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A B S T R A C T

Background: Machine learning is increasingly used to predict healthcare outcomes, including cost, utilization, and quality.

Objective: We provide a high-level overview of machine learning for healthcare outcomes researchers and decision makers.

Methods: We introduce key concepts for understanding the application of machine learning methods to healthcare outcomes
research. We first describe current standards to rigorously learn an estimator, which is an algorithm developed through
machine learning to predict a particular outcome. We include steps for data preparation, estimator family selection,
parameter learning, regularization, and evaluation. We then compare 3 of the most common machine learning methods: (1)
decision tree methods that can be useful for identifying how different subpopulations experience different risks for an
outcome; (2) deep learning methods that can identify complex nonlinear patterns or interactions between variables pre-
dictive of an outcome; and (3) ensemble methods that can improve predictive performance by combining multiple machine
learning methods.

Results: We demonstrate the application of common machine methods to a simulated insurance claims dataset. We specif-
ically include statistical code in R and Python for the development and evaluation of estimators for predicting which patients
are at heightened risk for hospitalization from ambulatory care-sensitive conditions.

Conclusions: Outcomes researchers should be aware of key standards for rigorously evaluating an estimator developed
through machine learning approaches. Although multiple methods use machine learning concepts, different approaches are
best suited for different research problems.

Keywords: claims data, deep learning, elastic net, gradient boosting machine, gradient forest, health services research, ma-
chine learning, neural networks, random forest.
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Introduction

Machine learning is a rapidly growing field that attempts to
extract general concepts from large datasets, commonly in the
form of an algorithm that predicts an outcome (commonly
referred to as a predictive model or estimator)—a task that has
become increasingly difficult to accomplish by humans because
data volume and complexity has increased beyond what was
capable with traditional statistics and desktop computers.
Recently, machine learning has been used to predict healthcare
outcomes including cost, utilization, and quality; for example,
machine learning methods have been used to predict “cost
bloomers,” or patients who move from a lower to the highest
decile of per capita healthcare expenditures.1 Machine learning
has also been used to predict which patients are most likely to
experience a hospital re-admission for congestive heart failure
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and related conditions.2 Although causal research identifies what
factors cause healthcare outcomes, machine learning will inter
alia use these factors to identify which patients will have these
outcomes.

Because machine learning remains an emerging field and its
application to healthcare outcomes research is also nascent, we
provide a high-level overview of key concepts and best practices
in machine learning for practitioners and readers of healthcare
outcomes research. We describe the steps of data preparation,
estimator family selection, parameter learning, regularization, and
evaluation. We then compare 3 of the most common machine
learning methods: (1) decision tree methods that can be useful for
identifying how different subpopulations experience different
risks for an outcome; (2) deep learning methods that can identify
complex non-linear patterns or interactions between variables
predictive of an outcome; and (3) ensemble methods that can
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improve predictive performance by combining multiple machine
learning methods.
Methods

To illustrate the principles in this primer, we demonstrate the
application of common machine learning methods to a simulated
insurance claims dataset (see Appendix in Supplemental Materials
found at https://doi.org/10.1016/j.jval.2019.02.012). We specif-
ically include statistical code in R and Python—two of the most
common software tools for machine learning—to develop and
evaluate estimators that predict which patients in the dataset are
at a heightened risk for hospitalization from ambulatory care-
sensitive conditions (ACSCs). ACSCs are conditions defined by
the Agency of Healthcare Research and Quality as those for which
a hospitalization should be preventable through adequate primary
care, for example, community acquired pneumonia.3

Overview of Machine Learning

In machine learning, the goal is to “learn” an estimator that
maps inputs to an output.4 One definition of learning is:

“A computer program is said to learn from experience . with respect
to some class of tasks . and performance measure ., if its perfor-
mance at tasks ., as measured by [the performance measure], im-
proves with experience.”5(p.2)

An example task is predicting future hospitalization; experi-
ence is the data the researcher collects, and the performance
measure is some function of our predictions and the ground truth.
The term learning refers to the data-driven nature of the process,
where unlike in statistical regression, one maintains few to no
assumptions about the functional form of the estimator that maps
the inputs to outputs.6 In machine learning an estimator is given
experience (say, a set of input–output pairs) and learns to perform
a task (say, predicting hospital readmission). We can measure
performance by calculating how often the learned estimator
correctly labels new patients’ readmissions. There is significant
work in how to sample and learn estimator parameters, which we
discuss in the following sections.

