
0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

Reducing Latency in Virtual Machines1

Enabling Tactile Internet for Human Machine2

Co-working3

Zuo Xiang∗, Frank Gabriel∗, Elena Urbano∗, Giang T. Nguyen∗, Martin Reisslein†, and Frank H.P.4

Fitzek∗5

∗Deutsche Telekom Chair of Communication Networks6

Technische Universität Dresden, 01062 Dresden, Germany7

Email: {firstname}.{lastname}@tu-dresden.de8

†School of Electrical, Computer, and Energy Engineering9

Arizona State University, Tempe, AZ 85287-5706, USA10

Email: reisslein@asu.edu11

Abstract12

Software Defined Networking (SDN) and Network Function Virtualization (NFV) processed in Multi-access Edge13

Computing (MEC) cloud systems have been proposed as critical paradigms for achieving the low latency requirements14

of the tactile Internet. While Virtual Network Functions (VNFs) allow greater flexibility compared to hardware based15

solutions, the VNF abstraction also introduces additional packet processing delays. In this paper, we investigate16

the practical feasibility of NFV with respect to the tactile Internet latency requirements. We develop, implement,17

and evaluate Chain bAsed Low latency VNF ImplemeNtation (CALVIN), a low-latency management framework for18

distributed Service Function Chains (SFCs). CALVIN classifies VNFs into elementary, basic, and advanced VNFs.19

CALVIN implements elementary and basic VNFs in the kernel space, while advanced VNFs are implemented in20

the user space. Throughout, CALVIN employs a distributed mapping with one VNF per Virtual Machine (VM) in21

a MEC system. Moreover, CALVIN avoids the metadata structure processing and batch processing of packets in22

the conventional Linux networking stack so as to achieve short per-packet latencies. Our rigorous measurements on23

off-the-shelf conventional networking and computing hardware demonstrate that CALVIN achieves round-trip times24

from a MEC ingress point via two elementary forwarding VNFs (one in kernel space and one in user space) and25

a MEC server to a MEC egress point on the order of 0.32 ms. Our measurements also indicate that MEC network26

coding and encryption are feasible for small 256 byte packets with an MEC latency budget of 0.35 ms; whereas,27

large 1400 byte packets can complete the network coding, but not the encryption within the 0.35 ms.28

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

1

Reducing Latency in Virtual Machines29

Enabling Tactile Internet for Human Machine30

Co-working31

I. INTRODUCTION AND MOTIVATION32

Low latency communication is the central requirement for enabling the tactile Internet for human-machine co-33

working [1]–[6]. Both, humans and machines require latencies below one millisecond for a wide range of co-34

working scenarios. For instance, for humans operating in a virtual world and for interactions with robots and other35

machines, the latencies for visual, audio, or tactile multi-sensoric feedback should be below 15 ms, 3 ms, or 1 ms,36

respectively [7]. Every machine based on control loops also requires low latencies in order to work efficiently or to37

operate in a stable manner [8], [9]. As a concrete example, consider a classical inverted pendulum whose controller38

is placed in the cloud. Closing the control loop through a communication network will likely introduce some delays39

and packet losses. Fig. 1 shows the influence of the delay between the angle sensor and pendulum actuator (motor)40

on the pendulum stability. For long delays (50 ms in Fig. 1), the system becomes unstable, and the pendulum will41

never reach stability in the inverted position. For shorter delays (40 ms), the system takes some time to achieve42

stability. This time delay could imply lack of quality of service, and may affect other systems if the pendulum is43

part of a more complex environment with interconnected systems, or multiple pendulums coexisting in the same44

physical space.45

The 5G communication standard for automation in vertical domains [10] defines the allowed latency requirement46

of one millisecond for an end-to-end communication. Based on this standard, we consider a typical allocation of47

the individual 5G communication network delay budget components, as illustrated in Figure 2. Figure 2 assumes48

that a total of 0.4 ms is consumed in the embedded systems and the wireless links on both ends. For instance,49

0.1 ms may be allocated for the embedded sensor computing platform to evaluate the sensed information, 0.1 ms50

for (one-way) communication latency in uplink and downlink, and 0.1 ms for embedded computing at the actuator.51

This leaves 0.6 ms for the wired domain. The wired domain has two main delay components. One delay component52

is the basic communication over fiber where we are bound to the speed of light (3.34 µs per kilometer) and the53

physical fiber characteristics. The second delay component is based on the communication nodes. In conventional54

“store and forward” communication networks, these communication nodes are routers or switches. But in upcoming55

future communication, there is a paradigm shift from “store and forward” to “compute and forward”. Now the56

communication nodes can process and manipulate the incoming data. The idea of “compute and forward” is57

realized by new technologies, such as Software Defined Networking (SDN) [11], Network Function Virtualization58

(NFV) [12]–[19], and Service Function Chaining (SFC) [20]–[34] standardized by the IETF/IRTF. These novel59

technologies enable the concept of Multi-access Edge Computing (MEC) [26], [35]–[40], which allows for local60

processing of data, which in turn will reduce the latencies on the pure communication path. Assuming a maximum61

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

2

Fig. 1: Angle of an inverted pendulum trying to reach stability for different sensor-to-actuator delays (50 ms, 40 ms,

and 1 ms) for 1 ms inter-packet delay as well as for 1 ms sensor-to-actuator delay for different inter-packet delays

(10 ms, 5 ms, and 1 ms).

MEC

Network Function
Virtualization

(NFV)

Transmitter

Receiver

1ms

0.1ms 0.1ms

0.4ms 0.6ms

Sensor
Embedded
Computing

Embedded
ComputingActuator

Receiver

Transmitter

0.1ms 0.1ms 0.35ms

0.125ms

25km

0.125ms

25km

Fig. 2: Typical latency budget for sensor-to-actuator control loop that meets one millisecond round-trip latency

requirement of 5G [10]: 0.4 ms are allocated for embedded sensor and actuator processing and wireless

communication, leaving 0.6 ms for the wired link propagation as well as the virtualized communication environment

(“compute and forward”) processing in the MEC.

distance of 25 km between the sensor/actuator and the MEC, the (round-trip) communication will require 0.25 ms62

and will leave 0.35 ms for NFV processing in the MEC system.63

However, achieving low latencies is a notoriously difficult problem in communication networks [41], [42]. While64

delays that are proportional to the available transmission bitrate and data amounts can be addressed through scaling65

up the transmission capacities and compression, processing delays with their various constant delay contributions66

pose significant challenges [42]–[44]. Moreover, recent studies [45], [46] have demonstrated that NFV, which is67

highly desirable for flexibility [47], imposes heavy data transfer and computation demands, incurring relatively long68

latencies. Nowadays, virtual switches are quite fast [48]–[50]; however, virtual machines (VMs), specifically the69

packet IO and processing operations inside the VM, are slow. The centralized approach proposed in [51] gives70

more than 2 ms latency inside the virtual communication environment for a single VM running the elementary71

forwarding function, which is clearly above the 0.35 ms delay budget.72

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

3

Cloud Environment

Service Proxy Service Function Chain

VNF 1 VNF 2 VNF 3

Server

Ingress
Point

Egress
Point VNF 6 VNF 5 VNF 4

Fig. 3: Illustration of service loop in a cloud

(MEC/virtualization) environment: Packets traverse an

ingress service function chain (SFC) consisting of an

ordered sequence of virtual network functions (VNFs) to

reach the server for cloud processing and leave the cloud

via the egress point.

Compute Node 1

Software Bridges

pNICpNIC

Compute Node 2

Software Bridges

(2)

Tunnel Bridge

Integration Bridge

Tunnel Bridge

(3)

Integration Bridge

(4)

VM 1

vNIC

(1)

VM 2
vNIC

VM 3
vNIC

VM 4
vNIC

Physical Network

(5)(5)

Fig. 4: Illustration of typical virtual network connection

between two compute nodes in a cloud environment,

whereby each compute node hosts multiple virtual ma-

chines (VMs). Each VM connects via a virtual network

interface controller (vNIC) to the bridges and onwards via

a physical NIC to the physical network.

In this empirical measurement study, we examine low-latency NFV in real general-purpose MEC systems built73

with off-the-shelf hardware and software. We design, implement, and evaluate a low-latency service function74

chain (SFC) management framework named Chain bAsed Low latency VNF ImplemeNtation (CALVIN). CALVIN75

implements VNFs either in the kernel space or in the user space and distributes each VNF to its own VM. CALVIN76

employs fast packet input/output (IO) mechanisms that avoid the metadata structures and the batch processing of data77

packets in the conventional Linux networking stack. Our extensive measurements demonstrate that CALVIN achieves78

MEC latencies on the order of 0.32 ms, which allows for additional processing of data, e.g., for network coding79

and encryption. The proposed CALVIN approach makes it for the first time possible to process advanced network80

functions, such as network coding and encryption, in a general-purpose virtualized MEC setting while meeting the81

one millisecond delay target of the tactile Internet. Our CALVIN SFC management and VNF implementation codes82

for OpenStack, which is the defacto industry standard for general-purpose cloud computing platforms, are openly83

available at [52], [53].84

II. BACKGROUND AND RELATED WORK85

A. Background86

The typical NFV service loop inside the MEC part of Fig. 2 is presented in Fig. 3. Each packet is received by the87

cloud through the ingress point of a service proxy, processed by a chain of virtual network functions (VNFs), i.e.,88

by an ingress SFC, transmitted to the requested server, processed by the server, and leaves the cloud via the egress89

point of the service proxy (after optional egress SFC processing). The ingress and egress points are endpoints or90

instances that are exposed to the external network (outside of the cloud network, which is commonly a dedicated91

private network). For several reasons, including security considerations, not all internal components are exposed to92

the external network. Therefore, ingress and egress points are required for clients in the external network to access93

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

4

the cloud services. As illustrated in Fig. 3, an SFC consists of an ordered set of VNFs that operate typically as a94

pipeline.95

The virtualized service loop of Fig. 3 is typically implemented on a cloud computing infrastructure platform. A96

cloud computing infrastructure platform provides flexible management control over underlying physical computing97

resources, such as servers, networking facilities, and storage. All components of the virtualized service loop are98

implemented and run in VMs that are orchestrated by the cloud computing platform.99

Fig. 4 illustrates a typical cloud computing infrastructure scenario where multiple VMs are connected with a100

virtualized networking overlay. In order to enable multi-tenant networking with configurable networking resources101

and isolation, a virtualized networking overlay needs to be built on top of the physical networking infrastructure.102

For example, VM1 and VM3 can be allocated in the same broadcast domain in a virtual network (or named tenant103

network) even though they are hosted on different physical nodes that are connected by layer three routing entities.104

In order to provide a virtual overlay network on top of the underlying heterogeneous physical network, two105

software bridges (or virtual switches) are used to connect the virtual network interfaces (vNICs) with the physical106

network interface (pNIC). In particular, the integration bridge connects all VMs running on the same physical node.107

These VMs can belong to different virtual tenant networks even if they are on the same physical node. The tunnel108

bridge is used to encapsulate and transfer tenant network data through a tunneling protocol, e.g., Generic Routing109

Encapsulation (GRE) or Virtual extensible LAN (VXLAN).110

The networking components in Fig. 4 introduce different types of latency:111

• Between VM and integration bridge (1, 2): This latency component is the focus of this study and includes112

two main parts:113

◦ Transfer packets between the integration bridge and VM through vNIC (2): This latency depends on114

the vNIC technology and has two subparts:115

Data transfer between virtual bridge data buffer and vNIC ring buffer: With the performance im-116

provements of virtual bridges, e.g., the DPDK fast path in the Open vSwitch (OVS-DPDK) [54], the117

latency of this subpart has been reduced to the order of microseconds [48].118

Frame copying between the vNIC ring buffer and the VM memory: This subpart now becomes a119

bottleneck for low-latency data transfer in the virtual network overlay.120

◦ Process packets inside VM (1): This latency depends on the implementation of the VNF processing121

workflow. Optimizations from the implementation perspective should process the frame as fast as possible122

for the low-latency tactile Internet.123

• Between integration bridge and pNIC (3, 4): This latency component depends on the employed virtual bridges124

as well as the physical resource management and orchestration (MANO) platform [55]. Cloud platforms125

commonly employ OVS-DPDK and OpenStack, which we also employ in our testbed.126

• Between pNICs (5): This latency component depends on the physical network technologies.127

To the best of our knowledge, the reduction of latencies (1) and (2) is an open research question. Our proposed128

CALVIN approach significantly reduces these latencies so that the overall end-to-end latency of the service loop is129

within the 5G one millisecond latency requirement.130

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

5

B. Related Work131

Several recent studies based on mathematical analysis and simulations have considered SFC latencies, see132

e.g., [56]–[68]. These studies have mainly considered moderate to high workloads that result in substantial queueing133

delays for VNF processing. In contrast, we conduct an experimental study with empirical latency measurements134

on lightly loaded real networking and computing systems. Our goal is to rigorously empirically investigate the135

baseline latencies of real SFC implementations. Our measurement study complements the existing mathematical136

analysis and simulation studies and provides baseline latency values, which can serve as reference points for137

future analysis and simulation studies on low-latency VNF processing. We also develop and evaluate the CALVIN138

low-latency SFC framework which achieves significant latency reductions compared to existing frameworks. We139

also note that several recent studies have examined VNF placement strategies, e.g., [69]–[77], mainly from the140

perspective of mathematical modeling and optimization of the placement. A few recent implementation oriented141

studies have examined scheduling and flexibility aspects [25], [78]. Complementarily, our implementation oriented142

study examines the low-latency aspects of VNF placement.143

Some recent studies have sought to reduce communications delays and increase communications reliability through144

specific communications strategies [6], such as short packet transmissions [79], [80]. Complementarily to these145

communications mechanism focused studies, we address the NFV latency in MEC systems for arbitrary packet146

sizes.147

The remainder of this section surveys existing related SFC frameworks both in kernel and user space and148

distinguishes our approach from the existing frameworks. Our approach is not based on full kernel-bypassing;149

instead, we exploit the complementary strengths of both kernel and user space technologies to reduce the latency150

