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The paper presents description of bearing, stator and rotor fault diagnostic methods of a
single-phase induction motor. The presented methods use acoustic signals. Five states of
the single-phase induction motor were analysed: healthy motor, motor with shorted coils
of auxiliary winding and main winding, motor with shorted coils of auxiliary winding,
motor with broken rotor bar and faulty ring of squirrel-cage, motor with faulty bearing.
A method of feature extraction of acoustic signals – SMOFS-22-MULTIEXPANDED
(Shortened Method of Frequencies Selection Multiexpanded) was developed and imple-
mented. The SMOFS-22-MULTIEXPANDED was implemented as feature extraction method
of acoustic signals. Classification step was performed using the NN (the Nearest Neighbour)
classifier. The proposed methods had good results for diagnosis of bearing, stator and rotor
faults of the single-phase induction motor. The developed approach can find applications
for fault diagnosis of other types of rotating machines.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

The number of electric rotating motor is increased every year, so it is essential to diagnose them properly. A single-phase
induction motor (Fig. 1) is simple in construction, inexpensive and reliable. It finds its application in both industrial and
domestic electric motors such as: drill, blowers, elevators, cordless drill, vacuum cleaner, conveyors, fans, machine tools,
pumps. Many parts of the motor (rotor shaft, bearings, insulation, stator and rotor circuits) wear out depending on operating
stress and operation time (Figs. 2–5). Degraded parts of electric rotating motor can cause accidents and downtimes during
the operation of machine. Repair or replacement of a damaged motor costs time and money. Often it is better to repair the
motor than replace it (if we have expensive machine).

Technical improvement, cost reductions and high reliability are essential for mining and fuel industries. Mining and
refinery use many electric rotating motors. Stator and rotor electrical faults often appear in electric rotating motors. Such
faults can damage windings of the motor permanently. There are many different approaches for detecting faults of the
electric motor.

In the literature diagnostic techniques based on the analysis of defect signatures in electric currents were developed
[1–6]. These techniques had high recognition efficiency. An electric signal is easy to process, because it is not so mixed
together (comparing with acoustic signals).
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Fig. 1. Low-cost capacity microphone and single phase induction motors.

Fig. 2. Motor with shorted coils of auxiliary winding and main winding.
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Unfortunately current signal can be used only for limited faulty states such as: shorted windings, broken bars, faulty ring
of squirrel-cage [7–11]. Moreover access to the electric signal is not so easy (comparing with acoustic signals). Many articles
described techniques based on vibration signals [12–16]. Techniques based on the analysis of vibration are very common
used. Similarly to the analysis of electric currents, techniques based on the analysis of vibration have high recognition
efficiency.

Advantages of vibration based fault diagnostic techniques are: inexpensive accelerometer, immediate measurement of
the vibration signal, it is possible to analyse electrical (shorted windings, broken bars, faulty ring of squirrel-cage) and
mechanical faults (bearings, rotor shaft etc.) [17–20], easy access to vibration signal. Disadvantages of vibration based fault



Fig. 5. Motor with faulty bearing.

Fig. 4. Motor with broken rotor bar and faulty ring of squirrel-cage.

Fig. 3. Motor with shorted coils of auxiliary winding.
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diagnosis techniques are: set of accelerometer should be very close to the motor and set of accelerometer/data logger should
be the same (measurement in the axes X, Y, Z).

In the literature there are also diagnostic techniques of rotating electric motors based on analysis of thermal images
[21–24]. Measurement of thermal images is also immediate and non-invasive. The analysis of thermal images is very
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efficient for fault detection. However there are some disadvantages: expensive thermal imaging camera, set of thermal cam-
era must be the same (measurement in the axes X, Y, Z), it takes time to heat up motor, it takes time to process thermal
images.