At a high level, we believe that applying a machine learning
algorithm involves at least five steps: (1) data preparation; (2)
estimator family selection; (3) estimator parameter learning; (4)
estimator regularization; and (5) estimator evaluation. We sepa-
rate steps 3 and 4 because although parameter learning and reg-
ularization often occur at the same time, we wish to emphasize
the distinction between the two concepts.
Data Preparation

The design of a machine learning estimator begins with a
dataset. As an illustrative example, assume that we are given
various characteristics, such as age, sex, diagnostic codes, and
other variables in insurance claims data, for 100 000 patients. Each
input–output pair will consist of the patient covariates (inputs)
and the binary outcome variable of whether or not a person had
an ACSC hospitalization (output). We are interested in learning an
estimator that maps a new patient’s information to a predicted
ACSC hospitalization value or probability (which has not been
observed) to help potentially administer preventive measures. To
learn a general estimator that correctly predicts unseen data, we
must organize the initial dataset in a manner that simulates the
real-world setting of obtaining a new observation. To do so,
practitioners generally divide the original dataset into three
subsets: a training dataset, a test dataset, and a validation dataset
(say, 70%, 15%, and 15%, respectively, of the original dataset7).

It is important to ensure that each subset is representative of
the overall dataset population, such that we have a representative
distribution of inputs and outputs. The training dataset (or subset)
is used to initially learn the estimator parameters. The validation
dataset is used to iteratively fine-tune the parameters. The test
dataset is used only once, after the estimator has been finalized, to
assess the generalizability of the estimator. The purpose of hiding
the test dataset is to minimize the likelihood of memorizing
input–output mappings by repeatedly fine-tuning the estimator.
When the estimator memorizes data points in the training set, the
estimator is not likely to fit new data to the same level of accuracy.
The pitfall of learning fine grain details of the data as opposed to
general properties is known as “overfitting” (Fig. 1).

A more common method than the training-validation-test split
is K-fold cross-validation. This method divides the nontest dataset
into K-folds, with training occurring K times, and each fold being
used for validation once. We average the measures across K vali-
dation folds, rather than the single fold. Typical values for K are 5
or 10. Importantly, researchers do not need a larger than usual
data set size to implement K-fold cross-validation.

Choosing a Class of Estimator

Second, we select the family of estimators that map inputs to
outputs, for example, linear estimators and nonlinear estimators, as
detailed further later, which include traditional statistical models,
such as a logistic regression model. In most healthcare quality set-
tings, the focus is on using “supervised learning” families,wherewe
know in advance the input–output examples and we wish to learn
an estimator that maps inputs to outputs. This is in contrast to
exploratory estimators for “unsupervised learning,” where we are
only given inputs and the goal is to find natural grouping in the data
or other high-level characteristics of the data, such as via factor
analysis.7 Estimator family selection is focused on choosing the type
of estimator one considerswhen trying tomap inputs to outputs. In
theory, there is an infinite number of estimators one can choose
from, and given the finite nature of the observed samples, there are
numerous estimators that could correctly map inputs to an output
in the observed dataset. Nevertheless, exhaustively searching all
possible estimators and their permutations would be computa-
tionally involved and can lead to estimators that correctly map in-
puts to an output by random chance. Instead, a researcher tends to
constrain their attention to a family of estimators first before
learning the estimators’ parameters from the data. Function fam-
ilies include linear regression estimators, trees, graphs, or even
neural networks, among others (see Section Potentially Useful
Estimator Families for Public Health Research for details). Often-
times, the researcher uses their intuition as towhat type of function
would best fit the input–output relationship. For the purposes of
this article, we describe the 4 most common machine learning
estimator families that we believe could be used to predict
healthcare outcomes (Table 1).

