
lable at ScienceDirect

Journal of Cleaner Production 234 (2019) 984e1001
Contents lists avai
Journal of Cleaner Production

journal homepage: www.elsevier .com/locate/ jc lepro
Optimising an eco-friendly vehicle routing problem model using
regular and occasional drivers integrated with driver behaviour
control

Yasmin Abu Al Hla a, Mohammed Othman b, *, Yahya Saleh b

a Engineering Management Master Program, An-Najah National University, P.O. Box 7, Nablus, West Bank, Palestine
b Department of Industrial Engineering, An-Najah National University, P.O. Box 7, Nablus, West Bank, Palestine
a r t i c l e i n f o

Article history:
Received 31 December 2018
Received in revised form
23 April 2019
Accepted 14 June 2019
Available online 19 June 2019

Handling editor: Bin Chen

Keywords:
Driver behaviour
Autonomy level
Risk taking behaviour
Occasional driver
Ridesharing
Eco-friendly VRP model
* Corresponding author.
E-mail address: m_othman@najah.edu (M. Othma

https://doi.org/10.1016/j.jclepro.2019.06.156
0959-6526/© 2019 Elsevier Ltd. All rights reserved.
a b s t r a c t

Vehicle routing problem (VRP) research has recently improved dramatically to simulate more real-life
circumstances. Nevertheless, the typical VRP models proposed have been isolated from the most
important factor determining the success of the VRP plan on the ground, i.e. the human factor (driver).
Thus, this research investigates the effect of drivers' behaviours on the optimal VRP plan by integrating
the level of autonomy of both planner and drivers as represented by risk-taking parameters. To
enhance the model configuration's practicability, the concept of ‘ridesharing’ e which has been
introduced before e has also been integrated to expand the logistical services, improve customer
satisfaction, and compensate for shortages in service. Moreover, to ensure environmentally-friendly
logistical practices, a velocity maximisation policy and environmental penalty enforcement on the
chosen velocity range have been considered. In general, the model improves drivers' satisfaction,
customers' perceived quality, and the firm's financial objectives. Additionally, it achieves a better
supply chain strategic fit by planning at the three levels: strategic, tactical, and operational. A nu-
merical example was solved using the Eclipse Java 2018-09 solver through two heuristic methods, the
Greedy and the Intra-route neighborhood heuristic, and both revealed the same near-optimal solu-
tions. Sensitivity analyses showed that the resulting insignificant increase in the VRP costs due to
assigning autonomy for drivers is still reasonable, and the total costs' objective function weight has an
insignificant effect on the total near-optimal solution, while that of the energy consumption objective
function has the largest impact.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

One of the most popular applications of operation research
science is the VRP, which was defined by Clarke and Wright (1964)
as serving customer networks distributed at different geographic
points, using fleets of trucks from different capacities. VRP-related
studies have exponentially grown by around 6% per year in the
research literature (Eksioglu et al., 2009). Furthermore, VRP has
grasped its importance due to its wide usage in logistic and
transportation aspects. Moreover, the literature has concentrated
on different variants related to VRP, in which scholars set models
and solutions for many real-life problems to control difficulties
n).
associated with different stages of transportation, such as travel
times, pick-up and delivery time windows, and information input
(Braekers et al., 2016).

Paraskevopoulos et al. (2017) stated that the routing and
scheduling planning processes confront some challenges in allo-
cating scarce resources for certain services. On the other hand, the
VRP topic has been widely analysed due to its impact on various
industries (Lahyani et al., 2017). Based on a taxonomic review
related to the VRP topic during the period 2009e2015, it was
revealed that the literature focused on some important VRP as-
pects, and differentmodels were suggested to solve the problems of
different objectives, including the capacitated VRP, periodic VRPs,
the VRP with time windows, and others (Braekers et al., 2016).
Additionally, a very crucial aspect that considerably affects the
near-optimal results required for such a VRP case is augmenting the
human factor in VRPmodels. More specifically, Jabbour et al. (2015)
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published a study related to the importance of integrating Green
Human Resources Management (GHRM) to optimise the use of a
Green Supply Chain Management (GSCM), improving the effec-
tiveness of supply chains and the efficiency of inventory systems,
integrated with the routing planning process, ensures a compre-
hensive and sustainable strategy.

It is critical that the drivers who manage the transportation
process are considered while analysing a VRP model. Controlling
the drivers' behaviours fundamentally improves the sought goals
when optimising any VRP model. Accordingly, a literature review
has been conducted by Alam andMcNabola (2014) who found that
controlling drivers' behaviour in a green manner can reduce fuel
consumption by 45%. In the same vein, Liimatainen (2011)
developed a study of the utilisation of fuel consumption data to
be used in an incentive system for drivers of heavy-duty vehicles
as a practical solution for use by logistical companies to motivate
drivers to stick to energy-efficient routing plans. He also
mentioned that such behaviours are variable with individual dif-
ferences, by which the fuel consumption could vary up to 30%. A
study conducted by Archetti et al. (2016) discussed the VRP topic
with a special case, in which occasional drivers serve different
logistical companies. Based on that, this work focuses on devel-
oping a multi-criteria approach for solving a VRP model, which
takes into consideration the green policy, by which the environ-
mental issues are being studied and solved by accounting for the
near optimal velocity range accompanied by the lowest environ-
mental penalty imposed on certain fuel consumption rates. Also,
the effects of drivers' differences on the driving pattern are being
understood to introduce representative parameters that could be
integrated with the VRP model to optimise its results. Such dif-
ferences are: driver's ages and fatigue relationship, their level of
skills and performance, and the training and awareness sessions
they are exposed to.

This research contributes to the literature by introducing a
comprehensive rich VRP model in terms of its objectives and
heuristic solution, which released more practical and realistic
characteristics. Compared to previous VRP models, their suggested
variants and developed models were being introduced in isolation
from the drivers' behaviour. Whereas, accounting for the drivers'
autonomy ensures that they can make timely decisions when un-
expected conditions emerge. Drivers will be more satisfied when
they are treated as humans who can think and make decisions,
rather than a robot or vehicle that needs to apply the assigned
plans, regardless of the emergent matters occurring. This research
could be used as an evidence for the logistical firm; assigning au-
tonomy to drivers maintaining a reasonable VRP plan, which is still
cost effective and efficient. Considering that occasional driver au-
tonomy will increase the willingness of such drivers to serve even
though their compensation rate does not increase, occasional
drivers used to satisfy shortages in delivery services, including
speed and route decisions, will be tolerant of their conditions. By
adopting the proposed model by a certain logistical company, there
will be a chance for reviewing the collected data released from
applying the model for a certain trial period; the proposed model's
results could be assessed and verified if the expected objectives
have been achieved. So, analysing such results sensitively will help
in determining drivers' proper level of autonomy.

This paper is organised as follows: Section Two briefly in-
troduces the reviewed literature. Section Three presents the
research problem and the proposed mathematical model. The nu-
merical instance and the hypothetical data set are presented in
Section Four with the results discussion, while the conducted
sensitivity analyses are explained in Section Five. Section Six pre-
sents the managerial implications. Finally, Section Seven discusses
the conclusions and future research.
2. Literature review

Since the focus of this research is developing and optimising a
rich VRP model that incorporates real-life configurations, the
available suggested VRP models have been reviewed to identify the
emerged gaps and scan future work suggested in recent literature.
Miscellaneous literature of variants and contributions of the pro-
posed VRP models are classified as related to the following topics:
Multi-level Supply Chains and Classical VRP, Green VRP, Rich VRP,
and VRP and Drivers’ Behaviour.

2.1. Classical VRP

The case of a gasoline truck fleet serving multiple stations had
firstly been considered as a truck dispatching problem by Dantzig
and Ramser (1959). In their paper, they were seeking to totally
satisfy the demand of all stations with minimum possible covered
mileage, by solving the problem as a linear programming formu-
lation. Later on, Clarke and Wright (1964) generalised the problem
into the case of solving the best network of customers spread
around a central depot point. However, both researches had not
considered real-life aspects, which are associated with real, large-
scale problems. Nevertheless, it becomes an easier challenge to
create more practical solutions to serve reality. The technological
revolution, as well as the telecommunications industry, helped
vigorously in applying the idea of the truck dispatching problem
considering different real-life requirements.

In relation to VRP research topics, different taxonomic reviews
and classification studies were executed. Eksioglu et al. (2009)
explained the methodology to classify VRP-pertinent literature;
they argued that VRP related literature were disjointed over time
and an all-encompassing review study is needed to keep track of
the topic in a much easier and less discriminatory manner.
Dependent on their work (2009), another detailed review was
accomplished by Braekers et al. (2016), in which they analysed the
various trends of VRP found in literature between 2009 and 2015. A
review of 277 articles revealed that academic researchers have
focused on different variants of the VRP topic and various impor-
tant points were discussed. Such a rich topic brought the oppor-
tunity to study different real-life problems associated with VRP. For
instance, the Heterogeneous Fleet VRP (HFVRP) in which the ca-
pacity of the trucks was variable; Koç et al. (2016) presented a
comparative analysis of the literature presented through 30 years of
studying the HFVRP and its related variants and meta-heuristic
algorithms. The HFVRP has been defined as serving a set of cus-
tomers with known demands by a limited or unlimited capacitated
fleet of trucks, with minimum vehicle costs. Also, Lai et al. (2016)
studied a multi-graph Heterogeneous VRP with time constraints,
and solved the mixed integer linear programming model with a
Tabu search heuristic, which provided enhanced routing costs and
better customer service. Other related variants were widely studied
in the literature, such as VRPwith TimeWindows (VRPTW) (related
to the different service time for each customer), VRP with Pickup
and Delivery (VRPPD), the Multi Depot VRP (MDVRP), the Periodic
VRP (PVRP) and Backhauls VRP (VRPB).

To understand the different variants of VRP, some studies in the
literature were reviewed regarding each variant and the contribu-
tions were analytically compared. More specifically, regarding
VRPTW, which refers to the time elapsed between serving the
customer and ending the service, various literature discussed that
variant. Lahyani et al. (2015) presented a taxonomic review and
compared the soft times windows in which penalties are given for
vehicles’ late service, while with hard time windows the vehicle is
not allowed to arrive late at all.

Meanwhile, VRP was expanded in a way that served industrial
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applications; Gribkovskaia et al. (2008) studied the case of satis-
fying only the demands of profitable pickup points. In their study, a
mixed integer linear programming formulation was designed to
minimise the total cost associated with the covered routes with
totally delivered orders, and partially satisfied pickups. They argue
that it is sometimes more beneficial to serve the same customer
twice rather than creating a full route circle. Recently, Belgin et al.
(2018) published a study regarding VRPPD with two-echelon (2E-
VRPPD), in which the pickup and delivery operations are accom-
plished simultaneously, with the same vehicle delivering all of the
orders from the depot to the destinations, and from destinations
back to the depot point. Both a Node-based mathematical model
and a hybrid heuristic algorithm were used to solve the 2E-VRPPD
in medium and large sizes.