(while efficiently utilizing the CPU resources).151

1) Kernel Space: Recent kernel space approaches have typically been based on the eXpress Datapath (XDP)152

framework (a new system in the Linux kernel) [81]–[84] which is built using custom extended Berkeley Packet153

Filter (eBPF) programs. Since the XDP framework is relative new (it became available with the Linux kernel154

versions after 4.1X), few studies have been conducted with XDP [84].155

Miano et al. [85] have conducted quantitative characterizations of a range of eBPF aspects. Miano et al.156

documented several limitations when building complex network services with eBPF. Due to these limitations we157

do not implement all functions in the kernel space in CALVIN. Our own preliminary XDP evaluations (with Linux158

kernel 4.17.0-041700-generic), which are not included here due to space constraints, indicated that XDP achieves159

low latencies for elementary packet processing. However, due to the main XDP limitations (e.g., limited number of160

instructions, not Turing complete since loops are not allowed) we do not implement advanced packet processing in161

the kernel space. Nevertheless, XDP has several benefits over kernel-bypassing technologies. XDP does not require162

large pages (the smallest unit or block for memory management in the operating system (OS)), nor dedicated CPUs.163

Also, XDP does not replace the kernel TCP/IP stack; rather, XDP works in concert with the kernel TCP/IP stack164

along with all eBPF benefits. Moreover, XDP avoids the need to define a new security model by utilizing the Linux165

kernel security model.166

In-kernel processing with XDP based on the eBPF with an NFV focus has recently been examined in the InKeV167

study [86]. InKeV employs XDP based on the eBPF, which can quickly execute simple functions; however, the168

implementation of advanced functions is very challenging. The InKeV latency measurements were performed on a169

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

6

single machine and thus do not capture the latencies incurred when traversing a physical network to complete an SFC170

consisting of physically distributed VMs. In contrast, we consider physically distributed VMs in our evaluations.171

InKeV has been compared with the OpenStack neutron [87] networking infrastructure, which we also employ in our172

evaluations. Thus, InKeV could be a good competitor for the underlying virtual switches (OVSs) used by OpenStack173

(latency components (3)–(5) in Fig. 4). In contrast, we focus on the latency introduced by the VM, i.e., on the174

latency components (1) and (2) in Fig. 4.175

For completeness, we note that relatively simple networking functions relating to security and virtual switching176

in the kernel space have recently been studied in [88]–[91].177

2) User Space: User space frameworks, which are also referred to as kernel-bypassing frameworks, have been178

studied more frequently than kernel space frameworks [92]–[94]. However, most user space framework evaluations179

have focused on throughput and did not consider latency performance in detail. The performance of three widely180

known kernel-bypassing high-speed packet IO frameworks, including netmap, PF RING ZC, and Intel DPDK, has181

been measured in [94], revealing a general trade-off between throughput and latency. Recent studies have examined182

several aspects of user space frameworks, including CPU scheduling [95], flexible programmability [96], [97],183

and resilience [98], [99]. These recent studies are complementary to our CALVIN study and did not specifically184

focus on low latency. For instance, the NetStar study [96] has examined flexible asynchronous network function185

programming, which is mainly useful for network management traffic, e.g., flow table updates; whereas we focus on186

low-latency processing of data traffic. The HyperVDP study [97] has developed a hypervisor that flexibly offloads187

some CPU compute-intensive tasks to programmable network interface cards to reduce the resource usage (at the188

expense of slightly reduced throughput and increased latency).189

3) Combined Kernel and User Space: Closer related to our approach are recent frameworks that combine kernel190

and user space techniques. General architectural principles for building hybrid kernel-user space VNFs have been191

explored in [100]. With the combined kernel and user space approaches, the VNF applications can be programmed192

with the common socket interfaces; thus, some legacy applications can be deployed without modification. The193

combined approaches can utilize the scheduler provided by the guest OS and can simultaneously utilize kernel and194

user space tools. Thus, the combined kernel and user space approaches allow for low complexity implementations.195

Zhang et al. [51] have recently implemented network coding on typical VMs by employing DPDK [101] with the196

kernel network interface (KNI) [102]. We refer to this approach as the “centralized approach” as it strives to pack197

all VNFs into a single VM so as to avoid the latency introduced by transmissions between VMs, see Fig 5. In order198

to make multiple VNFs cooperate properly, the centralized approach employs both kernel and user space tools. As199

illustrated in Fig. 5, a packet needs to be transmitted between the kernel space and user space at least four times200

(red lines in Fig. 5 indicate slow path or bottleneck). Additional copies of packets between the kernel space and201

user space introduce non-negligible latencies, especially in a virtual guest OS. Moreover, the resources, especially202

virtual CPU (vCPU) resources, need to be shared between multiple processes both in kernel and user space; these203

context switches also incur latencies. Furthermore, the cache behavior of the CPU cannot be optimized because204

of this context switching; specifically, some processing related instructions cannot be pre-fetched and consistently205

stored in the CPU cache. The resulting relatively high latency is one main drawback of the centralized approach.206

The latency cannot be readily scaled down; for instance, utilizing two vCPU cores (one core to handle packet207

receptions and another core to handle packet transmissions) does not reduce the latency (as we have verified with208

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

7

Virtual Machine

User Space

Kernel Space

vEth0 vEth1

DPDK KNI Application

KNI Kernel Module Network
Stack

vCPU

VNF 2

VNF 1

VNF 3

read write

vNIC vNIC

Fig. 5: Graphical illustration of operational principles of centralized combined kernel and user space approach

described in [51]. The combined approach requires four or more packet transmissions between kernel space and

user space, illustrated by the vertical red arrows crossing over between kernel space and user space.

our own measurements of the centralized approach). To overcome the drawbacks of the centralized approach, our209

main CALVIN strategy is to distribute VNFs over a chain of VMs that run the network functions either completely210

in the kernel space or completely in the user space.211

We also note for completeness that a specific combined kernel and user space approach, referred to as “Tuna”,212

for a 5G wireless access point has been developed in [103]. The Tuna approach places management frames in the213

user space for virtualization, while placing control and data frames in the kernel space to reduce packet processing214

delays. In contrast, our approach is suitable for general VM processing and not tied to a particular application.215

III. PROPOSED APPROACH: CHAIN BASED LOW LATENCY VNF IMPLEMENTATION (CALVIN)216

The proposed CALVIN approach aims to take advantage of both the high-performance in-kernel network data217

path and user space (kernel bypass) techniques. At the same time, CALVIN avoids the overhead of context switching218

of the centralized approach [51]. This section presents the overview, architectural design, and workflow of CALVIN.219

A. Overview220

The underlying idea of CALVIN is to assess the nature of a VNF in terms of its complexity when processing221

packets. Accordingly, CALVIN decides to implement each VNF in either the kernel space or the user space. Each222

implemented VNF is then encapsulated inside a separate VM. These two CALVIN design choices completely223

eliminate the context switching overhead of the vCPU of each VM to process packets in different spaces and to224

schedule different VNF programs, thus reducing the overall end-to-end service latency.225

The main advantages of this CALVIN strategy are:226

• Reduce cost of context switching inside VM: As quantified in [104], context switching can produce direct and227

indirect costs. Direct costs are incurred mainly for storing the state of a process. The cache sharing between228

multiple processes creates an indirect cost that can exceed one millisecond for high system workloads. Running229

a VNF in a single space mitigates the negative effects of both costs on latency.230

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

8

• Avoid copying packet data structures between spaces: For ultra-low-latency VNF implementation, the cost of231

data copying and format conversion at any location of the data path should be considered. As illustrated in232

Fig. 5, data exchanges between spaces are critical bottlenecks for the VNF processing. Conducting all packet233

operations in a single space reduces data copying.234

• Increase scalability and flexibility: In a centralized approach, such as [51], multiple VNFs run on the same235

VM, sharing the same resources and configurations. Because of the virtual resource contention, the latency236

performance is not scalable without resizing resources when new VNFs are added into the processing pipeline.237

In contrast, the CALVIN performance can be scaled due to the flexible structure of the dynamic SFC. Each238

new VNF can be assigned a specific VM with appropriately allocated resources for the current functional239

requirements.240

B. VNF Classification241

Based on these design imperatives, we take a first step towards the development of the CALVIN SFC management242

framework by classifying VNFs. According to the introduced VNF classification, a given VNF is either implemented243

in the kernel space or in the user space. The network functions are divided into three main categories in CALVIN:244

1) Elementary (Skeleton) Functions: This type covers the fundamental functionalities for all VNFs: i) Retrieve245

packets from the ingress virtual interface. ii) Create data structures to store packets for operations. iii) Transmit246

processed packets through egress virtual egress interfaces. These functions can be implemented in both kernel and247

user spaces.248

2) Basic Functions: The main characteristics of basic functions are: i) Operations are mainly performed on the249

header (or metadata); not on the packet payload. Headers have typically small sizes; thus, header operations can250

be performed without iterative execution, which is not fully supported in the current eBPF and XDP versions.251

ii) The computational intensity and complexity are low so that the processing delay is limited to an acceptable252

range, even without acceleration mechanisms, such as Single Instruction, Multiple Data (SIMD), hugepages, or253

CPU cache prefetching, which are not fully available in most in-kernel frameworks. iii)The implementation has254

no strict dependencies on specific running environments or frameworks. Basic functions with these characteristics,255

such as router, load balancer, network address translation (NAT), and packet filter, are suitable for kernel space256

implementation.257

3) Advanced Functions: Compared to basic functions, advanced functions involve complex and compute-intensive258

operations with the following main characteristics: i) Both packet header and payload need to be processed. ii)259

Acceleration mechanisms in the user space are required to keep processing delays within reasonable ranges. iii) The260

implementation of advanced functions typically requires specific runtime or execution environments. For example,261

the widely used open source network coding library Kodo [105] requires the C++ runtime environment, which is262

not available in the kernel space. According to these characteristics it is beneficial to implement advanced functions,263

such as data encryption, compression, and network coding, in the user space.264

C. Selecting VNF Implementations for VNF Classes265

Compared to the numerous kernel-bypassing approaches [94], [106], [107], such as Netmap, PF_RING, DPDK,266

relative few in-kernel fast packet IO approaches have been developed. To the best of our knowledge, XDP is267

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

9

currently the fastest in-kernel programmable network data path which provides bare metal packet processing at the268

lowest point in the software stack [84], [108]. Therefore, we select XDP for the in-kernel VNF implementation in269

CALVIN.270

Based on a thorough literature review that covered [94], [106], [107] and related studies, we selected DPDK271

for the user space VNF implementation, mainly for the following reasons: i) High performance: According to the272

evaluation in [94], DPDK has demonstrated favorable bandwidth and latency performance. ii) Open source, low273

level with high configurability and very good documentation: This allows our VNF implementation to have full274

control of all processing functions invoked in the packet IO and to adopt design optimizations to reduce latency.275

For example, we have integrated the network coding library Kodo [105] with the native DPDK data structure to276

avoid data transfer overheads, thus achieving short latencies for advanced network coding VNFs. iii) Wide support:277

DPDK supports a wide range of physical, paravirtualized, and software NICs. The Open vSwitch also implements278

the DPDK fast path [54], simplifying the deployment of CALVIN on the OpenStack Cloud platform, which uses279

Open vSwitch as default software bridge.280

However, we acknowledge that bypassing the kernel with DPDK (Version 18.02) has several disadvantages [108]:281

i) The driver can only run in the polling mode. ii) Network and upper layer protocols require third-party imple-282

mentations (whereas these protocols are already implemented in the mainline Linux kernel). iii) The Linux kernel283

has its own security model for managing the networking hardware. Bypassing the kernel requires a new security284

model in the user space, which is an important direction for future research.285

D. Architecture Design286

The architectural design of CALVIN is illustrated in Fig. 6. CALVIN is built on top of the research-oriented287

SFC framework SFC-Ostack [46], [52]. We extend the SFC-Ostack control and data plane components to enable288

latency optimization strategies:289

• Control plane: We add the VNF classifier module which translates between the VNF description and the SFC290

description, including the VNF classification into basic and advanced functions. The processing pipeline of291

these VNFs is then converted into a function chain of VMs with their networking configurations. The life-292

cycle management of all instances in the SFC description is handled by the SFC manager that communicates293

with OpenStack services.294

• Data plane: In the data plane, multiple VMs are launched to run service functions over several physical295

compute nodes. In each VM, the service function is positioned either in the kernel space or in the user space.296

Packets are received from the ingress interface (vNIC), processed by the function program, and sent out297

through the egress interface (vNIC). VMs in the service chain are connected in a prescribed order by Open298

vSwitch with DPDK (OVS-DPDK).299

Notice in Fig. 6 that CALVIN uses the distributed mapping with one VM for one VNF (and not the compact300

mapping of multiple VNFs in the same VM). This CALVIN design choice is mainly based on the reasoning in301

Section II-B3 about the flexibility of VNF resource allocation and on the results in [25], which indicate that for302

non-trivial computational VNF tasks, i.e., in particular for our advanced functions, the distributed mapping achieves303

lower latencies.304

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

10

Control Plane

vNF Description

1 2 3

Data Plane

Software Bridges
(Open vSwitch with DPDK­accelerated Fast Datapath)

Virtual Machine A

Virtual Machine B

User Space

vNIC vNIC

Advanced Function 2

Virtual Machine C

User Space

vNIC vNIC

Advanced Function 3

SFC
Ingress Interface

SFC
Egress Interface

vNF Type
Classifier

SFC Description

Basic Function 1

Advanced Function 2

 Advanced Function 3

SFC Manager

Placement
Algorithm

OpenStack Services
Compute

Networking
Storage

Identity
Image

Dashboard

Kernel Space
Network Stack

Basic Function 1

vNIC vNIC

Fig. 6: Illustration of CALVIN architectural design, including fundamental components in control and data plane:

The SFC manager utilizes OpenStack services to deploy VNFs (which are classified into basic and advanced

functions) into a chain of VMs. The functions are implemented either in the kernel or user space. VMs in the SFC

are connected by Open vSwitch with DPDK datapath (OVS-DPDK).