In the literature there are also acoustic based fault diagnostic techniques [25–30]. Acoustic signals of the motor are mixed
by other acoustic signals (reflected signals, overlapped signals etc.). Another disadvantage of acoustic based fault diagnostic
techniques is the lack of changes in the acoustic signal for some types of electrical equipment. However there are some
advantages such as: easy access to acoustic signal, inexpensive microphone, it is possible to analyse electrical and mechan-
ical faults (shorted windings, broken bars, bearings, rotor shaft etc.) [31–34]. Measurement of acoustic signals is also imme-
diate and non-invasive. In the literature, other diagnostic techniques of electric rotating motor were developed. They are as
follows: techniques based on visual analysis, techniques based on analysis of magnetic signals, lubrication analysis, tech-
niques based on analysis of ultrasonic signals.

The paper presents description of bearing, stator and rotor fault diagnostic methods of a single-phase induction motor.
The presented methods use acoustic signals. Five states of the single-phase induction motor were analysed: healthy motor
(Figs. 6, 10), motor with shorted coils of auxiliary winding and main winding (Fig. 7), motor with shorted coils of auxiliary
winding (Fig. 8), motor with broken rotor bar and faulty ring of squirrel-cage (Fig. 9), motor with faulty bearing (Fig. 11).

The proposed approach consists of signal processing methods: preprocessing, feature extraction, classification. An origi-
nal method called the SMOFS-22-MULTIEXPANDED (Shortened Method of Frequencies Selection Multiexpanded) was used
as feature extraction method of acoustic signals. The classification step was performed using the NN (the Nearest Neighbour)
classifier.
Fig. 6. Stator windings of the healthy motor.

Fig. 7. Stator windings of the motor with shorted coils of auxiliary winding and main winding.



Fig. 8. Stator windings of the motor with shorted coils of auxiliary winding.

Fig. 9. Rotor of the motor with broken rotor bar and faulty ring of squirrel-cage.

Fig. 10. Healthy bearing of the motor.
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Fig. 11. Faulty bearing of the motor.
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2. Proposed approach of fault diagnosis

Bearing, stator and rotor fault diagnostic methods used an analysis of acoustic signals. This analysis consisted of:
measurements of acoustic signals, split of the soundtrack, amplitude normalization, FFT, SMOFS-22-MULTIEXPANDED,
classification using the Nearest Neighbour classifier (Fig. 12a).

First digital voice recorder or capacity microphone with PC should be used for measurements of acoustic signals. Low-cost
capacity microphone ZALMAN ZM-MIC1 can be used for this purpose. Frequency range of capacity microphone was
50–20,000 Hz. It has proper parameters for measurement of acoustic signals of analysed motors. Other types of capacitor
Fig. 12a. Proposed bearing, stator and rotor fault diagnostic methods of the single-phase induction motor using SMOFS-22-MULTIEXPANDED and acoustic
signals.



Fig. 12b. Experimental setup of analysis of acoustic signals of single phase induction motors.
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microphones or digital voice recorders can be used for measurements. The author carried out measurements in a room of
4 � 4 meters. The author used one of many possibilities of measurements (Fig. 12b). Obtained format of audio data was
WAVE, mono channel and sampling frequency equal to 44100 Hz.

Next acoustic data were split into 5-s data files. Data files were processed by the Hamming window and the FFT method.
The FFT computed 16,384 frequency components. Next 16,384 frequency components were processed by and the SMOFS-22-
MULTIEXPANDED. The SMOFS-22-MULTIEXPANDED computed 1–22 common feature vectors (Fig. 12a). The last step of pro-
posed approach was classification using the NN classifier. It consisted of patterns creation and testing process (prediction
phase). Patterns creation and testing process were computed by the NN (Nearest Neighbour) classifier. In the testing process
unknown test sample (audio file) was compared with training samples using distance function (the Manhattan distance).