When considering the fleet's trucks' differences, the capacity of
the truck/vehicle is one of the important decisions that affects the
optimal VRP network choices. Lahyani et al. (2015) mentioned that
the Capacitated Vehicle Routing Problem (CVRP) provides a solu-
tion with minimum costs with a closed route circle, one-time
customer service by one vehicle, and the route total demand
must not exceed the assigned vehicle capacity. Also, Li et al. (2016)
shed light on the combination-vehicle attributes as a Combination
Truck Routing problem (CTRP), inwhich vehicle types and travelled
distances were considered in a survey, and a heuristic algorithm
was applied to solve a real logistical case.

However, a challenging variant other than the regular single
VRP, is the MDVRP. In this setting, the final clients, who are not
clustered around each single depot, are being served from different
depots. Montoya-Torres et al. (2015) published a literature review
about the MDVRP considering different VRP variants. They also
presented different approaches to solving the problem. Conse-
quently, research was extended on the topic of the MDVRP and it
was deemed to be realistic and served real applications as effec-
tively as possible. Lahyani et al. (2017) introduced a combination of
Multi-Depot Fleet Size and Mix VRP (MDFSMVRP). Both Branch-
and-Cut and Branch-and-Bound algorithms were used to solve
the suggested formulations with different indexes. An improve-
ment on the lower and upper bounds on the tested instances has
been considerably achieved.

Referring to the PVRP, which has been defined by Campbell and
Wilson (2014) as a VRP with multiple periods' service, the cus-
tomers’ orders are being scheduled to be met during multiple pe-
riods, with the same fixed quantity. A recent study presents the
PVRP as a flexible characteristic, in which Archetti et al. (2017)
discussed the Flexible PVRP (FPVRP), in which the objective func-
tion here minimises the total routing costs, while allowing some
flexibility to customer satisfaction frequencies and quantity, during
the planning horizon, rather than fixed frequencies and quantity.
Also, the FPVRP considers the inventory costs accompanied by the
objective function, which is modelled in the Inventory Routing
Problem (IRP). The results of their work reveal that the costs were
minimised better than when using PVRP or IRP.

According to the route types planned to be covered by the
available fleet of trucks, another variant emerged: VRP with Back-
hauls (VRPB), in which both delivery and pickup are available on
the same routes. A study conducted by Koç and Laporte (2018)
analysed different VRPB literature and compared the exact and
heuristic algorithms. Also, the literature available about the stan-
dard VRPB as well as the different variants are tabulated in the
study, with the defined mathematical model and solution.
Accordingly, Bortfeldt et al. (2015) had extended VRPB into clusters
with a three dimensional loading problem (3L-VRPCB). Here, the
line-haul customers should be served before the backhaul ones.
Two hybrid algorithms were suggested to plan for the packing and
routing procedures. Also, García-N�ajera et al. (2015) suggested a
multi-objective model that minimises the number of vehicles,
travelling costs, and the un-serviced backhauls. Therefore, the
suggested similarityebased evolutionary algorithm brought solu-
tions for real life applications.

Recently, it has been noticed that three VRP variants are more
important to consider in a combined VRP model, in order to be a
Rich VRP (RVRP). These are the Open VRP (OVRP), the Dynamic VRP
(DVRP), and the Time-Dependent VRP (TDVRP) (Braekers et al.,
2016). Various researches concentrated on those variants and
suggested different algorithms to obtain the optimal solution, for
instance, the OVRP, which supposes that vehicles should not return
to the depot after making deliveries. A work presented by
Marinakis and Marinaki (2014) suggests a new developed Bumble
Bees Mating Optimisation (BBMO) algorithm to solve the OVRP. A
comparative analysis was conducted between the other meta-
heuristic, evolutionary and other nature-inspired algorithms.
They argue that the results were satisfactory and better solutions
were revealed. According to the important variant, the DVRP, wide
researches were conducted and accompanied by a different mix of
other variants. The DVRP grasped its importance from the fact that
the real life aspects are mostly dynamic in their nature and re-
quirements. Pillac et al. (2013) published a review paper that
comprehensively studied various DVRP works from different per-
spectives. Specifically, two dimensions are important to understand
when studying the DVRP, from which the dynamicity degree
comes; these are the evolution and quality of the information being
transferred across the planning horizon. Regarding the evolution,
the information could be changed after the planners defined a
routing plan, while the quality of the information emerges from the
uncertain demand of available data. As the recent technological
revolution provides an easier follow up system for the routing
planning process, as the complexity of the DVRP increases and the
need for richer VRP models emerges.

Furthermore, another important variant of VRP is the Time-
Dependent VRP (TDVRP). Accordingly, Maden et al. (2010)
mentioned that the previous VRP variants were being studied
supposing that the routing plan was static in relation to vehicle
speed and journey time. On the contrary, traffic congestion will
aggressively affect the optimal solution of planned routes from cost
and distance overviews. Therefore, the study of VRP would be more
realistic when considering the current traffic prosperities. Nowa-
days, on-point information about traffic on a certain route would
help to identify the expected time to cross a certain route. Thus,
using the TDVRP would greatly improve the optimal solution of the
routing plan with minimum cost and time. Moreover, the optimal
solution is expected to be enhanced not only in minimising time
durations for planned routes but also in CO2 emissions of the
travelled journey. A case study conducted by Maden et al. (2010)
describes a heuristic algorithm that minimises the total travel
time of VRP, taking into account the variation caused by the ex-
pected traffic congestion, which is usually higher during rush
hours. The results of the study, conducted on a south western
sample in the United Kingdom, shows that 7% of CO2 emissions
were reduced compared to the traditional VRP model with an
emissions saving objective.

Franceschetti et al. (2013) presented an integer linear pro-
gramming formulation, which considers minimising the costs of
the travelled journey in both emissions and drivers’ costs. Such a
model is referred to as a Time-Dependent Pollution VRP (TDPVRP).
They document that using the assumption of a fixed speed rate
when planning for a VRP optimal solution would deviate from the
expected CO2 emissions by 20% for gasoline vehicles. Both
congestion and free flow cases were studied and a complete char-
acterisation of the optimal solution was derived, which prescribes
all the speed and congestion properties. Another interesting work
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considering the TDVRP, including the path selection decision, was
presented by Huang et al. (2017). Here, the conventional assump-
tion of the given customer location and arcs was improved by
providing a path selection choice explicitly in the road network;
this meant that the model provided a solution with an optimal
route and path selection decision depending on both departure
times and congestion levels related to the suggested network. A
variant called Time Dependent VRPwith Path Selection (TDVRP-PS)
has been solved using The Route-Path Approximation (RPA)
method, which provides a near optimal solution, taking into
consideration stochastic traffic conditions.

On the other hand, developing effective and sustainable VRP
models is important and dramatically affects the success of supply
chain management and the inventory planning process. Achieving
a high fit level between strategic planning and supply chain re-
quires the existence of a strong integration between supply chain
levels, inventory management process, and route planning. Due to
the impact of the optimal routing plan on supply chain efficiency
and success, more literature are discussed below.

2.2. VRP and supply chain and inventory systems’ management

Referring to the integrated supply-chain systems’ development,
Gharaei et al. (2019a) developed an optimal supply chain batch
sizing policy, which is integrated with a green policy, a vendor-
managed inventory, and consignment stock agreement. The pro-
vided model can determine the optimal number of vendor batches
and the volumes of batches for each product. The presented multi-
product, multi-buyer model with realistic constraints can minimise
the total costs of the integrated supply chain. An outer approxi-
mation with equality relaxation and an augmented penalty tech-
nique has been used to solve the mixed integer nonlinear
programming problem and has achieved excellent results. Another
work has been published by Shekarabi et al. (2018), who have
optimised a lot-sizing policy for an integrated multi-level, multi-
wholesaler supply chain under limited warehouse space. A gener-
alised outer approximation technique, based on decomposition
principles, has been used to solve the mixed integer nonlinear
programming model. Besides, for the purpose of optimising the
replenishment process, which has a cumulative effect on economic
production quantity models, Gharaei et al. (2019c) have solved a
mixed integer nonlinear programming model, using the general-
ised cross decomposition technique, with the aim of optimising the
inventory systemmanagement. The total inventory costs have been
minimised and the profit was maximised by optimising the lot-size
of the replenishments. From the achieved optimistic results of the
presented models, it could be inferred that optimising the inte-
grated supply chain levels and inventory management process is
expected to improve the routing planning objectives. Studies
should focus more on integrating between different levels of
planning process.

The integrated supply chain is highly affected by what is known
as Joint Economic Lot-Sizing Problem (JELP). This relationship has
been investigated by Gharaei et al. (2019b). A four-level supply
chain has been studied as referring to the improved cooperation
due to the effect of the JELP. The suggested model aims to minimise
the inventory costs by ordering the optimal lot size, which is co-
ordinated over the four levels of the supply chain: the suppliers, the
producers, the wholesalers, and the retailers, producing the joint
economic lot size: a MINLP model with stochastic constraints,
including space limitation, procurement costs, the number of or-
ders, and joint economic lot size. To solve such a large scale and
hard MINLP model, the Generalised Bender Decomposition tech-
nique (GBD) has been used. The exact solving method reveals the
best performance in terms of the optimum solution, the number of
taken iterations, the dual infeasibility, the constraint violation, and
the complementarity. Additionally, the sensitivity analysis shows
low sensitivity between the change rate of inventory costs and lot
size, while on the other hand, it shows an inverse relationship
between the change rate of the inventory costs and the change rate
of the period length of the product. As such, these results infer that
an important relationship exists between the optimum period
length and the optimal routing plan, affecting, in turn, the total
inventory costs.

Investigating the impact of the routing and distribution process
on the success of supply chain planning could be conducted
considering variable issues. The demand probability distribution,
the considered number of levels of the supply chain, the variability
of the transferred products, the quality, the price, and the avail-
ability of the products are all important parameters to be consid-
ered when issuing routing and production strategies, although
demand uncertainty substantially affects the chains’ profit.
Different works have studied different levels of supply chains,
considering demand variation.

Giri and Bardhan (2014) have developed a supply chain, which
consists of a single supplier and a single retailer and suggested a
reliable backup supplier as a solution for mitigating the effects of
the disruption that might occur due to uncertain demand. The
assumed backup supplier has enhanced the profit of the retailer
when there is no coordination with the primary supplier, which,
even if allowed with the primary supplier, it remains effective up to
a certain range of the chain's disruption probability before it col-
lapses. Different scenarios have been investigated on the effect of
the contract nature between retailer and supplier with retailer
profitability. The results have shown that a reliable backup supplier,
who might be costlier than the primary supplier, will enhance
disruption resistance and profitability. Accordingly, securing a
sustainable routing plan will ensure receiving orders on time,
whether considering the primary or backup supplier, which, in
turn, is expected to mitigate the chain disruption probability by
using sustainable an on-hand inventory during highly fluctuating
demand. Another work discussing supply chain planning has been
introduced by Giri and Masanta (2018). They developed a closed-
loop supply chain model consisting of a manufacturer, two sup-
pliers, and a retailer. The demand has assumed to be dependent on
the retail price and quality in a stochastic environment. It is
assumed that the production process is related to the learning
process. The developed closed-loop supply chain model has shown
positive results in profitability when considering the human factor
effect during the manufacturing process, which is the learning ef-
fect. Such work that integrates supply chain planning and the hu-
man factor effect can indicate the importance of studying the
human factor effects on the planning and executing of results over
other strategic decisions, such as distribution and the outing
planning process. On the other hand, other factors that could affect
the profitability of the supply chain are investigated by Yin et al.
(2016). They introduced a game theoretic model that integrates a
two-level supply chain and a manufacturer, whose decisions lead
multiple suppliers with an uncertain level of quality and demand
rate. The model has been considered as a non-cooperative game
and analysed by Stackelberg equilibrium and has shown that
manufacturer profitability is dramatically affected by the expected
defective rate as well as demand stability.