Parameter Learning

Third, we learn the estimator’s parameters by iteratively
analyzing the data. For example, a Gaussian’s parameters are its
mean and standard deviation, whereas a linear regression’s pa-
rameters are the weights on its covariates. An estimator’s pa-
rameters are “learned” by repeatedly analyzing the training
dataset and applying the inputs to the function and minimizing
the difference between the predicted and actual output. Based on
the difference between the predicted and actual output, the

https://doi.org/10.1016/j.jval.2019.02.012


Figure 1. Overfitting. Suppose that we have sampled some variable x and outcome y in a field experiment. (A) The estimator (fitted
curve) may appear to be “better” by a performance metric such as the R2 (which equals 1 because the estimator has perfectly fit the
data), but we would not expect the curved estimator to reliably predict outcome y given some values of variable x or even fit the data very
well if we were to repeat the experiment (C) because the curve has fitted random error in the dataset. By contrast, (B) the estimator (line)
may have poorer performance on a metric such as the R2, but does a better job of capturing the general relationship between outcome y
and variable x (D).
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estimator adjusts its defining parameters until the difference be-
tween predicted and actual output is minimized. There are a host
of a optimization methods that attempt to estimate function pa-
rameters in an efficient and accurate manner.8

Regularization

Fourth, we simplify the estimator by penalizing complexity.
The process, known as regularization, was inspired by Occam’s
Razor and states: given two estimators that perform similarly,
preference is given to the simplest of the two.7 Two common
regularization approaches are (1) LASSO (least absolute shrinkage
and selection operator), or L1 regularization, which penalizes the
absolute sum of regression coefficients, and (2) ridge, or L2 reg-
ularization, which penalizes the squared sum of regression co-
efficients. LASSO tends to select one correlated covariate and drop
the others by shrinking their coefficients to zero,9 whereas ridge
shrinks the magnitude of the coefficients for correlated covariates
towards zero. The idea behind ridge regression is that we do not
want one of the coefficients among many correlated variables to
be too extreme based on an outlier data point and thereby influ-
encing predictions more than the other highly correlated vari-
ables.10 Because LASSO and ridge regression constrain the
estimator in different ways, many machine learning practitioners
will use a combination of both L1 and L2 regularization, known as
elastic net regularization,11 which is demonstrated in our example
code linked in the Appendix (see Appendix in Supplemental Ma-
terials found at https://doi.org/10.1016/j.jval.2019.02.012).

Regularization methods all require the researcher to select the
degree of regularization with a parameter (or two parameters—
one for L1 and one for L2—in the case of elastic net). The
parameter is chosen to minimize an error metric—often the mean-
squared error between the estimator predictions and observed
data. The data used to select the regularization parameter are the
validation dataset. From this, we use the term “cross-validation” to
name the process by which the algorithm selects the regulariza-
tion parameter value.

Estimator Evaluation

Finally, to test the generalizability of a learned estimator, we
evaluate the function’s performance by calculating the difference
between the values predicted by our estimator and the actual
observed measurements in the test dataset. The test dataset has
never been analyzed by the estimator and mimics the process of
obtaining new unobserved inputs without a corresponding
output. The difference between the predicted and actual mea-
surements is known as “the loss.” It is important to note that the
test process assumes that new incoming data will be generated
from the same identical distribution; that is, the data are similar to

https://doi.org/10.1016/j.jval.2019.02.012


Table 1. Common machine learning methods: features, advantages, and disadvantages of common machine learning methods
currently applied in healthcare outcomes research.

Method Intuition Advantages Disadvantages

Regularization To reduce overfitting, penalize
estimators that include more
covariates, especially correlated
covariates (multicollinearity)

Produces more parsimonious
(simple) estimators; improves
generalizability; helps to produce
stable results less sensitive to
small changes in estimator choices

Can select the “wrong” predictor
when there are many highly
correlated predictors. Adds to
computational complexity.

Unsupervised learning: factor
analysis, principal components
analysis, K-means, hierarchical
clustering, neural networks

Cluster data into underlying
“dimensions,” by seeing how key
features of the people or
institutions in the data correlate
together

Can simplify complex/noisy data
by finding underlying
commonalities; can help
researchers categorize people
or institutions into groups

Accuracy cannot be determined;
researchers’ intuition and
experience determines usefulness
of the result

Decision trees Sequentially separate data based
on values of specific features.