2.1. Shortened method of frequencies selection MULTIEXPANDED

The Shortened Method of Frequencies Selection Multiexpanded (SMOFS-22-MULTIEXPANDED) was based on differences
of frequency spectra of acoustic signals [35]. Construction of the motor, size, rotor speed and the analysed state of the motor
were essential for analysis of acoustic signals. Frequency spectra of acoustic were different for each analysed state of the
motor (healthy motor, motor with shorted coils of auxiliary winding and main winding, motor with shorted coils of auxiliary
winding, motor with broken rotor bar and faulty ring of squirrel-cage, motor with faulty bearing). To extract diagnostic fea-
tures, the author implemented and used the method of feature extraction SMOFS-22-MULTIEXPANDED. Seven steps of the
SMOFS-22-MULTIEXPANDED were following:

1) Form vectors using frequency spectra of acoustic signals of the motor. The frequency spectrum of the healthy motor
was defined as following vector A = [a1, a2, . . ., a16384]. The frequency spectrum of the motor with shorted coils of aux-
iliary winding and main winding was defined as vector B = [b1, b2, . . ., b16384]. The frequency spectrum of the motor
with shorted coils of auxiliary winding was defined as vector C = [c1, c2, . . ., c16384]. The frequency spectrum of the
motor with broken rotor bar and faulty ring of squirrel-cage was defined as vector D = [d1, d2, . . ., d16384]. The
frequency spectrum of the motor with faulty bearing was defined as vector E = [e1, e2, . . ., e16384].
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2) Compute absolute values of differences of previously formed vectors: |a-b|, |a-c|, |a-d|, |a-e|, |b-c|, |b-d|, |b-e|, |c-d|,
|c-e|, |d-e|.

3) Use formula (1) to select frequency components. Frequency components greater than a threshold ThrSelx are selected.
jjFSAj � jFSBjj > ThrSelx; ð1Þ
where ThrSelx – threshold of selection of frequency components for x-th iteration, ||FSA|-|FSB|| – difference between
frequency spectra of acoustic signals of states A and B, FSA – frequency spectrum (16384 frequency components) of state
A, FSB – frequency spectrum (16384 frequency components) of state B.
4) Compute variable (threshold of selection of frequency components) ThrSelx for x-th iteration. The variable ThrSelx is

expressed by Eq. (2):
ThrSelx ¼

XNoFCx

NoFCx¼1

jjFSAj � jFSBjj

NoFCx
; ð2Þ

NoFCx 6 22; ð3Þ
where variable NoFCx is a number of selected frequency components for x-th iteration (if window length equal to 32,768
the computed frequency spectrum consisted of 16,384 frequency components, NoFC0 = 16384 for the first iteration, next
NoFC0 is decreased iteratively). If the variable NoFCx is greater than 22, the SMOFS-22-MULTIEXPANDED computes Eq. (2).
If the variable NoFCx � 22, then computations are interrupted. The SMOFS-22-MULTIEXPANDED selected 1–22 frequency
components. The number of iterations x and the value of variable NoFCx are depended on acoustic signals. Let’s analyse
EXAMPLE1. We have three acoustic signals of states A, B, C. The SMOFS-22-MULTIEXPANDED computes frequency com-
ponents 200, 220, 240, 260, 280, 300, 320, 340 Hz for acoustic signals of states A and B (|a-b|). The SMOFS-22-
MULTIEXPANDED computes frequency components 210, 230, 250, 270, 290, 310, 330, 350 Hz for acoustic signals of states
A and C (|a-c|). The SMOFS-22-MULTIEXPANDED computes frequency components 215, 220, 225, 230, 235, 240, 245, 250
Hz for acoustic signals of states B and C (|b-c|). Acoustic signals of states A, B, C do not have common frequency compo-
nents. Frequency components 220, 230, 240, 250 Hz are found 2 times. Using of found frequency components is a good
idea. However there is a problem for a higher number of considered acoustic signals. A parameter called TCFC-MULTI
(Threshold of common frequency components MULTIEXPANDED extension) is introduced to analyse higher number of
considered acoustic signals.
5) Set the parameter TCFC-MULTI. It is expressed as: TCFC-MULTI = (number of required common frequency components