Securing a stable and optimal routing plan also plays a sub-
stantial role in Just-In-Time (JIT) manufacturing within variable
lead time, during which an inventory system highly affects the
efficiency and effectiveness of the JIT profitability. Sarkar and Giri
(2018) developed a stochastic supply chain model that aims to
minimise the ordering cost inventory and imperfect production for
a better integration between vendor and buyer within a JIT



Y. Abu Al Hla et al. / Journal of Cleaner Production 234 (2019) 984e1001988
manufacturing and variable lead time inventory system. Dramatic
savings were attained due to the reduction in lead time and
ordering costs, as well as defective rates. Integrating the VRP with
JIT is expected to enhance the profitability of both vendor and buyer
in a stochastic supply chain model. Another inventory system
model has been developed on the three stages of a supply chain: a
manufacturer, a distributor, and a retailer. In this work, Shah et al.
(2018) assumed a quadratic demand rate for deteriorate items
allowing for a downstream credit payment given by the distributor
to the retailer, to minimise the joint total costs by solving the
optimal shipments, replenishment time, and downstream credit
period, which substantially affects demand and production rates.

Based on the above publications, demand rate distribution
aggressively affects the success of the incurred supply chain man-
agement and profitability for all sharing levels. Also, monitoring
and controlling an effective inventory system plays a substantial
role in increasing the chains' profitability. Therefore, optimising the
routing process, which has impact on, first, the lead time, second,
the inventory total costs and even all the chains’ players profit-
ability and satisfaction downstream to the consumer is an impor-
tant success factor, which reflects coordinated and cooperated
managerial decisions over strategic, operational, and tactical
planning levels.

2.3. Green VRP

The logistics and distribution processes world are highly crossed
with the persistent need of green policy applications worldwide.
For this point, different researches have considered green aware-
ness towards sustainable VRP models. A survey conducted by Lin
et al. (2014) comprehensively reviews the different available liter-
ature on Green VRP (GVRP). The suggested models were analyti-
cally compared and categorised into GVRP and Pollution Routing
Problems (PRPs). Suggestions were presented considering the
GVRP with other VRP variants. The philosophy of this work
considered the traditional VRP researches and a survey on the
GVRP, and presented how traditional VRP could interact with the
GVRP in the coming inspired research topics. This work could be
used as a starting point for researchers and logistics practitioners to
create sustainable VRP work that considers the important variants,
combining the most important real-life aspects with continual
green needs.

One of the available rich works that combines green issues with
VRP has been recently published by Niu et al. (2018). The authors
considered an Open VRP model with Time Windows constraint
(GOVRPTW). A hybrid Tabu Search Algorithm was suggested
depending on the Comprehensive Modal Emission Model (CMEM).
The suggested model aimed to minimise the routing costs
regarding both the fuel and CO2 emissions. The results of realistic
instances computed on a Chinese sample revealed that such an
open VRP model approximately reduced both fuel costs by 20% and
CO2 emissions costs by 30%.

For the purpose of controlling environmental pollution caused
by distribution process emissions, a paper has recently been pub-
lished by Hosseini-Nasab and Lotfalian (2017) classifying the
selected route type by the fuel consumption level, depending on
the average velocity level. They argue in their work that many re-
searchers solved the green VRP by considering the fuel consump-
tion rate minimisation (Zhong et al., 2004; Gurtu et al., 2015), the
case that impedes a similar route planning in terms of sticking to a
certain route type and average velocity during the routing plan,
which is not practical when implemented. Therefore, they suggest
that studying the effects of road type on average velocity and the
accompanying fuel consumption rate would be effective in
reducing fuel costs and emissions (Fagerholt et al., 2010). A three-
objective mathematical model has been proposed, which: 1) min-
imises the travelling costs and consumed energy; 2) minimises the
fuel consumption rate by minimising the incurred environmental
penalty; and 3) maximises customer satisfaction levels in terms of
maximum possible average velocity. After running the model, the
results revealed that an improvement opportunity exists for
reducing environmental pollution and planning eco-friendly
routes, by considering the relationship between route type and
certain fuel consumption rates associated with CO2 emissions. This,
in turn, would save non-renewable natural resources. They also
suggest that, as themodel is NP-Hard programmed andwill be time
consuming for solving large instances, it would be more realistic to
solve the model using heuristics, meta-heuristics, or an exact
method, such as spatial branch-and-bound and branch-and-reduce
(Burer and Letchford, 2012).

2.4. Rich VRP

As mentioned by Braekers et al. (2016), the reviewed researches
between 2009 and 2015 considering the real life aspects of VRP as
individual cases, considering only a few variants. As a result, the
suggested models cannot be easily generalised for real cases and
applications. Therefore, future works were suggested, considering
multiple variants to have richer VRP models. The RVRP is defined as
a VRP model that considers various real life complexities (Goel and
Gruhn, 2008). Related to the available published rich VRPs models,
Lahyani et al. (2015) presented a taxonomic review to analyse the
available literature about RVRP. They also provide the requirements
that should be available to consider it to be a RVRP study. An
important matter they mention is the gap between the suggested
RVRP models in the literature and the complexity of the real-life
aspects. They argue that most researches focus on providing a
mathematical model with solutions rather than adjusting the real-
life characteristics with the suggested model. In their paper, they
provide the requirements as optimisation criteria, constraints, and
preferences that should be available to produce an RVRP model.
One more work on the RVRP was presented by Goel and Gruhn
(2008). The variants that were studied as combined are: time
windows restrictions, heterogamous fleet of trucks with variable
travel times, travel costs and capacity, multi-dimensional capacity
constraints, multiple pickups and delivery location service,
different starting and ending points, and route restrictions. Ac-
cording to the provided highly constrained model, an iterative
improvement approach is required, such as the Reduced Variable
Neighborhood Search (RVNS) algorithm and a tour relatedness
measure. The results of the computational experiments reveal that
the suggested algorithm would work effectively under dynamic
planning systems. In the same vein, a case study on the semi-
conductor supply chain released two mixed integer linear pro-
gramming formulations (Madankumar and Rajendran, 2018). The
model, which considers a Green VRP with Pickup and Delivery
variants (G-VRPPD-SCC), aims to minimise the related route and
schedule costs related to the semi-conductor supply chains. The
results were compared with other suggested models in literature;
they had less computing time and performed well in solving
different problem instances.

Similarly, Soleimani et al. (2018) studied the collection and
distribution (pick-up and delivery) of original and remanufactured,
End of Life (EOL) products. A Green VRP with Pickup and Delivery
(GVRPPD) model was suggested to reduce the collection and dis-
tribution processes-related costs, such as travelling costs (fuel cost),
cost of setting up the distribution centres, and minimising the
supplying vehicles and air pollution levels. The multi-objective
non-linear programming model has been linearised and solved
using a fuzzy approach. Testing the model on a real case study
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proved the achieved improvement on the objectives. Therefore,
such a GVRPPD model would highly increase the efficiency of the
related businesses working on reverse logistical chains.

As shown in the previous review, different researches published
on VRP variants (Gribkovskaia et al., 2008). The topic still attracts
academic researchers in a way that meets the logistical practi-
tioners’ needs. The suggested VRP models with various combina-
tions of the variants, mainly focus on minimising travelling costs as
well as time, such as García-N�ajera et al. (2015) and Soleimani et al.
(2018). New gaps have emerged that, when filled, would make VRP
models more practical and beneficial. Specifically, enhancing
customer satisfaction, creating more realistic models by adding
new operational planning characteristics, such as the cross docking
process, connecting a constrained scheduling process with a rout-
ing problem, considering road environments when planning for a
VRP model, using occasional drivers as an economic sharing
concept, and studying the most effective human factors related to
the VRP topic.

The cross docking process was studied by Ahmadizar et al.
(2015) as a two level VRP. The process, which includes three main
activities: the collection of arrived goods from the coming inbound
trucks, classifying products into same type categories, and dis-
patching each category to the defined destination points. Imple-
menting the cross-docking processes is possible on different
choices of route networks available on the ground to arrive at
supplier and delivery destinations. The proposed model assigns
products, suppliers, cross-docks, and the optimal route networks
and schedules. They presented a hybrid genetic algorithm that was
applied to several examples to minimise the purchasing, distribu-
tion, and holding in storage costs. Studying reverse logistics oper-
ations was suggested as a further research point. Furthermore, the
optimisation of VRP solutions not only include the minimisation of
related costs and time, but would also be extended to include the
availability of required resources, which are considered as scarce
and important to sustain the required VRP plans. Paraskevopoulos
et al. (2017) reviewed the literature executed on synchronising the
important resources schedules with the routing plans. Although
some literature was found using the variants as Skill VRP or Tech-
nician Routing Problem in their study, the topic is still not mature
enough. The mentioned taxonomic review claimed that a paper
published by Tozlu et al. (2015) presents the idea from both a
product and service planning view, as a Variable Neighborhood
Search Algorithm (VNS) was suggested to solve a routing model for
assigning limited healthcare service providers to different patients.
The review also suggested different gaps as an opportunity for
future research.

The VRP topic would considerably serve the logistics practi-
tioners who are stuck with definite partners, with whom they need
to maintain their required service level, with contractual obliga-
tions, as agreed. VRP with service level constraints has recently
been studied by Bulh~oes et al. (2018). A compact mathematical
formulation, a branch and cut algorithm, and a hybrid genetic al-
gorithm were proposed to balance the required service level with
minimum costs. Therefore, planning for a VRP with an acceptable
level of service would highly increase the profit of a certain logistics
company; such a topic is important for academic researchers to
study, and should include as many rich variants as possible. Sub-
sequently, studying factors affecting the service level is important
when preparing a routing plan. Such factors are the drivers' be-
haviours, which significantly affect routing decisions such as speed
and route choices. An analytical framework for studying the rela-
tionship between drivers' behaviour and VRP is presented by
Srinivas and Gajanand (2017). They claim that the available litera-
ture studied VRP variants as separate to the topic of drivers' be-
haviours, although, the planner behaviours of VRP were also
considered. This work motivates researchers to integrate the
drivers’ behaviours factors within the familiar objectives of VRP:
minimising costs, time, and pollution. This inspiring work might
bring new thinking in modelling VRPs and facilitate their applica-
tion easily in real life.