Has good interpretability. Prone to overfitting.

Ensemble of decision trees:
gradient boosting machines

Fit multiple decision trees to
weighted resampled subsets of
the data, where the errors in
prediction from the first tree
inform how to improve the next
tree

Often achieves the highest
performance (lowest error
between predicted and ob
served outcomes) among
modern machine learning
methods for tabular data

Requires more researcher effort to
“tune” the estimators to ensure
optimal performance; does not
explain mechanism for result,
hence better for prediction than
inference

Ensemble of decision trees:
random forest

Fit multiple decision trees to
bootstrap-resampled versions of
the data, then either a) average
the resulting trees (for regres
sion) or b) take majority vote
(for classification).

Requires little researcher effort
to “tune” the estimators to en
sure optimal performance; fast
to implement

Does not explain mechanism for
result, hence better for prediction
than inference

Deep learning: neural networks A series of data transformations,
where outputs from one series
of transformations inform the
inputs to the next series of
transformations, repeatedly
through multiple layers of
transformations, ultimately
producing abstractions/
generalizations from the data

Can help predict outcomes with
highly complex, nonlinear
relationships and interactions;
can be leveraged to better iden
tify the risk of an outcome from
extremely large and noisy, and
nontabular datasets.

Requires high computing power;
requires more researcher effort to
“tune” the estimators to ensure
optimal performance; does not
explain mechanism for result,
hence better for prediction than
inference

Machine learning meta-learners Combines multiple machine
learning tools to arrive at a
summary prediction of an
outcome among them

Even if the underlying machine
learning estimators do not
contain the “true” prediction
function, ensembles can produce
an excellent approximation of
that function

Time- and computing-power-
intensive; does not explain
mechanism for result, hence
better for prediction than
inference; may encourage “fishing”
across different methods to get
high performance without a priori
justification
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the data used in training and validation. This can be a strong
assumption if either the data collected for training are biased, for
example, no minority patient data was included, or if the process
that generated the data is nonstationary or changes over time. An
example of nonstationarity would be data collected when a
pathogen becomes drug resistant, and the training and validation
data are taken from earlier periods and the test set from a later
period.

Overall, the above five steps can be succinctly summarized as
follows: machine learning produces algorithms that “minimize
loss over a function class, subject to regularization, i.e. penalizing
for complexity.”12

Potentially Useful Estimator Families for Health Services
Research

Decision trees
Decision trees are familiar tools used for medical decision

making and resemble a flowchart that guides a reader toward
classifying a person as either higher risk or lower risk for an
outcome (Fig. 2). In a decision tree, each branch of the tree divides
the sampled study population into increasingly smaller subgroups
that differ in their probability of an outcome of interest.13 A good
decision tree will separate the sampled population into groups
that have low within-group variability but high between-group
variability in the probability of the outcome. The advantage of a
decision tree is the ability to consider nonlinear relationships
among multiple covariates that define subgroups in a data-driven
way.

Decision tree–based machine learning methods may be most
helpful to health services researchers when a research question
involves predicting how the risk of an outcome differs among
subpopulations or when considering multiple (and potentially
multilevel) complex influences on the risk of a health outcome
that may be hard to predict through standard logistic regression.
For example, people who have the highest risk for an ACSC hos-
pitalization for diabetes complications may have a combination of



Figure 2. Decision trees. (A) Gradient boosting machines (GBM) and (B) random forests (RF). The circles display the covariates (X
variables) whose values determine each branch point, whereas the diamonds provide the tree-predicted probability of the outcome
under study.
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high diabetes medication copays, low income, and a long distance
to a pharmacy, and also may be in an age group that is older but
not old enough to qualify for Medicare. Trees can help decipher
such complex dependencies. Trees can also be more useful than
standard logistic regression when researchers are trying to predict
a rare outcome (such as a very high-cost hospitalization) caused
by a constellation of complex interacting factors.14 A limitation of
decision trees is that they are prone to overfitting, such that a
subgroup may be identified because the decision tree has over-
interpreted noise in the data, and even cross-validation may not
detect the overfitting.15