E. Setup and Workflow305

The CALVIN operation with the distinct processing of basic and advanced functions requires various settings for306

both hardware and software used by the OpenStack cloud platform.307

1) Configurations for Accelerating Virtual Networking Infrastructure:308

• The physical NIC of each node must support DPDK [101], [109] to deploy the official OVS-DPDK plugin309

of OpenStack.310

• Each compute node should have dedicated CPUs assigned only for OVS-DPDK: The current version of OVS-311

DPDK works in polling mode and any interruptions from other processes can cause performance degradations312

and even lead to packet losses. Consequently, dedicated CPU cores must be configured for OVS-DPDK by313

using the LINUX CPU isolation tool.314

• The Input/Output Memory Management Unit (IOMMU) should be enabled to allow guest VMs to directly315

use physical NICs through Direct Memory Access (DMA).316

• Sufficient memory should be reserved to allocate hugepages for OVS-DPDK on all nodes. For compute nodes,317

additional memory needs to allocate hugepages for the guest OS of each VM instance.318

2) VNF Processing Configurations: Figs. 7 and 8 present the workflow of running basic functions in the kernel319

space and running advanced functions in the user space; the full source code is available from [53]. Since the320

Kernel-based Virtual Machine (KVM) is the default hypervisor of the OpenStack computing service (until latest321

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

11

Kernel Space

User Space

Enter
Processing
Loop

Compile Func
source code

Generate eBPF
bytecodeAttach to XDP

VM is active

Get exit signal?
Receive a packet
from ingress
interface

Run packet
processing

Run XDP action:
DROP, PASS or

Redirect
Exit

Initiate ingress
and egress
interfaces

Fig. 7: CALVIN workflow for basic functions running in the kernel space

Kernel Space

User Space

Initiate DPDK
running environment

Allocate and mount
hugepages Enable IOMMU Insert igb_uio

kernel module

Bind ingress and
egress interface to
igb_uio driver

VM is active
Enter

Processing
Loop

Get exit signal?
Receive a packet
from ingress
interface

Run packet
processing

Send the packet to
the egress
interface

Exit

Fig. 8: CALVIN workflow for advanced functions running in the user space

version: rocky) [110], the following configurations are deployed for VMs launched by the KVM hypervisor:322

a) Kernel Space:323

• Due to the XDP requirements [111], the virtual interface of each VM should support the allocation of324

a dedicated transmit queue (TX queue), e.g., through the virtio net patch [111] to OpenStack or through325

extending the OpenStack Nova project.326

• The Linux kernel of the guest OS running inside the VM should be updated to at least version 4.8 to run the327

XDP program [112].328

• The eBPF compiler framework BCC [112] should be installed to compile the XDP program and to attach329

the compiled program to the virtual interfaces.330

b) User Space:331

• Virtual interfaces should be assigned with IOMMU for minimal latency overhead.332

• Sufficient memory should be allocated for hugepages. These memories are used not only to initialize the333

running environment of each DPDK application, but also to store packets that must be queued before334

transmission.335

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

12

• The DPDK kernel module igb uio needs to be loaded to enable the kernel Poll Mode Drivers (PMD) driver.336

This driver should be bound to the VM ingress and egress interfaces.337

We note that exchanging data between VNFs purely in user space in a given VM is not straightforward. Normally,338

Inter Process Communication (IPC) mechanisms e.g., the Unix Domain Socket, are used to exchange data between339

processes running on the same VM. However, the IPC mechanisms are provided by the OS, which inject packets340

back into the kernel space. In order to avoid being forced back into the kernel space for inter-VNF data exchanges,341

we adopt the distributed mapping of one VNF per VM for CALVIN. Both the centralized approach and CALVIN342

use fast DPDK frame IO (which is substantially faster than the conventional raw socket frame handling by the OS)343

for the ingress and egress vNICs. The critical difference between CALVIN and the centralized approach is that344

CALVIN avoids injecting packets back into the kernel space of a given VM.345

We also note that legacy advanced VNF, such as network coding function programs, have been written for normal346

layer 3 or raw sockets, which are typically not directly compatible with DPDK. For CALVIN, we implemented347

the examined advanced VNFs that run in user space based on the DPDK architecture and data structures. Building348

advanced VNFs on the native DPDK data structures avoids data transfers, aiding in achieving short latencies.349

3) Future Research Directions for CALVIN Workflow: The current CALVIN version developed and evaluated in350

this study employs the distributed mapping of one VM per one VNF. The data is exchanged between VMs with351

low-latency OVS-DPDK software bridging, see Fig. 6, and is processed with the respective workflows illustrated352

in Figs. 7 and 8. The software bridging avoids the latencies due to the conventional IPC mechanisms provided353

by the OS. Ongoing research and development of kernel space and user space processing may enable low-latency354

data exchanges between distinct VNFs purely in the kernel space or purely in the user space. For instance, eBPF355

supports tail calls and maps to chain and to exchange data between multiple eBPF programs purely in the kernel356

space. Future research could design and evaluate low-latency XDP-based in-kernel SFC mechanisms that could357

process the elementary and basic VNFs. In the user space, the principle of shared memory regions [113], [114]358

could enable low-latency data exchanges between VNFs and form the foundation for low-latency DPDK-based user359

space SFC mechanisms for processing advanced VNFs.360

Another (albeit less important) motivation for the distributed mapping in the current CALVIN version is the361

flexibility of dynamic resource scaling of distributed VMs. Dynamic VM resource scaling without service downtime362

can be achieved through live resizing, which has recently become feasible in the commercial VMware integrated363

OpenStack [115], but is not yet fully supported in OpenStack [116]. Alternatively, a new VM with more vCPUs364

can be provisioned when VNFs become bottlenecks. The compact mapping with all VNFs operating on a single365

VM requires that the old VM and the new VM operate simultaneously during the transition phase, which can be366

demanding for the typically limited memory resources of cloud compute systems. The distributed mapping allows367

the transition to be performed sequentially, with only the old VM and new VM supporting one VNF operating368

simultaneously. Nevertheless, the ongoing advances may make dynamic resource scaling (live resizing) of VM369

instances common in the future. It would then be interesting to examine live resizing in the context of low-latency370

VNF processing.371

As low-latency inter-VNF data exchanges purely in the kernel or user space in a given VM and live resizing of372

VMs mature, it would be interesting to develop a compact mapping version of CALVIN that processes all basic373

VNFs in a single kernel-space-focused VM and all advanced VNFs in a single user-space-focused VM. It would374

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

13

Compute Node 2

Centralized Approach Mapping

(One VM for Multiple VNFs)

Compute Node 1

Server VM

Service Proxy VM

ts tsts

IPD
ts ts ts

UDP
Client

ts

ts

ts

Direct Forwarding SFC Path

Probing UDP segments with timestamp and ID.

CALVIN Mapping
(One VM for One VNF)

......VNF 1 VNF NVNF 2

UDP
Server

Fig. 9: Illustration of RTT measurement set-up: The service proxy and the server are allocated on compute node

1. Multiple VNFs are launched on compute node 2 to implement the SFC for the probing UDP traffic generated

by the service proxy. The RTT is measured at the UDP client.

then be interesting to compare this compact mapping CALVIN version with the distributed mapping CALVIN that375

is examined in this paper.376

IV. PERFORMANCE EVALUATION OF ELEMENTARY AND BASIC FUNCTIONS377

In order to evaluate the feasibility of CALVIN for the 1 ms control loop of the tactile Internet, we first conduct378

measurements for elementary and basic functions with a minuscule computational workload in this section. The379

measurement results for elementary and basic functions indicate the baseline latencies. The evaluation methodology380

and testbed are extended from the testbed introduced in our conference paper [46].381

A. Measurement Set-up382

Fig. 9 illustrates the measurement set-up. VMs are launched on two compute nodes to measure the latency of the383

elementary service loop introduced in Section II-A. We use an active measurement strategy to measure the latency384

for UDP traffic. We consider the UDP protocol for the probing traffic since UDP is typically used for low-latency385

applications. Latency measurements for TCP are difficult due to the complex TCP flow control and congestion386

control. UDP traffic provides us with full control of both the sending and receiving processes.387

1) Architecture: The measurement setup is based on the service loop in Fig. 3. The service proxy runs the UDP388

client, which sends probing packets to the server located on the same compute node 1. The server simply bounces389

all received packets back to the client as fast as possible. Alternatively, probing packets can be forwarded directly390

to the server to measure the direct forwarding latency (without any VNFs) of the underlying network infrastructure.391

In order to reflect authentic practical networking scenarios, the service proxy VM and the server VM do not use392

fast IO technologies, such as DPDK or XDP. In particular, the service proxy and the server are normally working393

in the network layer (in contrast to VNFs running in the data link layer). Therefore, we employ the conventional394

Linux networking stack in the service proxy VM and server VM, so as to capture the latencies introduced by the395

networking layer.396

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

14

Compared to the centralized measurement setup in [86], the components of our measurement architecture are397

distributed over two different physical nodes, which mimics practical cloud environments.398

A time stamp (ts) and an identification number (ID) are added before the payload part of each probing packet.399

The time stamps are used for the latency calculation. The IDs are used to identify out-of-order packets which400

would indicate the accumulation of packets in queues [117]. We set the packet traffic rates sufficiently low, see401

Section IV-A5 to avoid out-of-order packets.402

2) Testbed: All measurements were performed on our NFV testbed consisting of off-the-shelf computers that are403

connected by two separate Gigabit Ethernet networks. Each computer had 4 CPU cores (Intel 4th Generation Core404

i5), 16 GB RAM, 128GB SSD, and two Gigabit NICs (Intel 9301CT Gigabit CT). OpenStack (Pike version) [118]405

was deployed on these computers, installed with the Ubuntu Server 16.04 TLS operation system. For each node,406

one NIC is used for management and public traffic, and the other NIC is used to build a separate internal data407

network for the virtual instance. The purpose of using a separate network is to reduce the impact of management408

and public traffic on latency measurements. Besides the compute, networking, identification, and storage services409

of OpenStack, the official SFC and OVS-DPDK plugins were installed. In particular, we used Virtio [119] for the410

vNIC and OVS-DPDK as the virtual bridge. For the management of the virtual instances, KVM was used as the411

hypervisor and the customized Ubuntu Cloud image was used to implement different VNFs.412

3) Elementary and Basic VNFs: We implemented and measured elementary forwarding and two basic VNFs.413

FWD Elementary Forwarding (FWD): Packets are retrieved from the VNF ingress interface and directly forwarded414

to the egress interface without any operations. FWD is an elementary function of each VNF and other VNF415

functions are built on top of the FWD function.416

ATS Appending Time Stamps (ATS): The timestamps of the reception and transmission of a given packet by the417

current VNF are appended to the end of the UDP payload of the packet just before the packet is sent out.418

The ATS function modifies the payload size; therefore, the layer 3 and layer 4 header checksums must be419

recalculated. In order to ensure fair latency comparisons, we recalculate the checksum with standard methods420

in software (and do not employ checksum offloading). Thus, the ATS function can be used to estimate the421

latency introduced by a trivial operation on the packet payload.422

XOR XORing UDP payload (XOR): This function performs an XOR operation with the same static key on all423

bytes of the UDP payload. Compared to ATS, the XOR function can be used to estimate the additional424

latency introduced by a non-trivial computational operation on the packet payload.425

We make the source code of all VNF implementations openly available at [53].426

4) Metrics:427

a) Latency: We adopt the Round-Trip-Time (RTT) (i.e., the per-packet delay) of each UDP packet sent by428

the UDP client program running on the service proxy VM as the latency metric for the following reasons: i) The429

RTT includes the delay introduced by the forward and backward paths. ii) The RTT measurement does not require430

time synchronization between the VMs. (According to the experiments in [120], VM-level time synchronization is431

error prone due to the interference between the VMs.) Note that the measured RTT includes all latency components432