As noticed from the latter mentioned topics, many factors affect
the suggested optimal solution found by the chosen VRPs models.
As such, the proposed solution method should be innovated as
accounts for the surrounded conditions as last-mile and same-day
delivery capability. Amazon and Walmart have introduced the idea
of crowd-shipping by assigning orders to people interested in
serving using their own vehicles for customers not far away from
their own destinations for certain compensation (Barr and Wohl,
2013; Bensinger, 2015). Accordingly, a new variant has been pro-
posed as a practical solution for the rigid capacitated vehicle
routing plan in the name of occasional drivers. Archetti et al. (2016)
suggested using a third-party logistical service to cover the
shortage happening in the assigned fleet of trucks, or received or-
ders from far destinations for better customer satisfaction and
increased service efficiency and availability. Since implementing
such a solutionwould increase routing plan costs, optimal planning
for VRP modelling is required. Therefore, Archetti et al. (2016)
presented a multi-start heuristic approach that minimises the to-
tal costs associated with assigning orders for both regular, and
occasional, drivers. The results revealed that a dramatic cost saving
could be achieved when applying an economic compensation
scheme for the company and occasional drivers, in a way that will
improve the availability and flexibility of the drivers. On the other
hand, more challenges associated with the other VRP variants exist
and need to be considered to optimise the practical benefits of
crowd-shipping. Recently, a work presented by Macrina et al.
(2017) claimed that using occasional drivers with multiple de-
liveries within a time window constraint (VRPODTW) would
positively serve logistical companies regarding both routing plan
and costs savings, although more variants should be considered to
optimise a VRPODTW solution.

Depending on the previous discussion, this work extends the
idea of using occasional drivers, by studying it with other important
variants, i.e. developing a VRPOD plan as an eco-friendly plan, and
optimising the usage of occasional drivers by controlling their
behaviour. Section 2.5 spotlights the literature published about
drivers’ behaviours and the encountered effects on the routing
plan.

2.5. VRP and driver behaviour

Studying VRP with different variants will definitely improve the
routing plan and reveal a rich VRP model, although a gap exists
between the planning stage for the optimal VRP and the real
implementation stage; for instance, driver behaviour is an impor-
tant factor that affects VRP solutions in reality. In general, literature
spotlights human factors that affect driving behaviour, such as the
effect of fatigue due towork overload (Ting et al., 2008; Murray and
Park, 2013; Zhang et al., 2016) and the effects of a driver's age,
gender, and personality on risky driving behaviour (Zuckerman and
Kuhlman, 2000), as well as the level of autonomy assigned for a
driver who executes the routing plan on the ground (Srinivas and
Gajanand, 2017). Nevertheless, when reviewing the published
VRP modelling researches, it has been argued by Srinivas and
Gajanand (2017) that, over the years, research on different VRP
variants has been presented as isolated from driver behaviours and
its effect on the real optimal solution. They support their claim by
reviewing existing studies on driver behaviour, such as Ting et al.
(2008) and Tran et al. (2011), as well as reviewing different pub-
lished researches of variants of VRPmodels (Qian and Eglese, 2016).
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Srinivas and Gajanand (2017) believe that whatever the VRP
objective was, it is important to think about drivers’ sentiment
when setting the routing plan. In cases such as VRP with a time
window, circumstances would be different in reality and the driver
might need frequent or infrequent breaks to achieve the plan ob-
jectives. Other cases for which minimising pollution was their
objective, it would be lower cost plan if the driver had an autonomy
level in route or speed choices in a matter that reduces emissions,
or even reducing travel time on the ground. As a result, driver
satisfaction would be better in a way that can improve the envi-
ronmental, economic, and social performance of the logistical firm.
The presented framework could be used as a starting point to
include the driver behaviour in a VRP model in terms of reducing
total VRP costs, by sharing the routing plan decisions between the
driver and the planner.

A study had discussed the idea of studying driver behaviour and
its effects on risk homeostasis towards speed selection and accident
rates was published by Janssen and Tenkink (1988), and under
general conditions, it is believed that safety engineering measures
would be reduced by shifts in behaviour. In the same regard,
Iversen (2004) has studied the relationship between perceived
attitude and driving behaviour patterns. The results show a strong
correlation, as attitudes toward rule violation, speeding, and care-
less driving are strongly related to reckless driving, drinking, and
seat belt use, which, in turn, could capture risk taking behaviour
and help to predict a driver's driving pattern in the future. Addi-
tionally, he reflected the results of two theories that discussed the
effect of perceived attitude on a person's control over performance,
i.e. 1) the Theory of Reasoned Action (TRA) (Fishbein and Ajzen,
1975); and 2) the Theory of Planned Behaviour (TPB) (Ajzen,
1985). Both theories have been studied in relation to driving
behaviour research such as, speeding, drunk drivers, and aggressive
driving patterns, to predict risky driving behaviour and its effect on
accidents in the future.

In the same vein, Møller and Gregersen (2008) examined other
relationships of risk driving behaviour rather than safety motives.
Those that had positive significant effects were: 1) the psychosocial
function of driving; 2) other driving related interactions with
friends; and 3) leisure time activities patterns, such as playing PC-
games. Doing body building and partying with friends were also
found to be related to increased risky driving patterns. They rec-
ommended that other motives than safety issues are required to
control driving patterns, such as behavioural related issues and
activities.

From what had been discussed above, it is expected to enhance
VRP results on the ground when considering drivers' behaviour.
Since this research includes two types of drivers, i.e. regular drivers,
and occasional drivers, both drivers' behaviours are considered and
the effect of their behaviours on the routing costs is monitored and
analysed through sensitivity analysis. This, in turn, will help in
deciding the proper level of autonomy as assigned between the
planner and the driver, increase driver satisfaction, and achieve
better customer satisfaction levels due to higher service availability
for both nearby and remote customers. As such, evidence that the
VRP model is solvable and practical will be a motivation to control
the effect of drivers’ behaviour patterns on different related issues
as stated above in the literature.

3. Problem presentation

The VRP topic has been widely discussed in the literature. The
challenge in providing a realistic model that reflects the real-life
aspects is being adapted by multiple academic researchers. How-
ever, it is clear that the variants were studiedwhile considering that
there are no differences between drivers, so all the near optimal
results are idealised regardless of drivers' behaviour patterns
(Srinivas and Gajanand, 2017). Different objectives were analysed,
such as minimising the routing travel costs, travel time and dis-
tance, and reducing air pollution levels, which resulted from such
logistical activities. Recently, other persistent necessities have
emerged as a result of the accelerated development of technolog-
ical and transportation industries. For instance, adopting a green
policy when modelling VRPs' variants, integrating drivers' behav-
iour with VRP models, including occasional drivers in the routing
plan, and considering the route status, such as congestion issues,
are important factors that require planning and when considering
the required customer service level. Consequently, this study aims
to develop, and near optimally solve, an eco-friendly VRP model
integrated with driver behaviour controlling parameters, involving
both regular and occasional drivers. To the best of our knowledge,
as can be shown from the reviewed literature, these topics have
been studied individually and VRP models have been studied in
isolation from the drivers' behaviour patterns. Therefore, a more
comprehensive and realistic model for solving a VRP that employs
the ridesharing concept is developed. The concept of ridesharing
has been defined as sharing individual travellers' costs by riding
others' vehicles for a trip when they have similar time schedules.
Such an idea has been introduced by Furuhata et al. (2013). This
concept was developed later byWalmart to be its vision in using in-
store customers to make deliveries for online customers who are
close to their destination (Archetti et al., 2016), while, first, studying
drivers’ behaviour patterns, and second, accounting for the envi-
ronment, would considerably serve real applications, andwould be,
more convincingly, adopted by logistical firms. Furthermore, in-
vestigations into different driver behaviour patterns highlight their
effect of one of the objective functions: the near optimal VRP total
costs. Such behaviour patterns include: 1) risky driving pattern; 2)
neutral driving pattern; and 3) averse driving pattern. Each pattern
is represented in the model by choosing different values for the
risk-taking parameters. For example, assigning a high value to the
risk-taking parameter for the driver means that the planner is risky,
and the driver responsibility is significant when making decisions
related to the near optimal route or speed according to the real
circumstances, and vice-versa; when the risk taking parameter of
the driver is medium or low, this means that the planner is neutral
or risk averse, and, as such, the level of autonomy for the driver will
not be high when making speed or route choice decisions (Srinivas
and Gajanand, 2017). Different scenarios are sensitively analysed to
investigate the effects of changing the model parameters on the
routing plans.

The ability to monitor and control human differences between
different drivers improves the stability of the results of the
executed routing plans. Also, the proposed strategies and perfor-
mance could be evaluated and measured more easily and precisely
when referring to human performance and its effect on the plan,
rather than to only the results of routing plans. Comparing the ef-
fects of different scenarios on routing planweather costs, energy, or
other outputs will ensure adjusting the plan to the best configu-
rations. The importance of the human factor should never be
neglected and should be integrated whenever the human's effect
on the plan's output is significant. In addition, the expected positive
impact on the supply chain profit and minimised inventory costs
are other factors promoting the VRP-conducted plan.

3.1. Mathematical model

A Mixed Integer Non-Linear Programming Multi-Objective
Model (MINLP-MOM) has been developed in terms of objective
functions and constraints, to be solved into a near optimal VRP
network. Also, fixed-charge modelling has been used to control one
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choice of route type. Later on, the MINLP-MOM is linearised to
facilitate solving the proposed model. Understanding the research
objectives comprehensively would lead to a mature realisation of
the proper model components.

TheMINLP-MOMmodel has been designed a logistics service for
a set of regular and occasional drivers. Accordingly, a set of cus-
tomers from i to j is generated randomly in terms of locations co-
ordinates and demands. The suggested model has managed three
important issues related to the VRP, which are: 1) improving the
service level by using a third party as occasional driver to satisfy
customers located far from the regular drivers' destinations
network; 2) sustaining green driving behaviours through control-
ling the chosen velocity range, and imposing environmental pen-
alty; and 3) considering the drivers' behaviour when planning for
the VRP by studying the effect of the driver's choice on the total
transportation costs by inserting a risk-taking probability.

Sets of arcs (i, j), occasional drivers (K), and regular drivers (D)
were proposed for use in generating solutions. Four objective
functions have been composed to manage: 1) the minimisation of
energy consumption levels associated with traversing the VRP plan
(denoted by Z1); 2) the maximisation of velocity level to a certain
upper limit to reduce CO2 emissions (denoted by Z2); 3) the mini-
misation of penalties associated with velocity choices (denoted by
Z3); and 4) the minimisation of total travelling costs incorporating
the driver's behaviour effect (denoted by Z4). As such, four decision
variables have been proposed, i.e. 1) assigning a regular driver to
implement the suggested VRP plan; 2) assigning an occasional
driver to implement the suggested VRP plan; 3) the quantity carried
by the vehicle, which satisfies the demands of customers associated
with the VRP plan and minimises the energy consumed by the
vehicle through each VRP trip; and 4) the near optimal route type
choice referring to the near optimal average velocity range. The
model's mathematical formulation is presented in the following
section. The first three objective functions have been adopted from
Table 1
The parameters of the proposed VRP model.

