

In contrast, entity theorists did not learn from blocked negative
feedback (M=0.51, 95% CI [0.44, 0.58] vs. blocked no feedback (in-
correct trials): M=0.43, 95% CI [0.35, 0.52]) but learned from mixed
negative feedback (M=0.58, 95% CI [0.50, 0.67] vs. mixed no feed-
back (incorrect trials) M=0.47, 95% CI [0.41, 0.54]). Indeed, entity
theorists learned more from mixed negative feedback (M=0.58, 95%
CI [0.50, 0.67]) than from blocked negative feedback (M=0.51, 95%
CI [0.44, 0.58]), suggesting that entity theorists learn from negative
feedback when its value is biased to be more informational than eva-
luative.

We then compared the theorists across feedback contexts. Based on
the three-way interaction between feedback availability, condition, and
TOI, we found that incremental theorists learned significantly more
from blocked negative feedback than entity theorists (incremental:
M=0.60, 95% CI [0.53, 0.67]; entity: M=0.51, 95% CI [0.44, 0.58], t
(38)= 2.05, p= 0.048, Cohen's d=0.65) but that entity theorists did
not learn significantly more from mixed negative feedback than incre-
mental theorists (incremental: M=0.51, 95% CI [0.44, 0.59]; entity:
M=0.58, 95% CI [0.50,0.67]; t(38)= 1.36, p= 0.181, Cohen's
d=0.43). This suggests two main points: first, when the feedback
context biased the evaluative value of negative feedback, entity the-
orists did poorer compared to incremental theorists. Second, when the
feedback context emphasized the informational weight of negative
feedback, entity theorists actually learned from negative feedback in
the mixed feedback context but did not outperform their incremental
peers, likely due to their maladaptive strategy in coping with negative
feedback.

Finally, there was also a significant interaction between TOI and IQ
test group on test phase accuracy (Fig. 2b; F(1,36)= 4.38, p= 0.044,
ƞp2=0.11). Incremental theorists had relatively similar test phase ac-
curacy, regardless of IQ test group (threat: M=0.66, 95% CI [0.59,
0.74]; non-threat: M=0.68, 95% CI [0.59, 0.77]). However, entity
theorists who received the competence threat performed significantly
worse overall than those in the non-threat condition (threat: M=0.62,
95% CI [0.56, 0.68]; non-threat: M=0.72, 95% CI [0.66, 0.79]), in-
dicating that they may have fixated more on their IQ test performance
and subsequent low score to the decrement of later learning. For par-
ticipants who believe that their intelligence is a fixed trait, receiving
and then ruminating on their low IQ test score might have exacerbated
the performance threat induced by negative feedback.

3.2. Caudate nucleus region-of-interest analysis

Fig. 3 displays parameter estimates for each feedback event type in
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the caudate head, defined a priori by the coordinates +/- 12,812
(Lempert & Tricomi, 2015). To investigate potential associations be-
tween mindset and learning-related activation, correlations were run
between our individual difference measures and parameter estimates.
TOI scores were significantly correlated with left caudate activation for
positive compared to negative mixed feedback (r(38)= 0.39, p=
0.013, 95% CI [0.09, 0.63]) as well as that of negative compared to no
mixed feedback (r(38) = -0.36, p= 0.022, 95% CI [-0.60, -0.06]).
Compared to entity theorists, incremental theorists may have seen ne-
gative mixed feedback as informative, causing less striatal activation for
positive than negative mixed feedback and greater for negative than no
mixed feedback. Indeed, unlike entity theorists, incremental theorists
showed a negative mixed feedback signal with magnitude comparable
to that of positive feedback and an intrinsic reward.

Although incremental and entity theorists both showed a typical
punishment response in the blocked condition to negative feedback
(Fig. 4), they substantially diverged in response to mixed negative
feedback, an effect driven by the competence threat. For participants
who received the competence threat, higher incremental beliefs about
intelligence led to a smaller difference in activity for positive compared
to negative mixed feedback and greater difference in activity for ne-
gative compared to no mixed feedback, though the latter difference was
not significant (r(18)= 0.55, p= 0.013, 95% CI p0.14, 0.80]; r(18) =
-0.44, p= 0.052, 95% CI [-0.74, 0.00]). Whereas the entity threat
theorists performed more poorly on the test phase relative to entity

non-threat theorists, incremental theorists who had received the com-
petence threat may have continued to see negative mixed feedback as
informative, leading to this difference in striatal signal but not resulting
in a performance benefit relative to incremental non-threat theorists.
Neither relationship between caudate activation and TOI was sig-
nificant for the non-threat condition (r(18)= 0.26, p= 0.277, 95% CI
[-0.21, 0.63]; r(18) = -0.28, p= 0.236, 95% CI [-0.64, 0.19]), sug-
gesting that TOI is especially important when competence is threa-
tened.