(1)–(5) illustrated in Fig. 4 across the entire SFC.433

b) Bandwidth: We measure the maximum achieved bandwidth (packet throughput in bit/second) with iPerf434

(version 2) in the UDP mode [121] (We did not use iPerf for RTT measurements because iPerf currently does not435

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

15

support per-packet delay measurements; we wrote our own Python tools [53] for the per-packet RTT measurements.)436

We run an iPerf UDP bounce server on the server VM and an iPerf UDP client on the service proxy VM (all on437

compute node 1 in Fig. 9). Through trials that manually adjusted the iPerf client target bandwidth in steps of438

10 kbit/s, each lasting for five minutes (with ten independent repetitions), we determined the maximum bandwidth439

such that there are no lost or out-of-order packets detected at the iPerf client side.440

5) Active Measurement Parameters: Active measurements require the setting of two UDP traffic parameters,441

namely the Inter-Packet-Delay (IPD) and the payload size. Based on our preliminary measurements (which are not442

included in detail due to space constraints), relative small IPDs on the order of a few milliseconds give consistent RTT443

values. Much shorter IPDs and correspondingly high traffic rates would lead to queueing for the VNF processing,444

as analyzed in [57], [58], [61], [63], [64], [66]–[68]; in contrast, our measurements focus on the latencies of lightly445

loaded systems without significant queueing. The RTT values slightly increase with increasing IPD, which is mainly446

due to OS batching mechanisms and the queuing mechanisms of the underlying virtual bridges that are activated for447

low network traffic loads. To avoid the additional latency introduced by batching (queuing) and to ensure consistent448

measurements, we set the IPD to 5 ms in all measurements.449

We select 256 and 1400 bytes as the lower and upper limits of the payload size. According to our preliminary450

evaluations, UDP segments with less than 256 bytes of payload cannot be properly processed by XDP. At the451

same time, the official SFC plugin of OpenStack [122] currently does not support jumbo frames. The maximum452

UDP payload size depends on the Maximum Transmission Unit (MTU) of the underlying physical network. For453

the default MTU of Ethernet of 1500 bytes, the maximum UDP payload size is limited to 1472 bytes (1500− 20454

(minimum IPv4 header) −8 (UDP header)). A payload size of 1400 bytes is chosen to provide enough free spaces455

reserved for IP header options or additional service function related headers.456

For each scenario, the measurements were repeated 50 times; for each measurement, 500 UDP segments were457

sent by the probing client.458

6) Measurement Scenarios:459

a) Comparison of Different VNF Technologies: We selected XDP [84] to implement VNFs in kernel space460

and DPDK [101] to implement VNF in user space for CALVIN (see Section III-C). To benchmark the latencies461

of these two selected technologies, we also consider two other frequently considered VNF technologies, namely462

Linux Kernel Forwarding (LKF) as a kernel space technology and the Click modular router [123] as a user space463

technology.464

XDP: The XDP workflow flow is outlined in Section III-E. Due to following XDP restrictions, only the FWD465

and XOR functions with the 256 bytes UDP payload size are implemented: i) The maximum number of466

instructions per XDP program is currently 4096 BPF instructions [124], limiting the complexity of the467

computational operations as well as the data amounts that can be manipulated. ii) The range of the XDP468

operational memory for each packet is limited by the size of the original received packet. Operations outside469

this range are prohibited. Thus, the ATS function cannot be implemented with XDP.470

DPDK: The high flexibility and programmability of DPDK allow all three functions to be implemented as DPDK471

applications. By default, DPDK applications run in polled mode and can consume 100% of the CPU resources.472

The CPU and corresponding power consumption could be reduced with a sleeping mechanism. To minimize473

the processing delay, we set the number of packets in a processed batch (burst) to one.474

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

16

Centralized Approach CALVIN

VM 1 (1 vCPU)

Kernel Space

VM (2 vCPUs)

User Space

Kernel Space

vEth0 vEth1

DPDK KNI Application

KNI Kernel Module Network Stack

Socket FWD

read write

vNIC vNIC

VM 2 (1 vCPU)

User Space

vNIC vNIC

DPDK FWDXDP FWD

vNIC vNIC

Fig. 10: Detailed illustration of measurement set-up for the RTT comparison between centralized approach and

CALVIN on compute node 2 of Fig. 9.

LKF: Linux Kernel Forwarding (LKF) is a built-in Linux kernel feature for network-layer packet forwarding [125].475

Due to its trivial operations, LKF is one of the fastest functions running in the kernel space. Since LKF does476

not provide any programmability, LKF cannot be used to implement different VNFs in the kernel space.477

Click: The Click modular switch is a software framework for building flexible and configurable routers [123].478

Compared to the low-level IO operations offered by DPDK, Click provides multiple encapsulated packet479

processing modules called elements to build processing pipelines. Elements can be connected with a directed480

graph described in a router configuration file. The evaluated VNFs are implemented by combining built-in481

and customized elements.482

For the VNF technologies comparison, we launch a single VM on compute node 2 in Fig. 9 to run the network483

function.484

b) Comparison of Centralized Approach [51] vs. CALVIN: We benchmark the proposed CALVIN approach485

against the state-of-the-art centralized approach [51], which was one of the first well-studied approaches for486

implementing advanced functions, such as network coding, as VNFs. (We re-implemented the centralized approach as487

its source code was not publicly available.) In order to examine the distributed VNF aspect of CALVIN, we consider488

two FWD VNFs on two separate VMs for CALVIN, while for clarity of comparison we implement only one FWD489

VNF in the centralized approach. We give the centralized approach a VM with twice the computational resources490

(vCPU and memory) compared to each individual VM used by CALVIN. Thus, the comparison is effectively491

between two FWD VNFs in CALVIN and one FWD VNF in the centralized approach, whereby both approaches492

having the same computational resources. More specifically, for the centralized approach, which is illustrated in493

the left part of Fig. 10, packets enter the VM through the left vNIC, traverse the FWD VNF and exit through right494

vNIC. For CALVIN, which is illustrated in the right part of Fig. 10, packets enter the left vNIC of VM1, traverse495

the XDP FWD, exit through the right vNIC of VM1, enter the left vNIC of VM2, traverse the DPDK FWD, and496

exit through the right vNIC of VM2.497

B. Results498

1) RTT Measurements of Elementary and Basic VNFs for Different VNF Technologies: The average values and499

95% confidence intervals of the measured RTTs of the elementary and basic VNFs implemented (one VNF on500

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

17

FWD XOR FWD FWD ATS XOR FWD ATS XOR

0.0

0.1

0.2

0.3

0.4

0.5
R

o
u

n
d

T
ri

p
T

im
e

(m
s)

0.12 0.12 0.12
0.14 0.14 0.14

0.15 0.15 0.15

XDP

LKF

Click

DPDK

FWD FWD FWD ATS XOR FWD ATS XOR

0.0

0.1

0.2

0.3

0.4

0.5

R
o
u

n
d

T
ri

p
T

im
e

(m
s)

0.18
0.20

0.27
0.28 0.28

0.29 0.29 0.29

XDP

LKF

Click

DPDK

(a) Payload size: 256 bytes Payload size: 1400 bytes

Fig. 11: Means and 95% confidence intervals for round-trip time (RTT) of different VNF technologies in kernel

space (XDP and LKF) and user space (Click and DPDK). The 95% confidence intervals for the 256 byte payload

size are very tight and barely visible in the plot.

compute node 2) with different VNF technologies are plotted in Fig. 11. We observe from Fig. 11 that the RTTs501

for the two basic VNFs, namely ATS and XOR, are equivalent to the respective RTTs for the elementary FWD502

VNF for all VNF technologies. This result implies that the additional latencies for the payload processing in the503

basic ATS and XOR VNFs are negligible compared to the elementary FWD latencies.504

Examining closely the in-kernel VNF technologies, we observe from Fig. 11 that although XDP and LKF have the505

same FWD RTTs for small packets, XDP FWD is around 10% faster than LKF FWD for large packets. Moreover,506

we observe from Fig. 11 that the RTTs for in-kernel processing (XDP and LKF)) and user space processing (Click507

and DPDK) are very similar for the small 256 bytes packet size. On the other hand, for the large 1400 bytes packet508

size, user space processing incurs substantially longer (about 50% longer) RTTs than in-kernel processing.509

These observed latency differences appear to be primarily due to the two main types of overhead introduced by510

basic functions: (i) The overhead of copying frames [126] from the virtual NIC ring buffer to the VM memory,511

and (ii) the overhead of additional metadata pre-processing of the frames. In the Linux networking stack (LKF), a512

data structure sk_buff containing some metadata is allocated for each received frame. The latency overheads for513

extracting the metadata and allocating sk_buff are non-trivial [24], [84], [127]. In contrast, XDP operates at the514

lowest point in the Linux software networking stack, without allocating a metadata data structure, nor any parsing515

and pre-processing of packets. XDP supports the packet forwarding to another interface (XDP REDIRECT Action)516

without the metadata processing and without checking the routing table of the kernel (MAC addresses are provided517

and written by the eBPF program). For the conventional Linux kernel forwarding (LKF), the metadata structures518

must be created and the kernel requires checking the routing table to write the proper MAC addresses. Thus, LKF519

is slightly slower than XDP for large packets (which require more time to extract the metadata). In summary, both520

XDP and LKF copy the frames into kernel space memory; XDP does not allocate metadata structures, whereas521

LKF does allocate metadata structures.522

Turning to the user space technologies, Click and DPDK copy the frame data into user space memory and allocate523

different metadata structures. In particular, in DPDK (kernel bypassing), the Poll Mode Driver (PMD) [128] copies524

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

18

10−1 100 101

Round Trip Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

L
ik

el
ih

o
o
d

o
f

O
cc

u
rr

en
ce

Direct Forwarding

CALVIN 256 B

CALVIN 1400 B

Threshold 0.35 ms

Centralized 256 B

Centralized 1400 B

256 320 384 512 640 768 896 1024 1280 1536 1792 1400

Payload Size (Bytes)

0

5

10

15

20

25

30

B
a
n

d
w

id
th

(M
b

it
s/

se
c)

Centralized

CALVIN

(a) RTT for packets with 256 bytes and 1400 bytes. (b) Supported bandwidth

Fig. 12: FWD VNF performance comparison: Proposed CALVIN (two FWD VNFs, namely XDP FWD and DPDK

FWD, see right side of Fig. 10) vs. the state-of-the-art centralized approach [51] (one FWD VNF, see left side of

Fig. 10), whereby both CALVIN and centralized approach utilize same computational resources (two equivalent

vCPUs).

frames from the NIC ring buffer to the DPDK user space memory pool (a pre-allocated fixed-length memory using525

hugepages make it resident in the physical memory [101], [129]). During this copying, an additional mbuf data526

structure [130] containing metadata is created for each frame. These metadata are required by DPDK for further527

processing and many advanced features. For large packets, this copying into the user space memory pool and528

metadata structure creation can incur significantly longer latencies compared to the in-kernel approaches. Click529

involves similar latency increasing copy and metadata operations.530

2) Comparison Between Centralized Approach and CALVIN:531

a) RTT: Fig. 12(a) presents the RTT measurement results for the elementary FWD VNF. As presented in Fig. 9,532

the direct forwarding is the baseline of the transmission delay introduced by the underlying virtual networking533

infrastructure. We observe from Fig. 12(a) that the centralized approach exceeds the 0.35 ms delay threshold in534

the best case, while the CALVIN RTT is below the 0.35 ms threshold with about 70% probability for 1400 bytes535

packets, and with nearly 100% for 256 bytes packets. The measured average (mean) RTTs (accounting for all latency536

components (1)–(5) in Fig. 4) for the 256 bytes and 1400 bytes packets are as follows: CALVIN: 0.19 ms and537

0.32 ms, respectively; centralized approach: 2.30 ms and 2.39 ms, respectively. Thus, we conclude that CALVIN can538

meet the low latency requirement introduced in Section I and allow additional data processing inside the virtualized539

environment.540

We remark that the measurements without fast packet IO in [25] indicated that for VNFs with very low compu-541

tation demands, the compact mapping gave lower latencies than the distributed mapping, while for computationally542

intensive VNFs, the distributed mapping gave lower latencies. Our latency measurements with our fast packet IO543

based CALVIN demonstrate that the distributed mapping achieves low latencies within the latency constraints of the544

tactile Internet for elementary and basic VNFs with low computational demands. Intuitively, with the accelerated545

packet IO and the correspondingly supported high packet rates and high CPU resource consumption for fast packet546

IO (compared to the conventional slow networking stack), even VNFs with low computational processing demands547

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

19

do no longer present a trivially low computation load on the CPU. Thus, we believe that the distributed mapping is a548

good design choice for implementing all classes of low-latency VNFs in CALVIN. The distributed mapping allows549

each VNF to focus on conducting its processing tasks quickly in its own space and leaves the communication to550

the underlying software integration bridge, which has mature low-latency performance. The allocation of one VM551

per VNF with the distributed mapping may be considered wasteful; however, each VM could be optimized for its552

usage and the distributed mapping is consistent with the emerging unikernel concept [131], [132]. For example, if553

the packet processing occurs mainly in the userspace, then the kernel components could be slimmed down to make554

the kernel space as small as possible.555

b) Bandwidth: Fig. 12(b) presents the bandwidth measurement results for payload sizes ranging from 256 to556