of considered training sets)/(number of computed differences). It can be noticed that the parameter TCFC-MULTI is
essential for selection of final common frequency components. Let’s consider EXAMPLE2. There are 4 training sets.
Each training set has 5 acoustic signals: (FA1, FB1, FC1, FD1, FE1), (FA2, FB2, FC2, FD2, FE2), (FA3, FB3, FC3, FD3,
FE3), (FA4, FB4, FC4, FD4, FE4). The SMOFS-22-MULTIEXPANDED selects frequency components for each difference
in one training set: (|FA1-FB1|), (|FA1-FC1|), (|FA1-FD1|), (|FA1-FE1|), (|FB1-FC1|), (|FB1-FD1|), (|FB1-FE1|), (|FC1-
FD1|), (|FC1-FE1|), (|FD1-FE1|), (|FA2-FB2|),. . ., (|FD2-FE2|), (|FA3-FB3|),. . ., (|FD3-FE3|), (|FA4-FB4|),. . ., (|FD4-FE4|) –
40 differences between frequency spectra of acoustic signals, FA1, FB1, FC1, FD1, FE1 . . . FA4, FB4, FC4, FD4, FE4 – fre-
quency spectra of 5 states (A, B, C, D, E) of the motor. If the parameter TCFC-MULTI = 10/40 = 0.25, then the SMOFS-22-
MULTIEXPANDED selects frequency components, which were found in 10 differences (maximum number is 40 times).
For example frequency component 100 Hz were found 10 times. Frequency component 150 Hz were found 20 times.
Frequency component 200 Hz were found 25 times. The SMOFS-22-MULTIEXPANDED selects 100, 150, 200 Hz (TCFC-
MULTI = 10/40 = 0.25,). If the parameter TCFC-MULTI = 18/40 = 0.45, then the SMOFS-22-MULTIEXPANDED selects
frequency component 150 and 200 Hz. If the parameter TCFC-MULTI = 30/40 = 0.75, then the SMOFS-22-
MULTIEXPANDED selects 0 (TCFC-MULTI should be set again).

6) Find 1–22 common frequency components.
7) Form a final feature vector (1–22 found frequency components).

The implemented method SMOFS-22-MULTIEXPANDED was presented in Fig. 13.
In this paper four training sets were analysed (20 one-second samples). The differences of training vectors: |a-b|, |a-c|,

|a-d|, |a-e|, |b-c|, |b-d|, |b-e|, |c-d|, |c-e|, |d-e| were shown in Figs. 14–23 (acoustic signals were generated by the single-
phase induction motor with rotor speed 1390 rpm).

The SMOFS-22-MULTIEXPANDED computed 14 common frequency components – 29, 36, 42, 43, 51, 58, 61, 62, 101, 201,
483, 546, 646, 682 Hz, for TCFC-MULTI = 0.25. The SMOFS-22-MULTIEXPANDED computed 8 common frequency components
– 29, 36, 42, 43, 51, 101, 546, 646 Hz, for TCFC-MULTI = 0.275. The SMOFS-22-MULTIEXPANDED computed 4 common fre-
quency components – 36, 546, 101, 646 Hz for TCFC-MULTI = 0.325. There were used 20 one-second audio files for 4 training
sets. Audio files were processed into common frequency components. Next feature vectors were formed using previously
computed common frequency components.

Classification of feature vectors was the final step of signal processing. For this purpose the NN (Nearest Neighbour)
classifier was used [36–40]. However other classification methods such as: neural network [41–47], fuzzy classifier



Fig. 13. Flowchart of the SMOFS-22-MULTIEXPANDED.

Fig. 14. Difference between frequency spectra of acoustic signals (|a-b|) using SMOFS-22-MULTIEXPANDED.
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[48,49], Linear Discriminant Analysis, Naive Bayes classifier, Support Vector Machine [32,50,51], fuzzy c-means clustering
[52] could be also used.
2.2. NN classifier

The Nearest Neighbour (NN) classifier is well-known classifier [36–40]. It is robust and versatile classifier. The NN has
high recognition results for multi-class problems. It is also used for many applications such as: signal processing, image pro-
cessing, medical data mining, forecasting, text recognition, genomic data analysis, economic. The Nearest Neighbour (NN) is
the supervised learning method. The NN uses training feature vectors which are subsequently used for the prediction phase.
The NN searches training vectors and test vectors, that are the most closely resemble. Next it assigns test vector to the near-
est neighbour (class). The classifier runs through the whole test set computing d (similarity distance) between test feature
vector and each training feature vectors. Finally, the test vector gets assigned to the class with the closest training vector. The
Nearest Neighbour classifies feature vectors using similarity distance such as: Manhattan, Euclidean, Minkowski, cosine,
Jaccard, Chebyshev. The Manhattan distance (4) was used for analysis of acoustic signals, because the obtained results using
other similarity distances were similar. The Manhattan distance was presented as:



Fig. 15. Difference between frequency spectra of acoustic signals (|a-c|) using SMOFS-22-MULTIEXPANDED.