Tree ensembles
The two most common methods for overcoming the capacity

for trees to overfit are gradient boosting machines (GBM) and
random forests (RF). GBMs average many trees that are each
grown to re-weighted subsets of the data, where errors made by
the first tree contribute to learning of a more optimal tree in the
next iteration (called a boosting strategy).16,17 RF also builds
numerous decision trees but averages a forest composed of many
trees, where each tree was independently fitted to a random
bootstrap-resampled version of the data (called a bagging strat-
egy) with a random subset of covariates selected to be eligible to
define the branches.18

The GBM approach often requires researchers to experiment
with ( or “tune”) how many trees to average, how deep the trees
should be (how many subpopulations to divide the population
into), and how quickly the trees should adapt to initial error (the
learning rate) to maximize predictive discrimination (measured
by a C-statistic). On the other hand, the RF approach tends to
produce a reproducible result with maximum discrimination
across a wide range of specifications, thereby not requiring



Table 2. Comparison of maximum cross-validated C-statistics produced by alternative methods of predicting hospitalizations for
ambulatory care-sensitive conditions (a binary outcome) in a synthetic claims dataset.

Estimator C-statistic

Logistic regression including all available covariates in dataset 0.67

Logistic regression with backward variable selection using Akaike’s information criterion 0.67

Logistic regression with elastic net regularization 0.67

Ensemble of decision trees using gradient boosting machines 0.74

Ensemble of decision trees using random forest 0.72

Deep learning neural network 0.71

Ensemble of gradient boosting machines, random forest, and deep learners 0.72

See links in Appendix to obtain data and statistical code for replication. As shown here, the machine learning algorithms do not necessarily outperform standard
regression; their application should be justified for the investigative problem being addressed. In our statistical code linked to the Appendix, we show how different
implementations of each of these methods vary widely in performance and how adjustment of key parameters for each method can maximize performance. In the
machine learning literature, the C-statistic is also known as the area the under receiver operating characteristic curve (AUC).
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extensive tuning. Prior research suggests that GBMs can produce
higher C-statistics to RFs when the task is to predict an outcome
with few classes, for example, just a 0 or 1 for absence or presence
of the outcome, rather than a multiclass or continuous outcome
variables, and vice versa.19,20 Our code provides examples of both
GBMs and RFs applied to the prediction of an ACSC hospitalization
and compares their performance to a standard logistic regression
(Table 2).

Deep learning
Although the term deep learning has been increasingly used in

Internet and business literature, the concept refers to a traditional
method of machine learning that is not fundamentally new: the
development of neural networks.21 A neural network is a series of
Figure 3. Deep learning conceptualization. Neural networks are base
inputs (like features of patients in a claims dataset) are processed by a
so forth, until an output is achieved, for example, risk of hospitalizatio
takes a weighted combination of input signals reflecting a weighted su
neurons) or from a previous layer of neurons (for the second and su
nonlinear activation function. We can iterate on this procedure to cre
network, an input layer matches the data and is followed by multiple
typically ending with a “classification layer” to match a discrete set of
for an ACSC. The weights and activation function values determine th
history of recurrent community acquired pneumonia (in diagnostic co
predisposed to preventable hospitalizations from community-acquire
copayment for ambulatory care services. Hidden layer 1 could detect
income and copayments, and hidden layer 2 could help identify how
interaction between income and copayments, could identify the subs
community-acquired pneumonia.
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data transformations where the outputs from one series of
transformations inform the inputs to the next series of trans-
formations (Fig. 3). Each transformer (or neuron) in the network
takes a weighted combination of inputs, reflecting a weighted sum
of the observed data (for the first layer of neurons) or from a
previous layer of neurons (for the second and subsequent layers of
neurons), and produces an output based on a nonlinear trans-
formation function known as an activation function. The weights
for each sum and activation function values determine the output
from the layer. The “deep” in deep learning comes from stacking
multiple layers.