1400 bytes. We observe from Fig. 12(b) that the bandwidth supported by the centralized approach is substantially557

higher than the CALVIN bandwidth, especially for large packets. For a payload size of 1400 bytes, the centralized558

approach bandwidth is over 15 times higher than the CALVIN bandwidth. Compared to the centralized approach559

with a minimal supported bandwidth around 6 Mbits/s, the maximal CALVIN bandwidth is in the range from560

1.4–1.7 Mbits/s.561

c) Latency-Bandwidth Trade-off: Taken together, the RTT results in Fig. 12(a) and the bandwidth results in562

Fig. 12(b) demonstrate the tradeoff between per-packet latency and throughput in real system implementations.563

The centralized approach uses the standard Linux socket implementation which was designed primarily for high-564

throughput best-effort service applications, e.g., file transfers, which have typically bursty traffic. Accordingly, the565

kernel networking stack includes a range of throughput enhancing mechanisms, such as batch processing. Batch566

processing collects multiple packets and then processes the batch of packets with acceleration methods, e.g., with567

single instruction multiple data (SIMD) instructions and enhanced CPU caching. Batch processing increases the568

per-packet delay as the first packet in a batch must wait for subsequent packets to fill up a batch before processing569

commences.570

The batch processing in the Linux networking stack slows down the centralized approach, even if no batch571

processing is employed in the DPDK user space application. This is because the KNI injects packets back into the572

normal Linux kernel networking stack, where batching is employed. The batching in the kernel stack cannot be573

avoided without modifying the kernel source code.574

CALVIN avoids this batch processing in the kernel space by employing fast path technologies, e.g., XDP, for575

in-kernel VNF implementation. Since our goal is to reduce the per-packet delay, CALVIN avoids batch processing576

in all VNF implementations. The VNF implementations in CALVIN operate in a run-to-completion mode, i.e., they577

retrieve one packet, process it (batch size of one packet), and send it out as quickly as possible. CALVIN thus578

reduces the per-packet latency, as observed from Fig. 12(a), at the expense of supporting a lower packet throughput,579

as observed in Fig. 12(b).580

For the tactile Internet for human-machine co-working, low per-packet delay is typically much more important581

than support for high bandwidth. The human-machine co-working packet traffic, e.g., the control messages of a robot582

arm are typically small so that support for low bandwidths is sufficient. Also, the 5 ms IPD is sufficient as a sample583

period of an angle sensor for a typical pendulum application, as illustrated by the right side of Fig. 1. On the other584

hand, control messages that are delayed by batch processing can profoundly disrupt human-machine co-working.585

Therefore, CALVIN trades support for only low bandwidth for reduced per-packet latency. The bandwidth supported586

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

20

TABLE I: CPU usage of the physical compute node

Approach User (%) Sys (%) Guest (%) IDLE (%)

Centralized 25.2 47.2 2.9 24.7

CALVIN 25.2 23.0 2.2 49.6

by CALVIN can be improved in future work with bandwidth management mechanisms, e.g., a load balancer that587

distributes a packet flow over a set of duplicated VNFs to enable parallel processing. Parallel processing requires588

a fast per-flow load balancer and a traffic merger to handle out-of-order packets arising from the parallelism.589

d) CPU Resource Usage: We measured the usage of the four cores of the physical CPU on compute node590

2 in Fig. 9 with mpstat [133]. Since the scheduling of CPU resources for all running VMs is managed by the591

OpenStack compute service (Nova), the global average usage of all cores has been measured. We measured with592

a sample period of 1 second for a duration of 10 minutes. Table I shows the CPU usage levels of the centralized593

approach and CALVIN at the user level (User), kernel level (Sys), and for a niced guest (Guest).594

We observe Table I that compared to CALVIN, the centralized approach doubles the CPU resources consumed595

at the kernel (Sys) level. KVM uses the Linux kernel of the host OS as the hypervisor and uses POSIX threads596

to implement vCPUs of the guest OS [134]; thus, the Sys CPU usage reflects the usage of the vCPU of the VM597

running the VNF. By avoiding the overhead of context switching and metadata processing of each vCPU, CALVIN598

significantly reduces the kernel (Sys) CPU usage of the host OS. Thus, CALVIN leaves a significantly higher599

proportion of time of the physical CPU idle. This higher CPU idle time achieved by CALVIN can be utilized to600

run cloud management services, software bridges, and other essential background processes to stabilize the latency601

performance.602

V. EVALUATION OF COMPUTATION-INTENSIVE ADVANCED VNFS603

The evaluations in Section IV-B2 indicated that CALVIN can complete elementary VNFs with an RTT (within604

the MEC) on the order of 0.32 ms. Thus, considering the 0.35 ms MEC latency budget from Fig. 2 there is still a605

remaining latency budget of about 0.02 ms for some advanced VNFs. This section evaluates network coding and606

encryption as two examples of advanced VNFs that have relatively high computational demands. We first describe607

the practical applications and relevance of these two VNFs. Then, we use the test setup from Section IV-A to608

evaluate the processing delay incurred by these advanced VNFs. The purpose of this evaluation is to assess whether609

the RTT reduction for elementary VNFs achieved by CALVIN is sufficient to permit practical advanced VNFs610

within the latency requirements of the tactile Internet.611

A. Network Coding612

Network coding linearly combines several original packets with coding coefficients to form encoded packets that613

are transferred through the network [135]. In Random Linear Network Coding (RLNC), the coding coefficients614

are randomly generated. The key benefits of RLNC include: i.) the ability to recode with partially received data615

at all nodes in the network without requiring coordination, thus being suitable for distributed environments [136],616

ii.) versatile coding matrix, permitting sparsity (judiciously added zeros) to reduce computation complexity [137],617

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

21

[138], iii.) low latency support due to on-the-fly coding capabilities [139], [140], iv.) support of heterogeneous field618

sizes for communication entities, increasing flexibility in heterogeneous contexts [141], and v.) reduced overhead619

between the storage and transmission layers, as the same code can also be used for distributed storage [142].620

Network coding research has proposed many different RLNC variants. We focus on the two main RLNC types,621

namely systematic block codes and convolutional sliding window codes. Block-based RLNC was introduced to622

reduce the computational requirements and control for network coding [143]. To further improve the performance,623

a systematic code does not code every packet, but sends original packets as “coded” packets [144]. The packets624

built from linear combinations are then sent in between original packets or at the end of the block [145].625

Sliding window network coding has been introduced to reduce the in-order delay of coded transmissions [146].626

In the form of a systematic code with a limited coding window, sliding window network coding has shorter in-order627

delay compared to block codes, while generally requiring comparable computational resources [140].628

Although network coding has been extensively studied in recent years, the deployment of RLNC in real-world629

networks is still rare. The main obstacle for the deployment of network coding is the limited availability of pro-630

grammable computing resources at network nodes, which are currently only used for switching and routing decisions.631

However, NFV and SDN provide new flexibilities for deploying innovative functions within a network [16]. With632

NFV, network coding can be implemented for abstract VMs or containers, which can be instantiated at arbitrary633

NFV-capable network nodes. In addition, SDN can direct the data flows towards the network coding VNFs and634

orchestrate them in an SFC [147], [148]. However, the latency of network coding as a VNF in a general-purpose635

MEC system has to the best of our knowledge not been previously examined in detail.636

Our per-packet processing delay measurements consider the encoding (which is computationally equivalent to637

recoding in a network node) with a Galois field size of GF (28) and 25% redundancy. We consider block coding638

with a block size of 32 packets and sliding window coding with a window size of 8 packets.639

B. Encryption640

Encryption and decryption are critical security components in communication, ensuring the confidentiality and641

integrity of the transferred data. More than 40% of the web traffic is transported in encrypted form over HTTPS,642

with an increasing trend [149]. As a result, decryption is required for a multitude of network functions, e.g., caching643

and deep packet inspection. As with network coding, encryption requires the entire payload to be processed which is644

a considerable computational effort. We focus on the Advanced Encryption Standard (AES), which is a commonly645

used encryption standard for data transfers and storage.646

A previous study showed a prohibitive end-to-end latency of at least 30 ms for encryption as a VNF [150].647

However, this previous study did not take advantage of fast packet processing mechanisms, such as DPDK. Other648

VNF implementations of AES encryption have used Graphics Processing Units (GPUs) to increase the throughput649

and scalability [151], [152], while incurring latencies of over 150 µs [151]. In contrast, our CALVIN approach650

enables encryption of small packets within a 20 µs delay budget on a general-purpose MEC system.651

C. Measurement Set-up652

Compared to the measurement set-up for elementary and basic functions described in Section IV-A, the following653

additional considerations are required for evaluating advanced functions:654

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

22

1) VNF Implementation: Due to the limitations of in-kernel technologies, CALVIN uses DPDK to implement all655

advanced VNFs. Both network coding and AES encryption functions are implemented on top of the elementary656

DPDK FWD application. We implemented network coding with the Network Coding Kernel Library (NCKernel),657

which is built on top of the Kodo library [105], to support the different variants of network coded communications.658

We used the portable AES Implementation Tiny-AES-C [153] to build the encryption application.659

We implement multiple VNFs in parallel (each VNF on its own VM according to the CALVIN architecture660

principles, see Section III-D) so as to evaluate the scalability of our VNF implementation. Scalability is a key661

performance indicator for virtualization systems since a key aspect of virtualization is to run multiple virtual662

instances on limited hardware resources.663

2) Metric: Since the RTT of elementary forwarding has been evaluated in Section IV, the measurements for the664

advanced VNFs focus on the packet processing delay. We define processing delay as the time duration required665

for the complete processing of a packet by a VNF, i.e., as the latency component (1) in Fig. 4. For VNFs that can666

generate redundant packets, such as network coding, this processing delay also includes the time duration required667

to create redundant packets.668

3) Methodology: In order to evaluate the impact of VNF processing demands on the processing delay, the669

computational operations should be performed in parallel. This requirement is very challenging if the probing670

traffic is generated by a remote VM. Accurate synchronization mechanisms would need to be deployed on the671

virtualized networking infrastructure to ensure that probing packets arrive at each VNF at the same time. Therefore,672

instead of using an additional client to generate probing UDP traffic, for the evaluation of the advanced VNFs, the673

UDP segments are generated locally by each allocated VM. The locally generated traffic ensures that the VMs are674

continuously backlogged so that we obtain the worst-case processing delay: Every VM is always busy working and675

the OpenStack scheduler needs to handle the resource allocation among them. The delay values of warm-up and676

tail probing packets are not included in the measurement results. For each number of VNFs, 50000 valid probing677

packets are generated for processing.678

D. Evaluation679

The evaluation of elementary functions in Section IV-B2, indicated a mean delay of 0.32 ms for the elementary680

FWD VNF of 1400 bytes packets in CALVIN. Considering the MEC latency budget of 0.35 ms from Fig. 2 and681

a safety margin around 0.01 ms, we consider a latency budget of 20 µs for the advanced function processing (for682

smaller packets this latency budget could be larger as 256 bytes packets had only 0.19 ms mean RTT and 0.25 ms683

90%ile RTT in Section IV-B2).684

Figure 13 shows the measured processing times for small 256 bytes packets and large 1400 bytes packets. For685

small packets, the processing time is within the 20 µs requirement for all evaluated functions. With increasing686

number of VNFs, the load on the CPU increases and the processing time increases linearly as soon as the number687

of VNFs exceeds the number of CPU cores that are available exclusively for VM processing (one of the available688

four CPU cores is heavily utilized by the OVS-DPDK software bridge, which runs in polling mode with default689

DPDK functionalities). The latency increase is due to the contention for CPU resources. For a prescribed maximum690

latency requirement, e.g., 5 µs, we can read off the number of permitted parallel running VNFs, e.g., three VNFs.691

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

23

1 2 3 4 5 6 7 8 9

Number of VNF(s)

0

5

10

15

20

25

30
P

er
-p

a
ck

et
P

ro
ce

ss
in

g
D

el
a
y

(u
s) NC Sliding Window

NC Block Code

AES256 ENC

AES256 DEC

1 2 3 4 5 6 7 8 9

Number of VNF(s)

20

40

60

80

100

P
er

-p
a
ck

et
P

ro
ce

ss
in

g
D

el
a
y

(u
s) NC Sliding Window

NC Block Code

AES256 ENC

AES256 DEC

(a) Payload size: 256 bytes (b) Payload size: 1400 bytes

Fig. 13: Means and 95% confidence intervals for processing times in microseconds for computationally intensive

advanced VNFs: Per-packet processing latency in given VNF (latency component (1) in Fig. 4) on a given VM as

a function of the number of VNFs running in parallel (with one VNF per VM) on one compute node with four

CPU cores.