M: A sufficiently large positive value (mathematically, M /þ ∞)

PENr :The environmental penalty associated with the fuel consumption rate imposed o
dij : Distance travelled from node i to node j (km)
d0i : Distance travelled from depot o to customer i (km)
dik: Distance travelled from customer i to occasional driver destination k (km)
d0k : Distance travelled from depot o to occasional driver destination k (km)
xi: X-Coordinate for node i.
xj: X-Coordinate for node j.
yi: Y-Coordinate for node i.
yj: Y-Coordinate for node j.
VELijr : Velocity of travel from node i to node j along route type r (Km/hr), where VELij
DEMi: Demand at node i (Kg), where DEM0 ¼ 0.
CAP: Capacity of the vehicle (Kg).
ar: Fuel consumption factor for route type r
g : Occasional driver distance factor representing willingness of driver to serve, g � 1
V*
r : The maximum velocity limit allowed on route type r (Km/hr).

r: Occasional driver compensation scheme's factor, r � 1
b: Parameter of risk-taking behaviour by the planner in order to determine level of au
D: Parameter of risk-taking behaviour by a regular or occasional driver in order to det
Cijd : Cost of traversing arc (i,j) by a regular driver d ($).
TRdr :Training cost for a regular driver d for route type r driving pattern ($)
SCdr: Salary cost for a regular driver d through route type r ($/period)
TCijdr : Total cost of travel from node i to node j by a regular driver d including trainin
Cijk : Cost of traversing arc (i,j) by an occasional driver k ($).
Coik : Cost of travel from depot o to customer i by the occasional driver kð$Þ:
Cik : Cost of travel by the occasional driver k from customer i to the occasional driver k
Cko : Cost of travel by an occasional driver k from his/her destination to the depot o ð$
TRkr : Training cost for an occasional driver k for route type r driving pattern ($)
TCijkr : Total cost of travel from node i to node j by an occasional driver k including tra
WZi : Target weight for each objective function (Zi) which would be determined by the

Zopt : Total value of the near optimal solution (Zopt ¼P4
i¼1W

*
Zi
Z*i ).
the work conducted by Hosseini-Nasab and Lotfalian (2017), while
the fourth objective function has been developed from the formula
introduced by Srinivas and Gajanand (2017), by including the oc-
casional drivers in all objective functions and constraints.

3.2. Model preliminaries

This section provides the used indices, sets, decision variables,
parameters, and assumptions; in order to understand the proposed
mathematical model components.

3.2.1. Indices and sets
o: Depot point.
i: Customer node, i¼ 0, 1, …,N.
j: Destination node, j¼ 1, …,P.
D: Set of regular drivers to be assigned.
K: Set of occasional drivers to be hired.
r: Index of routes’ types associated with an allowable velocity

range, r¼ 1,2,3,4. (adopted from: Hosseini-Nasab and Lotfalian
(2017).).

3.2.2. Decision variables
Xijdr :1, if a regular driver d travels from node i to node j through

route type r; otherwise: 0.
Qijr: Load carried by the vehicle from node i to node j along route

r (Kg).
Oijkr :1, if an occasional driver k travels from node i to node j

through route type r; otherwise: 0.
Yijr : 1, if the vehicle travels from node i to node j along route

type r; otherwise: 0, r¼ 1,2,3,4.

3.2.3. Parameters
Table 1 presents the parameters that have been used in the

proposed VRP model.
n route type r ($), where PENr � 0 ,c r ¼ 1;2;3; 4 :

r s0, c i ¼ 0; 1;…; N; j ¼ 1;…; P; r ¼ 1; 2;3;4

tonomy of the planner.
ermine the level of autonomy for the assigned driver.

g costs, through route type r ($)

destination ð$Þ:
Þ:

ining costs, through route type r ($)
planner.
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3.2.4. Model assumptions

1. All vehicles are identical in terms of load and capacity limit.
2. All vehicles depart from the depot carrying the total quantity

required to satisfy the demand of all received orders.
3. Customers' demand and locations are known in advance and

all customer demands should be satisfied
4. Regular drivers serve up to a known radius-distance of cus-

tomers' nodes (1 Km-200 Km).
5. There are one or more route types existing between every

pair of nodes.
6. There are four types of routes depending on the allowable

average velocity range (Hosseini-Nasab and Lotfalian, 2017;
Samaras, 2012):

I. Type one (0e30 Km/hr): for velocities below 30 Km/hr,
which has the highest fuel consumption rate, such as
riding vehicles in city-urban environment.

II. Type two (31e55 Km/hr): for velocities between 31 Km/
hr and 55 Km/hr, the fuel consumption rate decreases,
such as driving in the sub-urban or rural areas.

III. Type three (56e80 Km/hr): for velocities between 56
Km/hr and 80 Km/hr, fuel consumption rate also de-
creases, such as driving in rural or high ways.

IV. Type four (81e120 Km/hr): driving with these average
velocities' range will increase the fuel consumption rate,
such as highways driving conditions.
7. Depending on the velocity ranges rule, the following
assumption has been proposed: a1 >a4 >a2 >a3(Samaras,
2012).

8. The distances along the different route types between the
same pair of nodes could be different and measured as a
rectilinear distance.

9. There is no time window for delivery specified at any of the
nodes.

10. ar� 0:05; c r ¼ 1;2;3;4 , as the minimum average fuel
consumption rate on the near optimal velocity is found to be
at least around 5 L/100 Km for a particular vehicle type
(Samaras, 2012)

11. Regular and occasional drivers are trained to stick to the
announced velocity policy and the assigned route.

12. Occasional drivers are given a certain amount of autonomy
(D) in taking route and velocity-related decision, as
compared to the planner autonomy level (b) according to the
following conditions: 0 � D � a � b � b, a, b � 0 : i.e.:
Parameter of risk-taking behaviour by the planner is larger
than the one taken by the driver.

13. The occasional driver k is willing to serve through a route
type r, if the driver's destination is less than or equal to
(g� 1) times the direct distance from the depot to the oc-
casional driver destination:

d0i þ dik � g d0k; c i ¼ 0; 1;…; N ; c k ¼ 1;…;K:
14. All costs of traversing an arc (i, j) are measured as cost of a
rectilinear distance, for each regular driver d, and occasional
driver k; as shown in equation (1)

Cij;l ¼
��xi � xj

��þ ���yi � yj
��� (1)

i¼ 1 … N, j ¼ 1;…; P; isj, l¼ d (regular), k (occasional).

15. Occasional drivers are paid according to the following
compensation scheme,
(C0ik þ Cik � Ck0) * r; r � 1.

16. Training costs are assumed to be paid to train drivers on
different driving pattern, training costs follow a uniform
distribution from 10$ to 30$ according to the required
driving pattern (Asrawi et al., 2017).
3.3. Objective function

The four objective functions in the model are given as follows.
The first objective function is given in equation (2).

Min : Z1 ¼
XN
i¼o

XP
j¼1

X4
r¼1

��
Qijr *dij

��
(2)

The first objective function minimises the consumed energy
during serving destinations, by VRP routing in terms of traversed
distances and load quantity for each route. This will help in mini-
mising customer service time. The second objective function is
given in equation (3).

Max : Z2 ¼
XN
i¼o

XP
j¼1

X4
r¼1

�
VELijr *Yijr

�
(3)

The second objective function maximises the chosen velocity
rate up to the maximum allowed velocity limit that ensures the
possible minimum fuel consumption rate (120 Km/h), and so,
pollution rate will be decreased for each near optimal route. The
third objective function is given by equation (4)

Min : Z3 ¼
XN
i¼o

XP
j¼1

X4
r¼1

�
PENr * Yijr

�
(4)

The third objective function minimises the environmental
penalty of fuel consumption imposed on the chosen velocity rate
for each route. The fourth objective function is given by equation
(5).

Min Z4 ¼
XN
i¼o

XP
j¼1

X4
r¼1

�XD
d¼1

�
Xijdr*Yijr* TCijdr

�

þ
XK
k¼1

�
Oijkr * Yijr* TCijkr

� �
(5)

where

TCijdr ¼ E
h
Cijd þ SCdr þ TRdr

i

þ b*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2* Var

�
Cijd þ SCdr þ TRdr

�r
; and

TCijkr ¼ E½TRkr þ ðC0ik þCik �Ck0Þ * r �

þ b*
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2* VarðTRkr þ ðC0ik þ Cik � Ck0Þ * r Þ

q

The fourth objective function minimises the total costs of the
VRP routing plan associated with choosing either regular or occa-
sional driver, integrated with minimising the costs of assigning a
certain level of autonomy for the chosen type of driver; for each
route. Collectively, the total multi-objective function is given in
equation (6).
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Zopt ¼
X4
i¼1

WZi*Zi (6)

Notice that the total near optimal solution depends on the
chosen weights for each objective function. The following are the
constraints of the model.

XD
d¼1

X4
r¼1

Xijdr �1 c i ¼ 1;…N; c j ¼ 1;…; P (7)

XK
k¼1

X4
r¼1

Oijkr �1c i ¼ 1;…N; c j ¼ 1;…; P (8)

XN
i¼0
isl

X4
r¼1

Xildr �
XP
j¼0
jsl

X4
r¼1

Xljdr ¼ 0cl ¼ 1;…;N;c d ¼ 1;…;D

(9)

XN
i¼0
isl

X4
r¼1

Oilkr �
XP
j¼0
jsl

X4
r¼1

Oljkr ¼ 0 cl ¼ 1; :::;N; ck ¼ 1; :::;K

(10)

XN
i¼0
isl

X4
r¼1

Qilr �
XP
j¼0
jsl

X4
r¼1

Qljr ¼ DEMl cl ¼ 1;…;N (11)

X4
r¼1

Qijr �
X4
r¼1

�
Xijdr * Yijr * DEMj

�
c i ¼ 0; 1;…; N ; j

¼ 1;…; P c d ¼ 1;…:;D; (12)

X4
r¼1

Qijr �
X4
r¼1

�
Oijkr * Yijr * DEMj

�

c i¼ 0; 1;…; N ; j ¼ 1;…; P; isj c k ¼ 1;…;K (13)

Qijr �ðCAP � DEMiÞ* Xijdr * Yijr

c i¼ 0; 1;…; N ; j ¼ 1;…; P; c d ¼ 1;…;D ; r ¼ 1;2;3;4
(14)

Qijr �ðCAP � DEMiÞ* Oijkr * Yijr

c i¼ 0; 1;…; N ; j ¼ 1;…; P; c k ¼ 1;…;K ; r ¼ 1;2;3;4
(15)

XP
j¼1

X4
r¼1

Oijkr � 1 c i ¼ 0; 1;…; N; c k ¼ 1; ::;K (16)

Xijdr � V*
r �ar*

Yijr
PENr
c i¼ 0; 1;…; N ; j ¼ 1;…; P; c d ¼ 1;…;D; r ¼ 1;2;3;4
(17)

Oijkr � V*
r �ar*

Yijr
PENr

c i¼ 0; 1;…; N ; j ¼ 1;…; P; c k ¼ 1;…;K; r ¼ 1;2;3;4
(18)