Next we analyzed whether differences in caudate activation affected
test phase performance for trials on which participants had previously
received negative feedback. We first confirmed that TOI was related to
the difference in test phase accuracy for trials on which participants had
previously received negative blocked vs. negative mixed feedback (b =
-0.051, 95% CI [-0.089, -0.013], t(38) = −2.71, p= 0.010, r-squared
= 0.16). After controlling for IQ test group and the difference in test
phase confidence ratings for trials on which participants had received
negative blocked vs. negative mixed feedback, the relationship between
TOI and test phase accuracy remained significant (b = −0.052, 95% CI
[−0.091, −0.013], t(36) = -2.70, p= 0.011, r-squared = 0.17, total
r-squared = 0.17). However, bilateral caudate activation for negative
blocked vs. mixed feedback was not related to the difference in test
phase confidence ratings or accuracy for trials on which participants
had received negative blocked vs. negative mixed feedback (all
ts< 0.91). This is evident when we control for bilateral caudate

Fig. 2. Behavioral results. Test phase accuracy (proportion correct) (± SEM) data are shown as a function of (A) feedback condition in the learning phase (blocked
(left), mixed (right)), feedback availability in the learning phase (received/negative feedback (left), omitted/no feedback (right)), and intelligence mindset theorist
(incremental (left), entity (right)) and (B) intelligence mindset theorist (incremental (left), entity (right)) and IQ test group (non-threat (left), threat (right)).
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activation to negative blocked vs. mixed feedback: accounting for bi-
lateral striatal activation, confidence, and IQ test group, TOI was still
significantly related to test phase accuracy (b = -0.049, 95% CI
[-0.090, -0.01], t(34) = -2.40, p = 0.022, r-squared=0.15, total R-
squared=0.23) such that a one point increase in intelligence mindset
(towards entity beliefs) resulted in a 4.9% decrease in test phase ac-
curacy for learning from negative blocked vs. mixed feedback. Notably,
this model only explained 23% of the total variance in TOI and test
phase accuracy on trials for which participants had previously received
negative feedback.

Consistent with Lempert and Tricomi (2015), although we observed
a change in striatal activation for negative feedback, subjective valua-
tion did not appear to moderate test phase performance. Thus, while

TOI and the competence threat affected striatal feedback signals, no
subsequent effects on performance were observed.

4. Discussion

In this experiment, we tested how a competence threat impacts the
ability to learn from negative feedback as a function of intelligence
mindset. Participants first took a believable, but fake, intelligence test
and upon completion, received a low, competence-threating score of
the 47th percentile or received no score. Participants then completed a
paired associates task consisting of a study phase, learning phase (in the
scanner), and test phase. During the learning phase, feedback was
manipulated to always be predictable (blocked feedback) or

Fig. 3. Relationship between caudate activation and theory of intelligence (TOI) scores. The scatter plots (with best-fitting regression lines) in the top row
show the relationship between TOI score and BOLD caudate head activation for negative mixed feedback compared to positive and no mixed feedback. TOI was
scored such that higher scores indicated entity beliefs about intelligence/fixed mindsets, while lower scores indicated incremental beliefs about intelligence/growth
mindsets. The bottom row shows the hemodynamic response from the a priori caudate head coordinates± 12,812 by feedback event type for the mixed feedback
condition. Feedback onset is indicated by the dotted vertical line. The incremental (left) and entity (right) groups were formed from a median split for illustrative
purposes only.
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intermittent (mixed feedback). We have previously used this feedback
manipulation to bias participants towards viewing negative feedback in
an evaluative context (blocked feedback) or an informative context
(intermittent) (Lempert & Tricomi, 2015). We hypothesized that when
their competence was threatened, participants who believe that their
intelligence is fixed and cannot be developed through effort (entity
theorists, fixed mindsets) would interpret further negative feedback as
punishing.

Consistent with our hypothesis, the results demonstrate that when
competence was threatened, participants who view intelligence as fixed
showed stronger “punishment” responses to negative feedback, even
when the feedback context de-emphasized the evaluative weight of
negative feedback (mixed feedback). Receiving a competence threat
may thus have exacerbated the threat of failure inherent in receiving
negative feedback, causing poorer learning from negative feedback in
the evaluative, blocked feedback context and a punishment response to
negative feedback in both feedback contexts. This suggests that when
competence is threatened, entity theorists may interpret further nega-
tive appraisals as punishing, which may prevent them from benefiting
from the information provided by negative feedback. Indeed a sig-
nificant relationship between mastery-oriented goals and intelligence
mindset was observed such that entity theorists reported caring less
about mastering the learning task (see Supplementary text), in line with
previous literature on the relationship between goal pursuit and in-
telligence mindset (Burnette et al., 2013). After a competence threat,
entity theorists are thus less likely than their peers who view in-
telligence as malleable (incremental theorists, growth mindsets) to
orient their learning towards mastery strategies.