With a load balancer redirecting a given flow to multiple VNFs (and VMs), the larger numbers of supported VNFs692

would correspond to increased supported throughput.693

For the large 1400 byte packets, we observe from Figure 13 increased processing times compared to the small694

256 bytes packets. While the processing time for network coding remains relatively low and well within the 20 µs695

budget, encryption is not feasible even when the VNFs have exclusive access to a CPU core, i.e., for three or less696

VNFs. For network coding, the sliding window code has substantially shorter processing times than the block code.697

Even for large packets and high contention for the CPU resources, e.g., for nine parallel VNFs, the sliding window698

network coding delays remain below 7 µs.699

VI. CONCLUSION700

We have designed, implemented, and evaluated Chain bAsed Low latency VNF ImplemeNtation (CALVIN),701

an approach for managing distributed service function chains (SFCs) for low-latency tactile Internet applications.702

CALVIN implements virtual network functions (VNFs) either in the kernel space (if VNFs require only simple703

processing) or in the user space (if VNFs require advanced processing) so as to avoid transmissions between kernel704

space and user space for processing a given VNF. CALVIN further implements VNFs in a distributed manner with705

one VNF per VM and employs fast packet input/output (IO) to avoid the metadata and batch processing of the706

conventional Linux network stack.707

We initially measured the elementary forwarding latencies of various current VNF implementations. We found708

that the eXpress Data Path (XDP) achieved latencies of 120 µs for small payloads and 180 µs for large payloads,709

while the native Linux kernel incurred about 10% higher forwarding latencies. The Data Plane Development Kit710

(DPDK) approach and the Click router approach have up to 50% higher latencies than XDP. Based on these711

measurements, we adopted XDP for implementing computationally simple VNF in CALVIN, while we adopted712

DPDK for implementing computationally complex VNFs in CALVIN.713

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

24

We extensively benchmarked CALVIN against the state-of-the-art centralized SFC management approach [51],714

which processes a given VNF with both the kernel space and the user space. Our measurements demonstrated715

that CALVIN achieves significantly shorter latencies (0.32 ms mean latency for 1400 byte packets) for an SFC716

consisting of two distributed elementary forwarding VNFs (XDP forwarding and DPDK forwarding) compared to a717

single elementary forwarding VNF in the centralized approach (2.39 ms for 1400 byte packets). On the downside,718

CALVIN supports only a lower packet throughput (bandwidth) of around 1.5 Mbit/s than the centralized approach719

(between 6 and close to 30 Mbit/s depending on the packet size). CALVIN thus trades in reduced packet throughput720

in order to achieve shorter per-packet latency, which is required for typical tactile Internet applications with a 1 ms721

round-trip delay budget.722

There are many important future research directions for SFC management in the tactile Internet. The implemen-723

tation and measurements reported in this article have focused on the network function virtualization (NFV) in the724

MEC, i.e., the rightmost dashed box (the MEC cloud) in Fig. 2. Future research could integrate the MEC into a725

holistic 5G testbed that encompasses the entire end-to-end sensor-to-actuator loop in Fig. 2. Another direction is726

to examine novel “compute and forward” functions, such as video frame preprocessing for object detection [154]727

or transcoding [155], that bring more intelligence to the network edge [156]. The video preprocessing with limited728

edge cloud computing could extract key information to reduce the amount of data that needs to be transmitted729

through the network to the remote computationally powerful cloud.730

REFERENCES731

[1] K. Antonakoglou, X. Xu, E. Steinbach, T. Mahmoodi, and M. Dohler, “Toward haptic communications over the 5G tactile internet,”732

IEEE Commun. Surv. & Tut., vol. 20, no. 4, pp. 3034–3059, Fourth Qu. 2018.733

[2] H. Chen, R. Abbas, P. Cheng, M. Shirvanimoghaddam, W. Hardjawana, W. Bao, Y. Li, and B. Vucetic, “Ultra-reliable low latency734

cellular networks: Use cases, challenges and approaches,” IEEE Commun. Mag., vol. 56, no. 12, pp. 119–125, Dec. 2018.735

[3] K.-C. Chen, T. Zhang, R. D. Gitlin, and G. Fettweis, “Ultra-low latency mobile networking,” IEEE Network, in print, 2019.736

[4] O. Holland, E. Steinbach, R. V. Prasad, Q. Liu, Z. Dawy, A. Aijaz, N. Pappas, K. Chandra, V. S. Rao, S. Oteafy et al., “The IEEE737

1918.1 “Tactile Internet” standards working group and its standards,” Proc. IEEE, in print, 2019.738

[5] Z. Hou, C. She, Y. Li, T. Q. Quek, and B. Vucetic, “Burstiness-aware bandwidth reservation for ultra-reliable and low-latency739

communications in tactile internet,” IEEE J. on Selected Areas in Commun., vol. 36, no. 11, pp. 2401–2410, Nov. 2018.740

[6] A. Nasrallah, A. Thyagaturu, Z. Alharbi, C. Wang, X. Shao, M. Reisslein, and H. El Bakoury, “Ultra-Low Latency (ULL) networks:741

The IEEE TSN and IETF DetNet standards and related 5G ULL research,” IEEE Commun. Surv. & Tut., vol. 21, no. 1, First Qu. 2019.742

[7] Y. Yang and A. M. Zador, “Differences in sensitivity to neural timing among cortical areas,” Journal of Neuroscience, vol. 32, no. 43,743

pp. 15 142–15 147, Oct. 2012.744

[8] L. Zhang, H. Gao, and O. Kaynak, “Network-induced constraints in networked control systems—a survey,” IEEE Transactions on745

Industrial Informatics, vol. 9, no. 1, pp. 403–416, Feb. 2013.746

[9] X.-M. Zhang, Q.-L. Han, and X. Yu, “Survey on recent advances in networked control systems,” IEEE Transactions on Industrial747

Informatics, vol. 12, no. 5, pp. 1740–1752, Oct. 2016.748

[10] Technical Specification Group Services and System Aspects; Study on Communication for Automation in Vertical Domains (Release 16),749

3GPP, 05 2018, 22.804 TR, V2.0.0.750

[11] Q.-Y. Zhang, X.-W. Wang, M. Huang, K.-Q. Li, and S. K. Das, “Software defined networking meets information centric networking: A751

survey,” IEEE Access, vol. 6, pp. 39 547–39 563, 2018.752

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

25

[12] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network slicing & softwarization: A survey on principles, enabling753

technologies & solutions,” IEEE Commun. Surv. & Tut., vol. 20, no. 3, pp. 2429 – 2453, Third Qu. 2018.754

[13] M. Bagaa, T. Taleb, A. Laghrissi, A. Ksentini, and H. Flinck, “Coalitional game for the creation of efficient virtual core network slices755

in 5G mobile systems,” IEEE J. on Selected Areas in Commun., vol. 36, no. 3, pp. 469–484, Mar. 2018.756

[14] S. Fu, J. Liu, and W. Zhu, “Multimedia content delivery with network function virtualization: The energy perspective,” IEEE MultiMedia,757

no. 3, pp. 38–47, Jul.–Sep. 2017.758

[15] Y. Harchol, D. Hay, and T. Orenstein, “FTvNF: Fault tolerant virtual network functions,” in Proc. ACM Symp. on Architectures for Netw.759

and Commun. Sys., 2018, pp. 141–147.760

[16] W. Kellerer, P. Kalmbach, A. Blenk, A. Basta, M. Reisslein, and S. Schmid, “Adaptable and data-driven softwarized networks: Review,761

opportunities, and challenges,” Proc. IEEE, in print, 2019.762

[17] L. Linguaglossa, D. Rossi, S. Pontarelli, D. Barach, D. Marjon, and P. Pfister, “High-speed data plane and network functions virtualization763

by vectorizing packet processing,” Computer Networks, vol. 149, pp. 187–199, Feb. 2019.764

[18] I. Trajkovska, M.-A. Kourtis, C. Sakkas, D. Baudinot, J. Silva, P. Harsh, G. Xylouris, T. M. Bohnert, and H. Koumaras, “SDN-based765

service function chaining mechanism and service prototype implementation in NFV scenario,” Computer Standards & Interfaces, vol. 54,766

pp. 247–265, Nov. 2017.767

[19] B. Yi, X. Wang, K. Li, and M. Huang, “A comprehensive survey of network function virtualization,” Computer Networks, vol. 133, pp.768

212–262, Mar. 2018.769

[20] A. AbdelSalam, F. Clad, C. Filsfils, S. Salsano, G. Siracusano, and L. Veltri, “Implementation of virtual network function chaining770

through segment routing in a Linux-based NFV infrastructure,” in Proc. IEEE Conf. on Network Softwarization (NetSoft), 2017, pp. 1–5.771

[21] L. Askari, A. Hmaity, F. Musumeci, and M. Tornatore, “Virtual-network-function placement for dynamic service chaining in metro-area772

networks,” in Proc. IEEE Int. Conf. on Optical Network Design and Modeling (ONDM), 2018, pp. 136–141.773

[22] N. F. S. de Sousa, D. A. L. Perez, R. V. Rosa, M. A. Santos, and C. E. Rothenberg, “Network service orchestration: A survey,” arXiv774

preprint arXiv:1803.06596, 2018.775

[23] A. Gupta, M. F. Habib, U. Mandal, P. Chowdhury, M. Tornatore, and B. Mukherjee, “On service-chaining strategies using virtual network776

functions in operator networks,” Computer Networks, vol. 133, pp. 1–16, Mar. 2018.777

[24] H. Hantouti, N. Benamar, T. Taleb, and A. Laghrissi, “Traffic steering for service function chaining,” IEEE Commun. Surv. & Tut., in778

print, 2019.779

[25] W. Hahn, B. Gajic, F. Wohlfart, D. Raumer, P. Emmerich, S. Gallenmueller, and G. Carle, “Feasibility of compound chained network780

functions for flexible packet processing,” in Proc. European Wireless Conf., May 2017, pp. 1–6.781

[26] K. Han, S. Li, S. Tang, H. Huang, S. Zhao, G. Fu, and Z. Zhu, “Application-driven end-to-end slicing: When wireless network782

virtualization orchestrates with NFV-based mobile edge computing,” IEEE Access, vol. 6, pp. 26 567 – 26 577, 2018.783

[27] A. Hmaity, M. Savi, F. Musumeci, M. Tornatore, and A. Pattavina, “Protection strategies for virtual network functions placement and784

service chains provisioning,” Networks, vol. 70, no. 4, pp. 373–387, Dec. 2017.785

[28] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying chains of virtual network functions: On the relation between link and786

server usage,” IEEE/ACM Transactions on Networking, vol. 26, no. 4, pp. 1562–1576, Aug. 2018.787

[29] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci, and T. Magedanz, “Service function chaining in next generation788

networks: State of the art and research challenges,” IEEE Commun. Mag., vol. 55, no. 2, pp. 216–223, Feb. 2017.789

[30] F. Rath, J. Krude, J. Rüth, D. Schemmel, O. Hohlfeld, J. Á. Bitsch, and K. Wehrle, “SymPerf: Predicting network function performance,”790

in Proc. of the SIGCOMM Posters and Demos, 2017, pp. 34–36.791

[31] D. Raumer, S. Bauer, P. Emmerich, and G. Carle, “Performance implications for intra-node placement of network function chains,” in792

Proc. IEEE Int. Conf. on Cloud Networking (CloudNet), 2017, pp. 1–6.793

[32] A. Morton, “Considerations for benchmarking virtual network functions and their infrastructure,” RFC 8172, Jul. 2007. [Online].794

Available: https://rfc-editor.org/rfc/rfc8172.txt795

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

26

[33] B. Yang, Z. Xu, W. K. Chai, W. Liang, D. Tuncer, A. Galis, and G. Pavlou, “Algorithms for fault-tolerant placement of stateful virtualized796

network functions,” in Proc. IEEE Int. Conf. on Commun. (ICC), 2018, pp. 20–24.797

[34] B. Yi, X. Wang, and M. Huang, “A dynamic heuristic for the recomposition of service function chain,” IET Communications, vol. 12,798

no. 16, pp. 1984–1990, Oct. 2018.799

[35] E. Ahmed and M. H. Rehmani, “Mobile edge computing: Opportunities, solutions, and challenges,” Future Generation Computer Systems,800

vol. 70, pp. 59–63, May 2017.801

[36] M. Chen, Y. Zhang, L. Hu, T. Taleb, and Z. Sheng, “Cloud-based wireless network: Virtualized, reconfigurable, smart wireless network802

to enable 5G technologies,” Mobile Networks and Applications, vol. 20, no. 6, pp. 704–712, Dec. 2015.803

[37] T. Taleb and A. Ksentini, “Follow me cloud: Interworking federated clouds and distributed mobile networks,” IEEE Network, vol. 27,804

no. 5, pp. 12–19, Sep.-Oct. 2013.805

[38] T. Taleb, M. Corici, C. Parada, A. Jamakovic, S. Ruffino, G. Karagiannis, and T. Magedanz, “EASE: EPC as a service to ease mobile806

core network deployment over cloud,” IEEE Network, vol. 29, no. 2, pp. 78–88, Mar.-Apr. 2015.807

[39] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-access edge computing: A survey of the emerging 5G808

network edge cloud architecture and orchestration,” IEEE Commun. Surv. & Tut., vol. 19, no. 3, pp. 1657–1681, Third Qu. 2017.809

[40] H. Zhang, N. Liu, X. Chu, K. Long, A.-H. Aghvami, and V. C. Leung, “Network slicing based 5G and future mobile networks: Mobility,810

resource management, and challenges,” IEEE Communications Magazine, vol. 55, no. 8, pp. 138–145, Aug. 2017.811

[41] S. Cheshire, “It is the latency, stupid,” 1996, available from http://www.stuartcheshire.org/rants/latency.html, Last accessed Jan. 16, 2019.812

[42] ——, “Latency and the quest for interactivity,” in White paper commissioned by Volpe Welty Asset Management,813

LLC, for the Synchronous Person-to-Person Interactive Computing Environments Meeting, 1996, pp. 1–8, available from814

http://www.stuartcheshire.org/papers/LatencyQuest.pdf, Last accessed Jan. 16, 2019.815