X4
r¼1

Oijkr þ
X4
r¼1

Xijdr ¼ 1

c i¼ 0; 1;…; N; j ¼ 1;…:; P;c k ¼ 1;…;K ; c d ¼ 1;…;D

(19)

X4
r¼1

Yijr ¼1;c i ¼ 0; 1;…; N; j ¼ 1;…; P

Xijdr � M * Yijr

c i¼ 0; 1;…; N; j ¼ 1;…; P;c d ¼ 1;…;D; c r ¼ 1;2;3;4;
(21)

Oijkr � M *Yijr

c i¼ 0; 1;…; N; j ¼ 1;…; P;c k ¼ 1;…;K; c r ¼ 1;2;3;4
(22)

Qi0r ¼0 c i ¼ 0; 1;…; N ; r ¼ 1;2;3;4: (23)

Qijr �0 c i ¼ 0; 1;…; N; j ¼ 1;…; P; r ¼ 1;2;3;4 (24)

Xijdr 2 f0; 1g c i ¼ 0; 1;…; N; j ¼ 1;…; P; r ¼ 1;2;3;4;c d

¼ 1;…;D

(25)

Oijkr 2 f0; 1gc i ¼ 0; 1;…; N; j ¼ 1;…; P; r

¼ 1;2;3;4; c k ¼ 1;…;K (26)

Yijr 2 f0; 1gc i ¼ 0; 1;…; N; j ¼ 1;…; P; r ¼ 1;2;3;4: (27)

The implications of the above-mentioned constraints are as
follows: constraints (7) & (8) ensure that the assigned regular or
occasional driver can choose at most one route type to travel from
node i to node j. Constraints (9) & (10) imply the flow conservation
law of the chosen route type by both the regular and the occasional
drivers. Constraint (11) implies the flow conservation law of goods
carried during a certain route. Demands’ constraints for both reg-
ular and occasional driver are controlled by constraints (12) & (13),
respectively, while capacity constraints are presented by con-
straints (14) & (15) for regular and occasional driver, respectively.
According to the assumption that an occasional driver can at most
serve the same customer only once, constraint (16) guarantees this
assumption. The maximum allowed velocity for regular or occa-
sional driver which is lower than the velocity upper bound are
controlled by constraints (17) & (18), respectively. Additionally, in
order to ensure that each customer is served by either regular or
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occasional driver; constraint (19) is employed. In the same vein,
only one route type choice is possible either by the assigned regular
or occasional driver as presented by constraint (20). Constraints
(21) & (22) ensure that the chosen route type could only be
assigned to a regular or an occasional driver, respectively; if and
only if the driver is assigned to serve from node i to j; otherwise the
route type will not be considered. Furthermore, constraint (23)
guarantees that vehicle returns empty to the depot. Constraints
(24) refers to the non-negative loaded quantity, and finally con-
straints (25), (26), and (27) imply choosing binary variables for the
decisions of the regular driver, the occasional driver, and the route
type, respectively.
3.4. Linearization

Despite that the practical problems like transportation model
are naturally modelled as Mixed Integer Non Linear Programming
(MINLP) (Burer and Letchford, 2012), which would allow to math-
ematically model it to be more representative by involving more
real conditions and decision variables; it will be linearised in order
to be solved as a MIP model, which in role facilitates the optimi-
sation and solving process and improve its solvability for larger
instances; especially that there are quite effective exact and heu-
ristic algorithms by using the available MIP solvers (Burer and
Letchford, 2012). This process will be conducted by proposing
two auxiliary variables that represent the product of the two binary
variables in the fourth objective function (Z4Þ, as well as the other
related nonlinear constraints’ expressions (i.e.: constraints; 12, 13,
14, and 15) (Coelho, 2013). The following auxiliary variables have
been defined in order to linearize the nonlinear expressions in the
proposed VRP model:

XYijdr: 1, if the regular driver d is assigned to serve from node i to
node j along route type r; otherwise: 0.

OYijkr: 1, if the occasional driver k is assigned to serve from node
i to node j along route type r; otherwise: 0.

Fourth Objective Function Nonlinear Expression (Z4Þ

Min Z4 ¼
XN
i¼o

XP
j¼1

X4
r¼1

�XD
d¼1

�
Xijdr*Yijr* TCijdr

�

þ
XK
k¼1

�
Oijkr * Yijr* TCi;j;k;r

� �

Linear equivalent of Z4 :

Min Z4 ¼
XN
i¼o

XP
j¼1

X4
r¼1

�XD
d¼1

�
XYijdr* TCijdr

�

þ
XK
k¼1

�
OYijkr* TCijkr

� �
(28)

XYijdr � Xijdr (29)

XYijdr � Yijr (30)

XYijdr � Xijdr þ Yijr � 1 (31)

OYijkr � Oijkr (32)

OYijkr � Yijr (33)
OYijkr � Oijkr þ Yijr � 1 (34)

X4
r¼1

Qijr �
X4
r¼1

�
Xijdr *Yijr * DEMj

�
c i ¼ 1;…N; c j

¼ 1;…; P;

c d ¼ 1;…:;D Nonlinear expression

X4
r¼1

Qijr �
X4
r¼1

�
XYijdr * DEMj

�
c i ¼ 1;…N; c j ¼ 1;…; P;c d

¼ 1;…:;D Linear equivalent

(35)

X4
r¼1

Qijr �
X4
r¼1

�
Oijkr * Yijr * DEMj

�
c i ¼ 1;…N; c j

¼ 1;…; P;

c k ¼ 1;…;K Nonlinear expression

X4
r¼1

Qijr �
X4
r¼1

�
OYijkr * DEMj

�

c i ¼ 0; 1;…; N ; j ¼ 1; :::; P c k

¼ 1;…;K Linear equivalent (36)

Qijr � ðCAP � DEMiÞ* Xijdr * Yijrc i ¼ 0; 1;…; N ; j ¼ 1;…; P;
c d ¼ 1;…;D ; r ¼ 1;2;3;4 Nonlinear expression

Qijr �ðCAP � DEMiÞ* XYijdr

c i¼ 0; 1;…; N ; j ¼ 1;…; P; c d ¼ 1;…;D ; r

¼ 1;2;3;4 Linear equivalent (37)

Qijr �ðCAP � DEMiÞ* Oijkr * Yijr

c i¼ 0; 1;…; N ; j ¼ 1;…; P; c k ¼ 1;…;K ; r

¼ 1;2;3;4Nonlinear expression

Qijr �ðCAP � DEMiÞ* OYijkr

c i¼ 0; 1;…; N ; j ¼ 1;…; P; c k ¼ 1;…;K ; r

¼ 1;2;3;4 Linear equivalent (38)

The fourth objective function (i.e.: total costs minimisation) has
been linearised by defining two auxiliary variables with the sup-
port of constraints 29 to 34. Constraints 29 and 30 will ensure that
XYijdrwill be zero if either Xijdr or Yijr are zero. Constraint 31 will
make sure that XYijdr will take value 1 if both binary variables are
set to 1. Similarly, Constraints 32 and 33 will ensure that OYijkrwill
be zero if either Oijkr or Yijr are zero. Constraint 34 will make sure
that OYijkr will take value 1 if both binary variables are set to 1.
4. Results and discussion

This section presents a numerical instance using data set
adopted from the literature in order to verify the solvability and the
validity of the proposed VRP model. The proposed set of data is
presented in Section 4.1 where all the data that have been



Table 3
The proposed customers' coordinates.

Coordinate (X, Y) Customer ID

(1) (2) (3) (4) (5)

X-coordinate 54 120 186 85 113
Y-coordinate 114 46 23 126 57

Table 4
Proposed customers’ demands (Kg).

Customer ID (1) (2) (3) (4) (5)

Demand(Kg) 600 400 200 300 300

Table 5
Occasional drivers' destinations’ coordinates from depot point.

K (1) (2) (3)

Depot
(0,0) (114,81) (63,146) (198,102)
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generated randomly are analysed and optimised using the pro-
posed model. Eclipse Java 2018e9 is used to code the mathematical
model and to solve it using the proper solving algorithms. Section
4.2 presents the solver characteristics and information related to
the chosen solving methods. Finally, Section 4.3 discusses the nu-
merical results that have been obtained by solving the proposed
VRP model using the suggested numerical example.

4.1. Numerical example

For the purpose of assessing the proposed mathematical model
as compared to other previous literature models, a hypothetical
example with a data set is borrowed from literature, namely, from
Hosseini-Nasab and Lotfalian (2017). More specifically, four sets
have been proposed to be used in solving the model, i.e.: 1) a set of
customers, 2) a set regular drivers' (D) 3) a set of occasional drivers
(K) 4) a set of route types (r). The problem has been tested on an
identical fleet of vehicles. At each edge there is a certain allowed
velocity; according to the available road type (i.e.: urban areas, sub-
urban, rural areas, and highways); that follows a uniform distri-
bution given by U [1,120] Km/hr. such a velocity average decision is
identified according to the available route type on ground, and then
the model chooses the near optimal velocity that minimises the
environmental penalty. Since the demand of the customers
changes every day, it was assumed that the distance of customers'
coordinates from the depot point follows also a uniform distribu-
tion given by U [10,300] Km for each customer node. Customer's
demand has also been generated randomly from a uniform distri-
bution given by U [200, 1000] Kg in order to initialize values for the
parameter DEMi assigned to the proposed coordinates.

Table 2 presents the parameters proposed values to be used in
solving the model.

In order to assess the capability of the proposed model in
optimising a VRP problem encountered with the proposed condi-
tions, a numerical instance has been proposed. Sets of 5 customers;
4 identical vehicles, K¼ 3 occasional drivers, and r¼ 4 types of
routes; have been used as inputs to solve the VRP model.
Tables 3e4 present, respectively, the customers' coordinates and
demands data; as been generated randomly by Eclipse software
according to the given ranges. Table 5 presents the occasional
drivers’ destinations coordinates from depot point which is
assumed to have (0,0) coordinates.

4.2. Eclipse Java solver and algorithms

Eclipse Java 2018-09 software has been used for coding the
Table 2
Numerical example data for the model parameters.

Parameter Value

Period Per day
M 100
dij U [10,200] Km

dik U [50,200] Km
VELijr U [1,120] Km/hr
DEMi U [200,1000] Kg
CAP 1000 Kg
ar > .05
r � 1 U [1,3]
D (a¼ 5,b¼ 10), where:
0 � D ≤ a ≤ b ≤ b

U [0,5]

b (a¼ 5, b¼ 10), where:
0 � D ≤ a ≤ b ≤ b

U [5,10]

g � 1 U [1,3]
TRkr U [10,30] $
TRdr U [10,30] $
SCdr U [7, 9] $
mathematical model and solving the VRP proposed problem. As the
VRP is one of the classic Operations Research application and
discrete optimisation problems; it is solved by heuristic methods,
such methods are based upon rules of thumb, common sense or
refinement s of exact methods. A heuristic algorithm usually results
in a near-near optimal solution as compared with exact algorithms,
which are able to find a global-near optimal solution (Rader, 2010).