Entity theorists also did not adaptively use negative feedback to
improve, consistent with previous research on how they correct their
mistakes to achieve their goals (Burnette et al., 2013; Dweck, 2006;
Mangels et al., 2006; Moser et al., 2011; Schroder et al., 2014, 2017).
Entity versus incremental theorists differ in their immediate neural

attentional orientation to feedback: incremental theorists encode
learning-relevant feedback and index on-line corrective information to
improve accuracy and rebound from mistakes, while entity theorists
focus more on ability-relevant feedback and do not process errors
adaptively, to the detriment of performance (Mangels et al., 2006;
Moser et al., 2011; Schroder et al., 2014, 2017). We further extend the
literature in examining not only how the intelligence mindset theorists
allocate attentional resources to process feedback but also how they
individually process feedback using the reward system. We show that a
cognitive manipulation can activate a relationship with the social self to
have downstream effects on learning and memory as supported by task-
based fMRI and localize these effects to show that feedback context can
differentially influence performance and the learning styles of the
theorists.

Neural differences between entity versus incremental theorists were
most evident across feedback contexts. In the mixed feedback context,
trials with and without feedback were intermixed to bias learners to-
wards viewing the informational rather than evaluative weight of ne-
gative feedback, which otherwise elicits a punishment response
(Lempert & Tricomi, 2015). Thus, the sting of negative feedback should
be reduced, yet entity theorists showed a punishment response across
feedback contexts. However, although incremental theorists showed a
more dynamic striatal response to negative mixed feedback, their at-
tenuated punishment response did not lead to a subsequent increase in
test phase accuracy. This calls into question the purpose of increased
striatal activation to negative mixed feedback for incremental theorists,
if not to increase the subjective value of negative feedback and improve
learning. Their change in signal may actually have reinforced incorrect
information. Incremental theorists have been shown to have greater co-
activation at rest between reinforcement learning related regions, such
as the striatum, and executive function related regions, such as the
dorsal anterior cingulate cortex (dACC) and dorsolateral prefrontal
cortex (dlPFC) (Myers et al., 2016). A possible mechanistic explanation

Fig. 4. Time courses extracted from the bilateral caudate head ROI (±12, 8, 12) in the blocked feedback condition across intelligence mindset groups.
Feedback onset is indicated by the dotted vertical line. The incremental (left) and entity (right) groups were formed from a median split for illustrative purposes.
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is that the increased attentional demand of the mixed feedback condi-
tion distracted entity theorists from worrying about their IQ test per-
formance (Cury et al., 2008). This may have buffered their performance
relative to incremental theorists, whose mastery-oriented strategy
meant engaging regions such as the dACC and dlPFC to then correct
their striatal reinforcement signals. Indeed, as revealed by a whole-
brain analysis (see Supplementary text), many regions showed differ-
ential activity based on feedback receipt and TOI scores, suggesting that
neural learning signals across the brain are differentially affected by
intelligence mindset.

These learning differences may arise as a result of negative mixed
feedback subsequently attaining more subjective value or due to re-
cruitment of other learning-related brain regions. For instance, in this
task, the performance feedback is presented after all choices have been
removed from the screen, suggesting that participants would only learn
the correct paired-associates if they correctly updated the association in
working memory. Future work should address the extent to which other
regions mediate these differences in performance and striatal signals.
How entity and incremental theorists process positive feedback may
also prove enlightening, since entity theorists here perform best in the
mixed feedback context when the difference between their neural sig-
nals for positive and negative feedback is largest, suggesting that sen-
sitivity to feedback as a marker of attention and salience could be im-
portant.

Our results emphasize the importance of intelligence mindset in
learning from negative feedback, particularly after threatening self-
appraisals such as IQ tests. In educational domains, students are fre-
quently evaluated with stressful standardized tests, and at universities
in low-income cities like Rutgers-Newark, many students are also bat-
tling socioeconomic and social mobility barriers. Much intervention
work has been done to improve educational agency and intrinsic mo-
tivation through the promotion of incremental beliefs about in-
telligence (cf. Claro, Paunesku, & Dweck, 2016; also see Baird, Scott,
Dearing, & Hamill, 2009; Blackwell et al., 2007; Dweck, 2006; Schroder
et al., 2014). Understanding the neural mechanisms that drive mindset-
related differences in learning may further help improve engagement in
classroom settings and educational outcomes.
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