[43] O. S. Sella, A. W. Moore, and N. Zilberman, “FEC killed the cut-through switch,” in Proc. ACM Workshop on Networking for Emerging816

Appl. and Techn., 2018, pp. 15–20.817

[44] N. Zilberman, M. Grosvenor, D. A. Popescu, N. Manihatty-Bojan, G. Antichi, M. Wójcik, and A. W. Moore, “Where has my time818

gone?” in Proc. Int. Conf. on Passive and Active Network Measurement, 2017, pp. 201–214.819

[45] N. Hanford, V. Ahuja, M. K. Farrens, B. Tierney, and D. Ghosal, “A survey of end-system optimizations for high-speed networks,” ACM820

Computing Surveys (CSUR), vol. 51, no. 3, pp. 54:1–54:36, Jul. 2018.821

[46] Z. Xiang, F. Gabriel, G. T. Nguyen, and F. H. P. Fitzek, “Latency measurement of service function chaining on OpenStack platform,”822

in Proc. IEEE Conf. on Local Computer Networks (LCN), Chicago, IL, 2018.823

[47] M. He, A. M. Alba, A. Basta, A. Blenk, and W. Kellerer, “Flexibility in softwarized networks: Classifications and research challenges,”824

IEEE Commun. Surv. & Tut., in print, 2019.825

[48] P. Emmerich, D. Raumer, S. Gallenmüller, F. Wohlfart, and G. Carle, “Throughput and latency of virtual switching with OpenvSwitch:826

A quantitative analysis,” Journal of Network and Systems Management, vol. 26, no. 2, pp. 314–338, Apr. 2018.827

[49] C.-L. Hsieh and N. Weng, “NF-switch: VNFs-enabled SDN switches for high performance service function chaining,” in Proc. IEEE828

Int. Conf. on Network Protocols (ICNP), 2017, pp. 1–6.829

[50] G. Lettieri, V. Maffione, and L. Rizzo, “A survey of fast packet I/O technologies for network function virtualization,” in Proc. Int. Conf.830

on High Performance Computing. Springer, Cham, Switzerland, 2017, pp. 579–590.831

[51] L. Zhang, S. Lai, C. Wu, Z. Li, and C. Guo, “Virtualized network coding functions on the internet,” in Proc. IEEE Int. Conf. on Distr.832

Computing Systems, Jun. 2017, pp. 129–139.833

[52] SFC-Ostack: A Simple Research Framework for SFC on OpenStack. [Accessed 2019-1-15]. [Online]. Available:834

https://github.com/stevelorenz/sfc-ostack835

[53] Build-VNF project repository. [Accessed 2018-10-5]. [Online]. Available: https://github.com/stevelorenz/build-vnf/tree/master/CALVIN836

[54] Open vSwitch with DPDK. [Accessed 2018-09-15]. [Online]. Available: http://docs.openvswitch.org/en/latest/intro/install/dpdk/837

[55] M.-A. Kourtis, M. J. McGrath, G. Gardikis, G. Xilouris, V. Riccobene, P. Papadimitriou, E. Trouva, F. Liberati, M. Trubian, J. Batallé838

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

27

et al., “T-NOVA: An open-source MANO stack for NFV infrastructures,” IEEE Trans. on Network and Service Management, vol. 14,839

no. 3, pp. 586–602, Sep. 2017.840

[56] H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, and C. Assi, “Dynamic task offloading and scheduling for low-latency IoT841

services in multi-access edge computing,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 3, pp. 668–682, Mar. 2019.842

[57] D. Cho, J. Taheri, A. Y. Zomaya, and L. Wang, “Virtual network function placement: Towards minimizing network latency and lead843

time,” in Proc. IEEE Int. Conf. on Cloud Computing Techn. and Science (CloudCom), 2017, pp. 90–97.844

[58] R. Gouareb, V. Friderikos, and A. H. Aghvami, “Delay sensitive virtual network function placement and routing,” in Proc. IEEE Int.845

Conf. on Telecommun. (ICT), 2018, pp. 394–398.846

[59] H. Halabian, “Distributed resource allocation optimization in 5G virtualized networks,” IEEE Journal on Selected Areas in Communi-847

cations, vol. 37, no. 3, pp. 627–642, Mar. 2019.848

[60] H. Hawilo, M. Jammal, and A. Shami, “Network function virtualization-aware orchestrator for service function chaining placement in849

the cloud,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 3, pp. 643–655, Mar. 2019.850

[61] D. Liao, Y. Wu, Z. Wu, Z. Zhu, W. Zhang, G. Sun, and V. Chang, “AI-based software-defined virtual network function scheduling with851

delay optimization,” Cluster Computing, in print, pp. 1–13, 2019.852

[62] W. Miao, G. Min, Y. Wu, H. Huang, Z. Zhao, H. Wang, and C. Luo, “Stochastic performance analysis of network function virtualization853

in future internet,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 3, pp. 613–626, Mar. 2019.854

[63] L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and resource optimization with network function virtualization,” IEEE Trans.855

on Commun., vol. 64, no. 9, pp. 3746–3758, Sep. 2016.856

[64] L. Qu, C. Assi, K. Shaban, and M. Khabbaz, “A reliability-aware network service chain provisioning with delay guarantees in NFV-857

enabled enterprise datacenter networks,” IEEE Trans. on Netw. and Service Managm., vol. 14, no. 3, pp. 554–568, Sep. 2017.858

[65] M. Savi, M. Tornatore, and G. Verticale, “Impact of processing-resource sharing on the placement of chained virtual network functions,”859

arXiv preprint arXiv:1710.08262, 2017.860

[66] L. Tang, H. Yang, R. Ma, L. Hu, W. Wang, and Q. Chen, “Queue-aware dynamic placement of virtual network functions in 5G access861

network,” IEEE Access, vol. 6, pp. 44 291–44 305, 2018.862

[67] Q. Xu, J. Wang, and K. Wu, “Resource capacity analysis in network slicing with ensured end-to-end performance bound,” in Proc. IEEE863

Int. Conf. on Commun. (ICC), 2018, pp. 1–6.864

[68] Q. Ye, W. Zhuang, X. Li, and J. Rao, “End-to-end delay modeling for embedded VNF chains in 5G core networks,” IEEE Internet of865

Things Journal, in print, 2019.866

[69] S. Agarwal, F. Malandrino, C. F. Chiasserini, and S. De, “VNF placement and resource allocation for the support of vertical services in867

5G networks,” IEEE/ACM Trans. on Netw., in print, 2019.868

[70] I. Benkacem, T. Taleb, M. Bagaa, and H. Flinck, “Optimal VNFs placement in CDN slicing over multi-cloud environment,” IEEE J. on869

Sel. Areas in Commun., vol. 36, no. 3, pp. 616–627, Mar. 2018.870

[71] J. Cao, Y. Zhang, W. An, X. Chen, Y. Han, and J. Sun, “VNF placement in hybrid NFV environment: Modeling and genetic algorithms,”871

in Proc. IEEE Int. Conf. on Parallel and Distr. Sys. (ICPADS), 2016, pp. 769–777.872

[72] X. Chen, W. Ni, I. B. Collings, X. Wang, and S. Xu, “Distributed placement and online optimization of virtual machines for network873

service chains,” in Proc. IEEE Int. Conf. on Commun. (ICC), 2018, pp. 1–6.874

[73] C. Galdamez, R. Pamula, and Z. Ye, “On efficient virtual network function chaining in NFV-based telecommunications networks,”875

Cluster Computing, in print, pp. 1–11, 2019.876

[74] A. Laghrissi, T. Taleb, M. Bagaa, and H. Flinck, “Towards edge slicing: VNF placement algorithms for a dynamic & realistic edge877

cloud environment,” in Proc. IEEE GLOBECOM, 2017, pp. 1–6.878

[75] A. Laghrissi, T. Taleb, and M. Bagaa, “Conformal mapping for optimal network slice planning based on canonical domains,” IEEE J.879

on Selected Areas in Commun., vol. 36, no. 3, pp. 519–528, 2018.880

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

28

[76] A. Laghrissi and T. Taleb, “A survey on the placement of virtual resources and virtual network functions,” IEEE Commun. Surv. & Tut.,881

in print, 2019.882

[77] M. A. T. Nejad, S. Parsaeefard, M. A. Maddah-Ali, T. Mahmoodi, and B. H. Khalaj, “vSPACE: VNF simultaneous placement, admission883

control and embedding,” IEEE J. on Sel. Areas in Commun., vol. 36, no. 3, pp. 542–557, Mar. 2018.884

[78] Y. Hu and T. Li, “Towards efficient server architecture for virtualized network function deployment: Implications and implementations,”885

in Proc. IEEE/ACM Int. Symp. on Microarch., 2016, pp. 1–8.886

[79] G. Durisi, T. Koch, J. Östman, Y. Polyanskiy, and W. Yang, “Short-packet communications over multiple-antenna rayleigh-fading887

channels,” IEEE Trans. on Commun., vol. 64, no. 2, pp. 618–629, Feb. 2016.888

[80] G. Durisi, T. Koch, and P. Popovski, “Toward massive, ultrareliable, and low-latency wireless communication with short packets,” Proc.889

IEEE, vol. 104, no. 9, pp. 1711–1726, Sep. 2016.890

[81] T. Herbert and A. Starovoitov, “eXpress Data Path (XDP): Programmable and high performance networking data path,” Mar. 2016,891

available from https://github.com/iovisor/bpf-docs/blob/master/Express Data Path.pdf, Last acccessed Oct. 2, 2018.892

[82] J. D. Brouer, “Linux Networking Subsystem, XDP – eXpress Data Path,” 2016, available from https://prototype-893

kernel.readthedocs.io/en/latest/networking/index.html, Last acccessed Oct. 2, 2018.894

[83] “BPF and XDP Reference Guide,” 2018, available from https://cilium.readthedocs.io/en/v1.2/bpf, Last acccessed Oct. 2, 2018.895

[84] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend, T. Herbert, D. Ahern, and D. Miller, “The eXpress Data Path: Fast896

programmable packet processing in the operating system kernel,” in Proc. ACM Int. Conf. on Emerging Netw. EXperiments and .Techn.897

(CoNEXT), 2018, pp. 54–66.898

[85] S. Miano, M. Bertrone, F. Risso, and M. Tumolo, “Creating complex network services with eBPF: Experience and lessons learned,” in899

Proc. IEEE High Performance Switching and Routing (HPSR), 2018, pp. 1–8.900

[86] Z. Ahmed, M. H. Alizai, and A. A. Syed, “InKeV: In-kernel distributed network virtualization for DCN,” ACM SIGCOMM Computer901

Commun. Rev., vol. 46, no. 3, p. 4, Jul. 2018.902

[87] “Neutron documentation,” Sep. 2018, available from https://docs.openstack.org/neutron, Last acccessed Oct. 3, 2018.903

[88] M. Bertrone, S. Miano, F. Risso, and M. Tumolo, “Accelerating Linux security with eBPF iptables,” in Proc. ACM SIGCOMM Conf.904

on Posters and Demos, 2018, pp. 108–110.905

[89] X. Li, Y. Wu, J. Ge, H. Zheng, E. Yuepeng, C. Han, and H. Lv, “A kernel-space POF virtual switch,” Computers & Electrical Engineering,906

vol. 61, pp. 339–350, Jul. 2017.907

[90] D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K. Lesiak, and G. Carle, “Performance implications of packet filtering with Linux eBPF,”908

in Proc. Int. Teletraffic Congress (ITC), Sep. 2018, pp. 1–9.909

[91] Y. Zhang, B. Anwer, V. Gopalakrishnan, B. Han, J. Reich, A. Shaikh, and Z.-L. Zhang, “Parabox: Exploiting parallelism for virtual910

network functions in service chaining,” in Proc. ACM Symp. on SDN Research, 2017, pp. 143–149.911

[92] J. L. Garcı́a-Dorado, F. Mata, J. Ramos, P. M. S. del Rı́o, V. Moreno, and J. Aracil, “High-performance network traffic processing912

systems using commodity hardware,” in Data Traffic Monitoring and Analysis, LNCS 7754. Springer, Berlin, 2013, pp. 3–27.913

[93] S. Gallenmüller, D. Scholz, F. Wohlfart, Q. Scheitle, P. Emmerich, and G. Carle, “High-performance packet processing and measurements,”914

in Proc. IEEE Int. Conf. on Commun. Systems & Networks (COMSNETS), 2018, pp. 1–8.915

[94] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle, “Comparison of frameworks for high-performance packet IO,” in916

Proc. ACM/IEEE Symp. on Architectures for Netw. and Commun. Systems, 2015, pp. 29–38.917

[95] A. Anthony, S. R. Chowdhury, T. Bai, R. Boutaba, and J. François, “UNiS: A user-space non-intrusive workflow-aware virtual network918

function scheduler,” in Proc. IEEE Int. Conf. on Netw. and Service Management (CNSM), Nov. 2018, pp. 152–160.919

[96] J. Duan, X. Yi, J. Wang, C. Wu, and F. Le, “NetStar: A future/promise framework for asynchronous network functions,” IEEE Journal920

on Selected Areas in Communications, vol. 37, no. 3, pp. 600–612, Mar. 2019.921

[97] C. Zhang, J. Bi, Y. Zhou, and J. Wu, “HyperVDP: High-performance virtualization of the programmable data plane,” IEEE Journal on922