The Greedy algorithm solves the VRP by constructing the routes
for the drivers using a sequential greedy insertion algorithm, which
inserts customers into the active route in non-decreasing order of
their distance to the depot, and then starts a new route when
violating the vehicle capacity constraint, and, when all customers
have been inserted as initial solution, this method improves each
route using a 2-exchange neighborhood. On the other hand, the
Intra-Route Heuristic Neighborhood Search method has the ability
to solve large instances and is preferable for the real-case problems
such as VRP-related models (Hosseini-Nasab and Lotfalian, 2017).
Both methods are classified as adaptive-local search heuristic al-
gorithms that incorporate random elements into the classic local
search method; by choosing candidate solutions outside the se-
lection rule and then repeat the process until finding the best near-
near optimal solution. Accordingly, in this research, the proposed
converted MIP model is solved by the two heuristic-methods (i.e.:
The Greedy solution and The Intra-Route Heuristic Neighborhood
Search in order to assess the near optimality of the resulted solu-
tions.). Such algorithms are suitable to solve a multi-objective
combinatorial problem as the VRP considering that the highest
priority objective to solve is finding theminimum cost rout in terms
of optimal traversed distances (optimal route) while considering
the driver behaviour, which leads to the optimal cost-effective
choice of the driver type. And then, the resulted consumed en-
ergy as well as the optimal velocity type, and the associated envi-
ronmental penalty solutions are being developed using the
adaptive local search heuristics algorithms. This multi-objective
heuristics’ solving methodology is able to initialize the initial
near optimal routing plan using the Greedy algorithm, and then to
improve the near optimal routing plan by using the Intra-route
local search algorithm using 1e0 exchange move. And so, the
proposed model will be able to produce the optimal routing plan
with the optimal minimum travel distance and minimum number
of vehicles to complete the distribution service, this will ensure that
every assigned route will be balanced in terms of the assigned
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driver type, the assigned route type, the optimal velocity, penalty
and consumed energy (Liu et al., 2006).

4.3. Numerical results

The model was coded by Java and solved via Eclipse 2018e09 on
a PC Intel® Celeron®M insideTMCPU 440 @1.86 GHZ and 2.00 GB
RAM. This section presents the results of solving the numerical
instance introduced previously in the hypothetical data set.

4.3.1. Green routing plan with occasional drivers' assignment
incorporated with both regular and occasional drivers’ behaviour
control

After solving the model using the introduced algorithms; the
routing travelling costs, the model decision variables as well as the
near optimal solution for the objective functions have been pre-
vailed. The near optimal routing solution has shown that the 5
customers would be served by only 2 identical vehicles among the
available 4 vehicles in the following two routes; (3e5 -2), and
(4e1). Both algorithms have revealed the same near optimal rout-
ing plan, which supports the proposition that this is the optimal
possible routing plan within such objectives and constraints. Fig. 1
describes the near optimal traversed routes.

4.3.2. Near optimal routing plan in terms of routes’ classification
and driver type

Table 6 illustrates the values of the model decision variables
given in terms of choosing a regular or occasional driver to serve
during the trip from node i to node j (i:e: : XYijdr and, OYijkr
respectively). Also, the near optimal quantities that would be
loaded from node i, to node j along the distance between nodes i
and j are shown in the same table (i:e: : Qijr and, dij respectively).
And as a result, the near optimal energy which is consumed during
each trip has been known, which indicates for the customer satis-
faction level. Additionally, the resulted near optimal total travelling
costs for each trip are also displayed according to the chosen driver
type ði:e: : TCijdr andTCijkr). For instance, the trip from depot node
0 to node 3 is assigned for a regular driver ði:e: : XYijdr ¼ 1 and,
OYijkr ¼ 0 Þ with the total associated cost of 255.46 $. The near
optimal load to be carried by the regular driver equals to 200 Kg in
order to satisfy the demand of node 3. This quantity would be
transferred along a distance of 504 Km resulting in a near optimal
Fig. 1. The near optimal VRP Routing Plan produced by the Greedy and Intra-route
Neighborhood heuristic algorithms.
energy of 100800 (Kg. Km). Overall, the results of the proposed
numerical instance have shown that all the chosen drivers where
among the regular drivers' set, despite that the occasional driver
compensation scheme's factor has been chosen to be the minimum
allowable value (i.e.: r ¼ 1). However, using different data set with
different destinations' coordinates would probably produce
different assignment plan. Also, developing a cost effective
compensation scheme is expected to increase the probability that
the model will choose the occasional drivers.

On the other hand, the decisions to choose one of the possible
four routes' types are presented in Table 7 where the values of the
decision variables are shown incorporated with the near optimal
chosen velocity; penalty, and fuel consumption factor (a) during
each trip. For example, the second trip between node 3 and node 5
would be executed by a near optimal velocity of 21 Km/h, and so
the associated binary decision variable ði:e: : Y351Þ equals 1; -
whereas the other binary variables associated with the rest of
routes' type equal zero; such decision variable value indicates for
the first classification of routes’ types with a fuel consumption
factor a equals 0.15, resulting in a near optimal penalty of 3 $.

4.3.3. Objective functions' components’ near optimal results
After solving the proposed numerical instance by Eclipse Java

2018-09 software using Greedy and Intra-Route algorithms; it has
been revealed that both methods had the same near-near optimal
solutions and routings, and so, it is the best solution for such a
discrete optimisation problem. Table 8 displays the solutions of the
objective functions as resulted from bothmethods. However, all the
results of this numerical instance have been obtained by consid-
ering that all the weights of the four objective functions are equal
subjectively from importance perspective (i.e: : WZiequals 1; for
each i¼ 1,2,3,4), such proposition is used as a qualitative indicator
for the firm decision makers to be able to alter the preferences
depending on the firm strategy. By comparing the results of the
objective functions' components; it could be inferred that the en-
ergy component accounts for the largest percentage of the total
near optimal solution with a percent of 99.58%; which is the same
result got from the work accomplished by Hosseini-Nasab and
Lotfalian (2017). And after that, the total costs' component refers
to 0.35% from the total near optimal value. Other components have
low contributions; i.e.: penalty with 0.0035%, and velocity with
0.05%). Consequently, it is apparent that the consumed energy is
important to be managed wisely by the logistical firmmanagement
and should acquire an important attention. Besides, as the total
costs' component has an acceptable percent of contribution even
that driver‘s behaviour is being taken into consideration; it is an
important matter that needs to be strategically planned.

5. Sensitivity analyses

For the purpose of analysing the effects of the risk level in the
plan when assigning levels of autonomy to drivers regarding near
optimal total costs, this section presents the results of sensitivity
analysis on the risk taking parameters for both planner and driver
(i.e. b, and D respectively). To analyse the weight of the total cost
objective function component as well as the other components,
sensitivity analysis is also conducted on the effect of such weights
on the total near optimal solutions. The following sections present
the analysis results.

5.1. The effects of risk-taking parameters on the near optimal total
costs

Changing the level of autonomy for both planner and drivers
could be achieved by changing the risk-taking parameters,



Table 8
Near optimal values for objective functions.

Objective
Function

Greedy
Solution

Intra-Route Heuristic Neighborhood
Search

Total penalty (Z3) 11.28 11.28
Total velocity (Z2) 170 170
Total energy (Z1) 323300.0 323300.0
Total costs (Z4) 1156.32 1156.32
ðZoptÞ 324637.6 324637.6

Table 7
Near optimal values of the decision variables of choosing route type, and the associated near optimal velocities, penalties and a values.

Near optimal Served Destinations
Near optimal
VELijr (Km/hr)

Near optimal Route Type Near optimal route type (r) Near optimal
a value

Near optimal penalty ($)

yij1 yij2 yijr yij4

(0,3) 69 0 0 1 0 3 0.07 4
(3,5) 21 1 0 0 0 1 0.15 3
(5,2) 30 1 0 0 0 1 0.06 1
(0,1) 48 0 1 0 0 2 0.08 3
(1,4) 2 1 0 0 0 1 0.14 0.28

Table 6
Near optimal values of the model decision variables and parameters.

Near optimal Served Destinations XYijdr OYijkr TCijdr($) TCijkr($) Near optimal values of Qijr (Kg) dij(Km) Near optimal values of Energy (Kg.Km)

(0,3) 1 0 255.46 0 200 504 100800.0
(3,5) 1 0 216.46 0 300 221.3 66400.0
(5,2) 1 0 212.46 0 400 104.5 41800.0
(0,1) 1 0 214.46 0 600 105.5 63300.0
(1,4) 1 0 257.46 0 300 170 51000.0

*Note: b ¼ 8, D¼ 4, g¼ 1, r¼ 1.
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although, such a process would affect the total cost of the routing
plan, and as such, the relationship should be sensitively analysed to
determine the best trade-off between the driver's satisfaction level
and the firm's satisfaction level. Initially, it has been proposed that
both the planner and driver have zero value for both the planner
and the driver b, and D, respectively, which is the traditional VRP
model, for which driver behaviour is not considered. The results
have shown that the total costs were minimal in this arrangement.
Another three scenarios of different values of b, and D have been
examined to represent the three possible scenarios for risk level
from the planner's perspective: 1) the neutral-risk level as seen in
scenario two; 2) the risk-seeker level as seen in scenario three; and
3) the risk-averse level as seen in scenario four. All the proposed
scenarios have been studied with their effects on the total costs'
objective function (Z4). Table 9 presents the four scenarios of
different levels of autonomy combinations (i.e. different risk pat-
terns from the planner's perspective), and their associated total VRP
routing costs. As expected, relaxing the model from such parame-
ters (scenario one) would result in the minimum total costs of the
VRP plan (1064$), while assigning equal level of autonomy for the
driver in making decisions related to speed or route choice (sce-
nario two) has slightly increased the total costs of the VRP plan by
4.3% (i.e. $1110.16). This change is due to the increased amount of
Table 9
Sensitivity analysis results the effect of four scenarios of risk patterns on the total VRP n

Experiment no. Risk Pattern of the planner b

Scenario.1 No risk 0
Scenario.2 Risk-neutral planner 4
Scenario.3 Risk-seeker planner 6
Scenario.4 Risk-averse planner 8
the variance in the total costs' function (see equation (5)). However,
the importance of incorporating the driver's behaviour when
planning for a rich and realistic VRP model would ensure applying
the model effectively on the ground. Also, driver satisfaction would
be enhanced, while maintaining a cost-effective VRP plan.
Comparing the sensitivity analysis results for the four scenarios
shows an acceptable change in the total VRP costs, as the highest
costs are associated with the risk-seeker planner due to assigning a
high level of autonomy for the driver (i.e. $1150.54) is larger than
the risk-averse planner scenario, when b¼ 8, and D ¼ 1, by 5.3%.
Such difference is still accepted as long as other perceived charac-
teristics of the model are going to be improved, in terms of driver
satisfaction level, as well as customer satisfaction levels due to the
higher and efficient level of service availability. However, the risk-
seeking planner's scenario, when b¼ 6, and D ¼ 5, opposes that
the responsibility of driver is important and his/her decisions will
be effective, and the driver may exhibit a risk seeking, risk-neutral,
or risk-averse behaviour, depending on his/her nature. The nature
of the driver could be determined by using a driver's behavioural
survey, which should be updated regularly from the previous route
and speed decisions to predict their actions. This would help in
determining the proper level of autonomy assigned to the driver.
Fig. 2 displays the pattern of the effect of changing the risk level on
the total VRP costs. The four scenarios are shown on the X-axis,
while the resulted total VRP costs are reported on the Y-axis in units
of dollars. More specifically, the trajectory shows a growth in the
total VRP costs when the parameters' values were gradually
increased from the relaxed condition, in which there is no risk (i.e.
b¼ 0, and D¼ 0, when driver behaviour had not been considered)
before decreasing again, when reducing the driver's level of au-
tonomy of the driver (scenario four).