Fig. 16. Difference between frequency spectra of acoustic signals (|a-d|) using SMOFS-22-MULTIEXPANDED.

Fig. 17. Difference between frequency spectra of acoustic signals (|a-e|) using SMOFS-22-MULTIEXPANDED.
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Fig. 18. Difference between frequency spectra of acoustic signals (|b-c|) using SMOFS-22-MULTIEXPANDED.

Fig. 19. Difference between frequency spectra of acoustic signals (|b-d|) using SMOFS-22-MULTIEXPANDED.

Fig. 20. Difference between frequency spectra of acoustic signals (|b-e|) using SMOFS-22-MULTIEXPANDED.
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Fig. 21. Difference between frequency spectra of acoustic signals (|c-d|) using SMOFS-22-MULTIEXPANDED.

Fig. 22. Difference between frequency spectra of acoustic signals (|c-e|) using SMOFS-22-MULTIEXPANDED.

Fig. 23. Difference between frequency spectra of acoustic signals (|d-e|) using SMOFS-22-MULTIEXPANDED.
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dða;bÞ ¼
X1

i¼1

jðai � biÞj; ð4Þ
where test vector a and training vector b consisted of common frequency components. The similarity distances were
computed for all analysed test and training vectors.

A more accurate description of the NN classifier is available in following articles [36–40].
3. Analysis of acoustic signals

Acoustic signals of motors were measured for 5 different states: healthy motor (Figs. 6, 10), motor with shorted coils of
auxiliary winding and main winding (Fig. 7), motor with shorted coils of auxiliary winding (Fig. 8), motor with broken rotor
bar and faulty ring of squirrel-cage (Fig. 9), motor with faulty bearing (Fig. 11). Motor parameters are defined as follows:
Mm = 3.3 kg, VNM = 230 V, RSM = 1390 rpm, ECN = 1.06 A, ECH = 0.5 A, ECSA = 1.8 A, ECSM = 4.5 A, PNM = 0.12 kW, fNM = 50 Hz,
where Mm – mass of the motor, VNM – nominal voltage of the motor, RSM – rotor speed of the motor, ECN – nominal electric
current of the motor, ECH – electric current of the healthy motor, ECSA – electric current of the motor with shorted coils of
auxiliary winding, ECSM – electric current of the motor with shorted coils of auxiliary winding and main winding, PNM – nom-
inal power of the motor, fNM – nominal frequency of the motor.

The author used 20 one-second audio files for pattern creation and 200 one-second audio files for testing process
(prediction phase). Training and test samples of acoustic signals of motors were analysed using proposed approach
(Fig. 12a). Efficiency of recognition of acoustic signal was expressed as (5):
ERAS ¼ ðNPTSASÞ=ðNATSASÞ � 100% ð5Þ

where: ERAS – efficiency of recognition of acoustic signal of selected class, NPTSAS – number of test audio files of selected

class tested properly, NATSAS – number of all test audio files of selected class.
Total efficiency of recognition was defined as follows (6):
TERAS ¼ ðERAS1 þ ERAS2 þ ERAS3 þ ERAS4 þ ERAS5Þ=5 ð6Þ

where TERAS – total efficiency of recognition, ERAS1 – efficiency of recognition of the healthy motor, ERAS2 – efficiency of

recognition of the motor with shorted coils of auxiliary winding and main winding, ERAS3 – efficiency of recognition of the
motor with shorted coils of auxiliary winding, ERAS4 – efficiency of recognition of the motor with broken rotor bar and faulty
ring of squirrel-cage, ERAS5 – efficiency of recognition of the motor with faulty bearing.