Cross-validation techniques are applied for model selection,
and researchers can prevent overfitting with regularization. A
common regularization method for neural networks is “dropout.”
d on a loose caricature of the brain as a series of neurons in which
layer of neurons, which then inform another layer of neurons, and
n for an ambulatory care sensitive condition (ACSC). Each neuron
m of the input data from the observed data (for the first layer of
bsequent layers of neurons) and produces an output based on a
ate multiple layers, or “deep” networks. In the overall neural
layers of neurons to produce abstractions from the input data,

outcomes, for example, whether or not a person was hospitalized
e output from the network. For example, an older woman with a
des, labeled “dx codes” in the figure) may be particularly
d pneumonia, but only if she is low income and has a high
interactions among age, sex, prior diagnostic codes, and among
the interaction of age, sex, and diagnostic codes, combined with
et of women predisposed to an ACSC hospitalization for
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This method randomly sets parameters to zero with each iteration
during training. The network learns not to rely on any small set of
parameters; rather, the information required to fulfill the predic-
tive task is spread across the model.

Neural network design has progressed with the ability to train
these models “end to end” with backpropogation or training all
connected modules at once. The aforementioned network class is
often termed a multilayer perceptron. Modifications of the multi-
layer perceptron estimator exploit different data types. For images,
the research can use convolutional neural networks that exploit
spatial dependencies among image pixels. In healthcare research,
convolutional neural networks are used for ophthalmology or
radiology applications.22,23 For language, health records, or time
series data, the researcher can use recurrent neural networks to
exploit dependencies over time. Researchers have used recurrent
neural networks with electronic medical record texts to predict
future health outcomes.24 Sometimes, we want to generate data
from a distribution and the researcher can use Generative Adver-
sarial Networks or Variational Autoencoders. A new application in
healthcare research is generatinghealth records for analysis (http://
proceedings.mlr.press/v68/choi17a.html). Last, already trained
neural networks can be used in unsupervised learning. By passing
data through an appropriate network, we can extract information
that is useful in prediction. The extracted outputs can be used in
othermodels. The amount of activity in these research fields speaks
to the flexibility of neural networks.

In our example code, we demonstrate how a neural network
can help identify complex interactions that predict ASCS hospi-
talization in our simulated claims dataset (see Fig. 3 for an
example). We show that if multiple input covariate trans-
formations and complicated interactions among covariates are
truly influencing the probability of the outcome, a deep learning
approach may outperform a tree-based method.

One challenge for researchers implementing deep learning is
that a neural network can require complex choices for the
activation functions, different network depths (number of
layers) and degree of regularization to be applied. A second
challenge is that communicating how the neural network is
transforming the data is challenging compared with communi-
cating the structure of a regression or decision tree. In the
Appendix, we detail a typical strategy to tune a neural network,
detailing multiple common options for activation functions,
network depths, and regularization settings and comparing the
network to tree-based estimators and logistic regression equa-
tion estimators (Table 2).

Meta-learners
Machine learning research has consistently suggested that

although any one of the previously mentioned methods may
improve prediction compared with standard logistic regression,
using a combination of the methods may improve prediction more
than any single method. One set of research reveals that even if a
set of component estimators, or base learners, does not contain
the true estimator, an ensemble of them can give a surprisingly
good approximation to the truth.25 A meta-learner can be
particularly helpful if there is little a priori reason to believe that
one machine learning estimator would be inherently superior to
others for prediction, based on the characteristics listed in Table 2.
After developing the estimators on a training dataset, a meta-
learner estimator (called a super learner or stacking method)
can be used to combine the predictions of the underlying base
learners. The meta-learner defines the weight given to each of the
component base learners, often using an approach such as elastic
net regularization to find a combination of estimators that
minimizes error between the weighted predictions of the base
learners and the observed data. Both GBM and RF are actually
examples of meta-learners because they combine single-decision
trees to develop a composite classification or prediction. In the
code included in the Appendix, we combine all of the machine
learning methods described here (logistic regression with regu-
larization, GBMs, RF, and deep learners) into an ensemble for
predicting risk of an ACSC hospitalization using simulated claims
data (Table 2; see Appendix in Supplemental Materials found at
https://doi.org/10.1016/j.jval.2019.02.012).