Selected Areas in Communications, vol. 37, no. 3, pp. 556–569, Mar. 2019.923

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

29

[98] J. Duan, X. Yi, S. Zhao, C. Wu, H. Cui, and F. Le, “NFVactor: A resilient NFV system using the distributed actor model,” IEEE Journal924

on Selected Areas in Communications, vol. 37, no. 3, pp. 586–599, Mar. 2019.925

[99] M. Zhang, J. Bi, K. Gao, Y. Qiao, G. Li, X. Kong, Z. Li, and H. Hu, “Tripod: Towards a scalable, efficient and resilient cloud gateway,”926

IEEE Journal on Selected Areas in Communications, vol. 37, no. 3, pp. 570–585, Mar. 2019.927

[100] N. Van Tu, K. Ko, and J. W.-K. Hong, “Architecture for building hybrid kernel-user space virtual network functions,” in Proc. Int. Conf.928

on Network and Service Management (CNSM), 2017, pp. 1–6.929

[101] P. Emmerich, M. Pudelko, S. Bauer, and G. Carle, “User space network drivers,” in Proc. ACM Applied Netw. Res. Workshop, 2018,930

pp. 91–93.931

[102] “Kernel NIC Interface,” 2018, available from https://doc.dpdk.org/guides/prog guide/kernel nic interface.html, Last acccessed Oct. 3,932

2018.933

[103] X. Wang, C. Xu, G. Zhao, and S. Yu, “Tuna: an efficient and practical scheme for wireless access point in 5G networks virtualization,”934

IEEE Commun. Letters, vol. 22, no. 4, pp. 748–751, Apr. 2018.935

[104] C. Li, C. Ding, and K. Shen, “Quantifying the cost of context switch,” in Proc. USENIX Workshop on Experimental Computer Science,936

2007, pp. 1–4.937

[105] M. V. Pedersen, J. Heide, and F. H. Fitzek, “Kodo: An open and research oriented network coding library,” in Proc. Int. Conf. on938

Research in Networking, LNCS, Vol. 6827. Springer, Berlin, Heidelberg, 2011, pp. 145–152.939

[106] D. Cerovic, V. Del Piccolo, A. Amamou, K. Haddadou, and G. Pujolle, “Fast packet processing: A survey,” IEEE Commun. Surv. and940

Tut., vol. 20, no. 4, pp. 3645–3676, Fourth Qu. 2018.941

[107] D. Barach, L. Linguaglossa, D. Marion, P. Pfister, S. Pontarelli, and D. Rossi, “High-speed software data plane via vectorized packet942

processing,” IEEE Communications Magazine, vol. 56, no. 12, pp. 97–103, Dec. 2018.943

[108] IOVisor Homepage. [Accessed 2019-1-24]. [Online]. Available: https://www.iovisor.org/944

[109] M.-A. Kourtis, G. Xilouris, V. Riccobene, M. J. McGrath, G. Petralia, H. Koumaras, G. Gardikis, and F. Liberal, “Enhancing VNF945

performance by exploiting SR-IOV and DPDK packet processing acceleration,” in Proc. IEEE Conf. Netw. Function Virt. and Software946

Defined Network (NFV-SDN), 2015, pp. 74–78.947

[110] OpenStack Nova computing documentation. [Accessed 2018-10-3]. [Online]. Available:948

https://www.spinics.net/lists/netdev/msg405175.html949

[111] Linux netdev mailing list: Patch 4/5. [Accessed 2018-10-3]. [Online]. Available: https://www.spinics.net/lists/netdev/msg405175.html950

[112] BCC project homepage. [Accessed 2018-09-20]. [Online]. Available: https://github.com/iovisor/bcc951

[113] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: high performance and flexible networking using virtualization on commodity952

platforms,” IEEE Trans. on Netw. and Service Manag., vol. 12, no. 1, pp. 34–47, Mar. 2015.953

[114] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi, K. Ramakrishnan, and T. Wood, “OpenNetVM: A platform for high954

performance network service chains,” in Proc. ACM Workshop on Hot Topics in Middleboxes and Network Function Virtualization, 2016,955

pp. 26–31.956

[115] “VMware Docs, Enable Live Resize,” Nov. 2018, https://docs.vmware.com/en/VMware-Integrated-957

OpenStack/4.1/com.vmware.openstack.admin.doc/GUID-FEB48287-04AD-4BAB-9B42-99543DCC9733.html, Last acccessed Mar.958

4, 2019.959

[116] “OpenStack Compute (nova), instance live resize,” 2018, https://blueprints.launchpad.net/nova/+spec/instance-live-resize, Last acccessed960

Jan. 5, 2019.961

[117] P. Veitch and T. Long, “A Low-Latency NFV Infrastructure for Performance-Critical Applications,” Intel Corp., Tech.962

Rep., 2017, [Accessed 2018-9-30]. [Online]. Available: https://software.intel.com/en-us/articles/low-latency-nfv-infrastructure-for-963

performance-critical-applications964

[118] OpenStack Pike documentation. [Accessed 2018-10-4]. [Online]. Available: https://docs.openstack.org/pike/965

[119] Virtio Documentation. [Accessed 2019-1-20]. [Online]. Available: https://www.linux-kvm.org/page/Virtio966

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

30

[120] J. Chauhan, D. Makaroff, and A. Arkles, “Is doing clock synchronization in a VM a good idea?” in Proc. IEEE Int. Performance967

Computing and Commun. Conf., 2010, pp. 1–2.968

[121] Iperf homepage. [Accessed 2018-9-10]. [Online]. Available: https://iperf.fr/969

[122] Service Function Chain Extension for OpenStack Networking. [Accessed 2018-10-1]. [Online]. Available:970

https://docs.openstack.org/networking-sfc/latest/971

[123] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The Click modular router,” ACM Transactions on Computer Systems972

(TOCS), vol. 18, no. 3, pp. 263–297, Aug. 2000.973

[124] BPF and XDP reference guide. [Accessed 2018-10-4]. [Online]. Available: https://cilium.readthedocs.io/en/v1.2/bpf/974

[125] Linux Kernel networking documentation. [Accessed 2018-10-4]. [Online]. Available:975

https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt976

[126] C. Sieber, R. Durner, M. Ehm, W. Kellerer, and P. Sharma, “Towards optimal adaptation of NFV packet processing to modern CPU977

memory architectures,” in Proc. ACM Workshop on Cloud-Assisted Netw., 2017, pp. 7–12.978

[127] Y. Hu, M. Song, and T. Li, “Towards full containerization in containerized network function virtualization,” ACM SIGARCH Computer979

Architecture News, vol. 45, no. 1, pp. 467–481, Mar. 2017.980

[128] DPDK Poll Mode Driver. [Accessed 2019-1-20]. [Online]. Available: https://doc.dpdk.org/guides/prog guide/poll mode drv.html981

[129] D. Vladislavić, D. Huljenić, and J. Ožegović, “Enhancing VNF’s performance using DPDK driven OVS user-space forwarding,” in Proc.982

IEEE Int. Conf. on Softw., Telecommun. and Computer Netw. (SoftCOM), 2017, pp. 1–5.983

[130] DPDK Mbuf Library. [Accessed 2019-1-20]. [Online]. Available: https://doc.dpdk.org/guides/prog guide/mbuf lib.html984

[131] L. A. D. Knob, B. G. Xavier, and T. Ferreto, “An unikernels provisioning architecture for OpenStack,” in Proc. IEEE Symp. on Computers985

and Commun. (ISCC), 2018, pp. 903–908.986

[132] P. L. Ventre, P. Lungaroni, G. Siracusano, C. Pisa, F. Schmidt, F. Lombardo, and S. Salsano, “On the fly orchestration of unikernels:987

Tuning and performance evaluation of virtual infrastructure managers,” IEEE Transactions on Cloud Computing, in print, 2019.988

[133] Mpstat Manpage. [Accessed 2019-1-24]. [Online]. Available: http://man7.org/linux/man-pages/man1/mpstat.1.html989

[134] H. D. Chirammal, P. Mukhedkar, and A. Vettathu, Mastering KVM Virtualization. Packt Publishing Ltd, 2016.990

[135] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung, “Network information flow,” IEEE Transactions on Information Theory, vol. 46, no. 4,991

pp. 1204–1216, Jul. 2000.992

[136] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong, “A random linear network coding approach to multicast,”993

IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.994

[137] S. Feizi, D. E. Lucani, and M. Médard, “Tunable sparse network coding,” in Proc. Int. Zurich Seminar on Commun. (IZS). Eidgenössische995

Technische Hochschule Zürich, 2012.996

[138] V. Nguyen, G. T. Nguyen, F. Gabriel, D. E. Lucani, and F. H. Fitzek, “Integrating sparsity into Fulcrum codes: Investigating throughput,997

complexity and overhead,” in Proc. IEEE Int. Conf. on Commun. Workshops (ICC Workshops), 2018, pp. 1–6.998

[139] F. Gabriel, S. Wunderlich, S. Pandi, F. H. Fitzek, and M. Reisslein, “Caterpillar RLNC with feedback (CRLNC-FB): Reducing delay in999

selective repeat ARQ through coding,” IEEE Access, vol. 6, pp. 44 787–44 802, 2018.1000

[140] S. Wunderlich, F. Gabriel, S. Pandi, F. H. Fitzek, and M. Reisslein, “Caterpillar RLNC (CRLNC): A practical finite sliding window1001

RLNC approach,” IEEE Access, vol. 5, pp. 20 183–20 197, 2017.1002

[141] D. E. Lucani, M. V. Pedersen, D. Ruano, C. W. Sørensen, F. H. Fitzek, J. Heide, O. Geil, V. Nguyen, and M. Reisslein, “Fulcrum:1003

Flexible network coding for heterogeneous devices,” IEEE Access, vol. 6, pp. 77 890–77 910, 2018.1004

[142] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran, “Network coding for distributed storage systems,” IEEE1005

Transactions on Information Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.1006

[143] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proc. Allerton Conference on Communication, Control, and Computing,1007

vol. 41, 2003, pp. 40–49.1008

0733-8716 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2019.2906788, IEEE Journal
on Selected Areas in Communications

31

[144] J. Barros, R. A. Costa, D. Munaretto, and J. Widmer, “Effective delay control in online network coding,” in Proc. IEEE INFOCOM,1009

2009, pp. 208–216.1010

[145] S. Pandi, F. Gabriel, J. A. Cabrera, S. Wunderlich, M. Reisslein, and F. H. Fitzek, “PACE: Redundancy engineering in RLNC for1011

low-latency communication,” IEEE Access, vol. 5, pp. 20 477–20 493, 2017.1012

[146] M. Karzand and D. J. Leith, “Low delay random linear coding over a stream,” in Proc. Allerton Conf. on Communication, Control, and1013

Computing, 2014, pp. 521–528.1014

[147] D. Szabo, A. Gulyas, F. H. Fitzek, and D. E. Lucani, “Towards the tactile internet: Decreasing communication latency with network1015

coding and software defined networking,” in Proc. European Wireless, 2015, pp. 1–6.1016

[148] F. Gabriel, G. T. Nguyen, R.-S. Schmoll, J. A. Cabrera, M. Muehleisen, and F. H. Fitzek, “Practical deployment of network coding for1017

real-time applications in 5G networks,” in Proc. IEEE Consumer Commun. & Netw. Conf. (CCNC), 2018, pp. 1–2.1018

[149] A. P. Felt, R. Barnes, A. King, C. Palmer, C. Bentzel, and P. Tabriz, “Measuring HTTPS adoption on the web,” in Proc. USENIX1019

Security Symposium, 2017, pp. 1323–1338.1020

[150] V.-C. Nguyen, A.-V. Vu, K. Sun, and Y. Kim, “An experimental study of security for service function chaining,” in Proc. IEEE Int.1021

Conf. on Ubiquitous and Future Networks (ICUFN), 2017, pp. 797–799.1022

[151] Z. Zheng, J. Bi, C. Sun, H. Yu, H. Hu, Z. Meng, S. Wang, K. Gao, and J. Wu, “GEN: A GPU-accelerated elastic framework for NFV,”1023

in Proc. ACM Asia-Pacific Workshop on Networking, 2018, pp. 57–64.1024

[152] M. M. Rovnyagin and A. A. Kuznetsov, “Application of hybrid computing technologies for high-performance distributed NFV systems,”1025

in Proc. IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2017, pp. 540–543.1026

[153] Small portable AES implementation in C. [Accessed 2018-9-10]. [Online]. Available: https://github.com/kokke/tiny-AES-c1027

[154] J. Ren, Y. Guo, D. Zhang, Q. Liu, and Y. Zhang, “Distributed and efficient object detection in edge computing: Challenges and solutions,”1028

IEEE Network, vol. 32, no. 6, pp. 137–143, Nov./Dec. 2018.1029

[155] I. Benkacem, T. Taleb, M. Bagaa, and H. Flinck, “Performance benchmark of transcoding as a virtual network function in CDN as a1030

service slicing,” in Proc. Wireless Commun. and Netw. Conf. (WCNC), 2018, pp. 1–6.1031

[156] D. Sanvito, G. Siracusano, and R. Bifulco, “Can the network be the AI accelerator?” in Proc. ACM Workshop on In-Network Computing1032

(NetCompute), Aug. 2018, pp. 20–25.1033