Such a relationship requires an extended explanation of the
effect that the total VRP costs' component has on the total near
optimal solution. Obtaining a better comprehension of the real
ear optimal solution.

D (Z4Þ ($) Percentage Change (%)

0 1064.00 e

4 1110.16 þ4.3% from scenario 1
5 1150.54 þ5.8 from scenario 4
1 1087.00 e



Table 10
The Sensitivity analysis results of the effect of objective functions’ weights on the total near optimal solutions.

Experiment no. W1 W2 W3 W4 Total value of the near optimal solution (ZoptÞ ($)
Scenario 1 1 1 1 1 324586.3
Scenario 2 1 1 2 1 324634.32
Scenario 3 1 2 1 1 324734.32
Scenario 4 2 1 1 1 647882.32
Scenario 5 1 1 1 2 325746.46

Fig. 2. The relationship of the effect of different scenarios of risk level against the total VRP costs' near optimal solution.
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effect of the total VRP costs on the total multi-objective function
solution will rationally help in planning for the best near optimal
VRP plan to satisfy the logistical firm's strategic objectives. The
following section discusses the effect of each objective function
qualitatively on the total near optimal solution, to get a clearer
explanation about the effect on each function on the total near
optimal solution of the VRP plan.

5.2. The effects of the objective functions weights on the total near
optimal solution

To understand the effect of each objective function on the total
near optimal solution qualitatively, related weights have been
changed by interchangeably assigning different values for each
objective function. Table 10 presents the resulted near optimal
values of the total multi-objective function for five different sce-
narios, including the equivalence status that has been conducted in
the numerical instance. Analysis of the results shows that the
objective function of energy consumption minimisation (Z1Þ has
the highest effect on the total near optimal solution (Zopt ¼
647882:32$Þ; whereas other trials of assigning different weights
for the objective functions did not significantly change the total
near optimal solution. Fig. 3 describes the trajectory for the five
scenarios of changing the weights' values associated with each
Fig. 3. The relationship of the weights of the objectiv
objective function. It is apparent that the objective functions
associated with velocity maximisation (Z2Þ, penalty minimisation
(Z3Þ; and total costs minimisation (Z4Þ, all have nearly the same
effect on the total multi-objective function by merely changing its
value when increasing their weights. In comparison, the first
objective function of minimising the energy consumption (Z1Þ has
dramatically affected the total multi-objective function near
optimal solution from 324586.3 up to 647882.32; these results are
similar to those obtained by Hosseini-Nasab and Lotfalian (2017),
which, in role, required that serious attention should be given by
the firm's management to introducing effective planning for the
locations of their warehouses and the chosen occasional drivers, to
control the resulting energy. This will ensure the improvement of
customer satisfaction levels by minimising the consumed energy,
as well as releasing a better near optimal solution for thewhole VRP
model. Consequently, this is evidence that the total VRP cost
component has a minor effect on the total near optimal solution.
Therefore, this is an opportunity for the logistical firm's manage-
ment to incorporate drivers' behaviour when planning for a VRP
even though the related total costs would increase.

First, the issue of minimising the total VRP costs as a cost-
effective service network has been optimised in terms of all the
associated service costs, including destination, driver training, and
e functions and the total near optimal solution.



Y. Abu Al Hla et al. / Journal of Cleaner Production 234 (2019) 984e1001 999
salary costs. Second, customer satisfaction levels have been
improved by optimising the consumed energy used during service
to the customer, affecting the service time, which depends on
optimising the carried load along the distance of a near optimal
routing network. Customer satisfaction has not only has been
improved from the service time, but also from improving the
probability of the service's availability. This issue has been
manipulated by considering the idea of ridesharing by incorpo-
rating the occasional drivers as a third logistical party that serves
when there is either a shortage in the firm's hired regular drivers, or
when the customer's location is far away from the regular drivers'
assigned destinations, such as rural and country-side areas (i.e.
represented by the binary variable OYijkr), although such a process
would increase VRP costs due to the compensation paid to the
occasional drivers and the model also optimises those costs. Third,
the proposed model optimises the total costs even when control-
ling the driver's behaviour in terms of controlling the level of au-
tonomy assigned to the driver by the planner as a technique to
determine the risk levels of a certain logistical firm. More specif-
ically, the model has incorporated risk-taking parameters to adjust
drivers' behaviour, which is represented by their ability to make
decisions related to speed or routes on the ground. However, the
sensitivity analysis on the relationship between risk-taking pa-
rameters and the VRP total costs prevailed that such an arrange-
ment has a positive effect on VRP total costs, as increasing the
assigned level of autonomy for drivers has increased the model
total costs due to the increased variance. Nevertheless, this issue
has been justified by conducting a sensitivity analysis on the effect
of the objective function's weights on the total near-optimal solu-
tion. It has been shown that doubling the weight of the objective
function that minimises the VRP total costs did not significantly
affect the total near optimal solution. On the other hand, the
objective function associated with minimising consumed energy
has the largest effect when doubling its weight, by increasing the
total near-optimal solution to almost double (note that such a
procedure checks the effects qualitatively). Based on that, incor-
porating driver behaviour parameters when designing a delivery
network such as VRP, is still reasonable even though the total costs
have increased slightly.

Ultimately, such results show the importance of the model, and
they could be used as a justification for the ability of designing a
VRP model that serves the firm's strategy and the drivers' and
customers' satisfaction. By using such a multi-objective VRP model,
it could be ensured that the affective factors that contribute to a
certain network success have been considered, in terms of con-
trolling the level of autonomy of the assigned drivers. Through this,
a new contribution has been added to the VRP modelling, taking
into consideration the effect of human differences on the routing
decisions.

6. Managerial implications

The conducted sensitivity analyses are used to support the
managerial implications and insights. The relationships that have
been studied in the sensitivity analyses are based on first, the focus
of the study, i.e. the effect of involving the drivers' behaviour in the
VRP costs, and second, clarifying the managerial impact on the
firms' management, decisionmakers, and stakeholders. Table 9 and
Fig. 2 show the mere impact of the assigned levels of autonomy to
drivers on the total VRP costs; this supports the decision of inte-
grating drivers' behaviours into the VRP plan, while sustaining a
cost-effective routing plan. Using certain methods for evaluating
and measuring the effectiveness of the proposed strategy, such as
methods suggested by Sobhanallahi et al. (2016a, 2016b), would
eliminate the probability of change resistance on the current
strategy followed by logistics firms. Comparing revenues, drivers'
performance, perceived quality of customers, number of loyal
customers, and customers’ destination distribution, before and af-
ter conducting the proposed model, helps in verifying the benefits
of the proposed model. The second part of the sensitivity analysis
has been conducted to check the effects of the cost-objective
function on the total optimal solution; this has been done to pro-
vide managers with evidence that a mere increase in the routing
plan costs due to the assigning of autonomy to drivers, will not
significantly affect the total optimal solution. Table 10 and Fig. 3
present the effect of assigning different levels of autonomy on the
total routing plan. Nevertheless, the worst case, in which the driver
has the highest autonomy level, had an insignificant effect. There-
fore, such results justify that considering the differences among
drivers does not affect optimal plans negatively, and vice-versa, the
expected benefits to the environment, economy, and society are
magnified.

From the discussed sensitivity analyses results above, the
importance of considering the human factor impact on the optimal
routing plan could not be neglected. Moreover, as seen from the
conducted literature on optimising different supply chain models,
i.e. referring to Section 2.2, it could be concluded that the optimal
routing plan affects also the success of managing the supply chain
at different stages in single and multi-level chains, and as such, the
supply chain's profitability and inventory total costs should be
optimised. Future researches that integrate the VRP topic with
supply chain management in one comprehensive optimisation
model are recommended.

7. Conclusions

This research has introduced an eco-friendly VRP with an oc-
casional driver's service integrated with driver behaviour control,
which can enhance the perceived quality and efficiency of the near
optimal VRP plan stakeholders. More precisely, the firm's financial
objectives and the customer satisfaction level, by expanding the
logistics service from city-dwellings up to rural residents, and
driver satisfaction levels have been studied and included in one
eco-friendly VRP model, achieving the three pillars of sustainabil-
ity. In addition, monitoring the various driver behaviour effects,
represented by the level of the assigned autonomy, allows the
controlling of the driving pattern by analysing the associated risk
characteristics of the driver using behavioural surveys and histor-
ical data, i.e. risky driving pattern, neutral driving pattern, and
averse driving patter, maintaining that the proposed model will
optimise the resulted increase in total VRP costs.

The incorporation of the use of occasional drivers and driver
autonomy levels requires that the model accounts for dynamicity.
Therefore, dynamic programming would ensure the updating of
the routing plan input data. Also, the integration of other human
characteristics in the mathematical model, such as fatigue, age, and
experience level would improve the reality of the proposed model,
and allow the development of effective VRP plans.

The model results could be also optimised by improving the
available reward-driven systems and maintenance, which help in
improving drivers’ behaviour, reducing transportation emissions,
and environmental penalties, and, therefore, the VRP total costs.

For future studies, this work could be extended by adding pa-
rameters referring to the optimisation of the rewards given to
drivers for their performance, considering that the routing and
logistics processes are reward-driven systems (Gharaei et al., 2015).
For instance, the timeliness and learning pattern of driving
behaviour could be monitored and controlled by integrating pa-
rameters in the proposed VRPmodel. Another future research could
include themaintenance process in the proposedmodel as a way to
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reduce the failure rate of the vehicles and increase the accuracy of
the logistic services in terms of time and cost. The model could be
adapted to the idea of releasing an optimal selective maintenance
schedule over the breaks periods, which minimise maintenance
costs under stochastic constraints (Duan et al., 2018). Another
interesting research topic is updating the proposed model in a way
that enables firms' management to evaluate the effectiveness and
performance rate of the applied strategies before, and after,
applying the proposed VRP model, which considers the driver
behaviour. Such a study would confirm the actual benefits of the
applied model. One available research has provided an improved
dimensional analysis technique with the name of the Freeman
model, which has been approved as an accurate and valid evalua-
tion technique for the effectiveness and performance rate of the
supply chain's stakeholders (Sobhanallahi et al., 2016a). Also, the
dimensional analysis method has been developed by using the
weighted value of evaluators for the scoring performance of
stakeholders, separately, rather than using simple averaging
(Sobhanallahi et al., 2016b). This technique could be integrated
with the proposed VRP model to measure the effectiveness of
modified firms' strategy, with the ability of changing the number of
evaluators and their weighted value.
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