We note that meta-learners will not provide the best pre-
dictions across all problems. No model can do this as there is “no
free lunch.”26
Discussion

Machine learning methods may be useful to health service
researchers seeking to improve prediction of a healthcare
outcome with large datasets available to train and refine an esti-
mator algorithm. Machine learning methods can help generaliz-
able data-driven estimators when many covariates are being
selected among and when the outcome of interest may be pro-
duced by complex nonlinear relationships and interaction terms.

Yet machine learning methods offer considerable challenges
for healthcare outcomes researchers that are worth considering
before engaging in a machine learning activity. They may be
difficult to interpret (particularly for deep learning), difficult to
glean mechanistic understandings from (a challenge for all
methods discussed here), and may require substantial investment
of time and resources for computation (particularly for gradient
boosting machines, deep learning, and ensembles). Nevertheless,
computational improvements in hardware and cloud computing
technologies have made machine learning methods increasingly
accessible to healthcare outcomes researchers and healthcare or-
ganizations. The code that accompanied this article, for example,
required only 100 lines and 30 minutes to run all of the estimators
described here on a simulated claims database of 100 000 people,
using a standard laptop computer.

Because machine learning methods are increasingly adopted
for healthcare outcomes research, we offer three points of advice,
following guidelines described in the machine learning litera-
ture.27-29

First, an estimator should provide a solution to a prespecified
problem rather than simply detecting associations in a large data-
set. Prespecifying the problem being addressed, including notions
of success, may help reduce the risk of false-positive findings.27 In
addition, prespecifying the metrics for comparison of estimators
can help prevent false claims of estimator improvement. The C-
statistic, for example, helps to identify whether an estimator can
distinguish a higher-risk from a lower-risk person; for many med-
ical and healthcare outcomes research tasks, it may be equally
important to test for calibration, for example, the Hosmer-
Lemeshow test, which determines whether predicted event rates
and observed event rates for an outcome are concordant with one
another or very different, because the absolute magnitude of esti-
mated risk may be used for decision making.30

Second, the audience intended to use the estimator should be
considered. Whether or not the audience needs to understand
what features generate the estimator’s predictions, or simply be
able to apply it to future datasets through an automated appli-
cation, for example the backend of an electronic medical record,
should be determined. The answer to this decision will affect
choices of estimators because it is more difficult to understand

http://proceedings.mlr.press/v68/choi17a.html
http://proceedings.mlr.press/v68/choi17a.html
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why some estimators, for example, deep learners, make pre-
dictions from data than others. Often, a better performing model
in terms of some accuracy metric will be in conflict with other
goals, such as human understanding of predictions. There is no
rule of thumb for how much performance improvement is suffi-
cient to justify using less interpretable estimators. We suggest that
researchers have clear justification for choosing an estimator.

Third, it is important to have “data empathy,” which refers to
the idea that no matter how complex the method, a dataset that is
poor in quality or poorly informative for a given question will not
be useful, even if large in size.31 For example, analyzing claims
data may be appropriate to predict an outcome of hospitalization,
which is well captured and carefully adjudicated in the data. But
using such data to identify covariates predictive of a diagnosis may
be fraught because claims data are known to be subject to sig-
nificant diagnostic misclassification or underdiagnosis errors.
Machine learning methods may have deceptively high accuracy
but predict the wrong outcome, such as predicting the probability
of being diagnosed with a condition, not the probability of actually
having the condition. Hence, measurement and selection biases
apply to machine learning methods as much as to any other forms
of secondary data analysis.32

Ultimately, emerging machine learning methods are poten-
tially useful for the healthcare outcomes researcher if prediction is
an important and meaningful endeavor. Prediction can be com-
bined with causal research to improve our understanding (we
thank an anonymous reviewer for pointing this out).33 With this
article, we aim to lower the barriers to implementing machine
learning methods. As next steps, we recommend the following
textbook and Massive Open Online Course: http://ciml.info/ and
https://www.coursera.org/learn/machine-learning. These re-
sources will help researchers learn about additional models like
naive Bayes and kernel methods in addition to deeper principles.
In addition, there are many tutorials online for the researcher to
keep up to date. As machine learning methods evolve, we argue
that the principles for good practice reviewed in this primer will
likely serve health services researchers well into the future.
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