The results of analysis of acoustic signals were shown in Tables 1–3. In the Table 1, the author presented the results of
recognition of acoustic signals using the SMOFS-22-MULTIEXPANDED, TCFC-MULTI = 0.25 (found 14 common frequency
components) and the NN classifier.
Table 1
Results of recognition of acoustic signals using the SMOFS-22-MULTIEXPANDED, TCFC-
MULTI = 0.25, and the NN classifier.

Type of acoustic signal ERAS [%]

Healthy motor 100
Motor with shorted coils of auxiliary winding 100
Motor with shorted coils of auxiliary winding and main winding 100
Motor with broken rotor bar and faulty ring of squirrel-cage 100
Motor with faulty bearing 85

TERAS [%]
97

Table 2
Results of recognition of acoustic signals using the SMOFS-22-MULTIEXPANDED, TCFC-
MULTI = 0.275, and the NN classifier.

Type of acoustic signal ERAS [%]

Healthy motor 80
Motor with shorted coils of auxiliary winding 100
Motor with shorted coils of auxiliary winding and main winding 100
Motor with broken rotor bar and faulty ring of squirrel-cage 100
Motor with faulty bearing 90

TERAS [%]
94



Table 3
The results of recognition of acoustic signals using the SMOFS-22-MULTIEXPANDED,
TCFC-MULTI = 0.325, and the NN classifier.

Type of acoustic signal ERAS [%]

Healthy motor 100
Motor with shorted coils of auxiliary winding 100
Motor with shorted coils of auxiliary winding and main winding 85
Motor with broken rotor bar and faulty ring of squirrel-cage 100
Motor with faulty bearing 92.5

TERAS [%]
95.5
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In the Table 2, the author presented the results of recognition of acoustic signals using the SMOFS-22-MULTIEXPANDED,
TCFC-MULTI = 0.275 (found 8 common frequency components) and the NN classifier.

In the Table 3, the author presented the results of recognition of acoustic signals using the SMOFS-22-MULTIEXPANDED,
TCFC-MULTI = 0.325 (found 4 common frequency components) and the NN classifier.

The conducted analysis provided very good results (TERAS was in the range of 94%–97%). The SMOFS-22-MULTIEXPANDED
computed 4–14 common frequency components. Computed vectors were used by the NN classifier. For industrial applica-
tions the results would be similar. The most important task is to create proper training and testing sets of acoustic signals of
motors. Next the proposed method SMOFS-22-MULTIEXPANDED will find proper common frequency components for the
analysis. It is very good method of feature extraction of acoustic signals of rotating electric motor. However more faults
and motors should be analysed for maintenance purpose.
4. Conclusions

In this article the author described bearing, stator and rotor fault diagnostic methods of the single-phase induction motor.
The proposed approach used acoustic signals. The author analysed acoustic signals of 5 states of the single-phase induction
motor: healthy motor, motor with shorted coils of auxiliary winding and main winding, motor with shorted coils of auxiliary
winding, motor with broken rotor bar and faulty ring of squirrel-cage, motor with faulty bearing. The SMOFS-22-
MULTIEXPANDED was implemented as feature extraction method of acoustic signals. For the classification step the NN clas-
sifier was used. The obtained results of analysed approach were good (TERAS was in the range of 94%–97%). The developed
fault diagnostic approach was inexpensive. Low-cost capacity microphone and PC cost about 300$. Digital voice recorder also
costs 100–300$. Measurement of acoustic signals is also immediate and non-invasive. Information provided from acoustic
signals allow us to plan diagnostic review and repairs. The proposed signal processing methods can find application for early
fault diagnosis of electrical and mechanical faults of rotating machines. The disadvantage of previously mentioned methods
is that acoustic signals are mixed together (e.g. reflections, waves overlapping).

In the future, thermal, vibration and electrical signals of rotating machines will be analysed to improve proposed meth-
ods. Other faults and operating parameters of motors will be analysed. The more reliable fault diagnostic methods will be
proposed, implemented and used for industry and electric vehicles.
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