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Abstract—Automatic modulation recognition (AMR) plays an
indispensable role in many fields, such as cognitive radio,
spectrum sensing, non-cooperative link adaptation, and other
civilian and military fields. OFDM-IM is an innovative OFDM-
based scheme which has better bit error performance than clas-
sical OFDM scheme especially in high mobility cases. Different
from OFDM, the modulation parameters include both M-ary
signal constellations and indices of the subcarriers in OFDM-
IM scheme. In this paper, we studied a deep neural network
(DNN) based AMR method in orthogonal frequency division
multiplexing with index modulation (OFDM-IM) scheme.

Index Terms—automatic modulation recognition (AMR), ma-
chine learning, deep neural network, OFDM, index modulation

I. INTRODUCTION

Orthogonal frequency division multiplexing with index
modulation (OFDM-IM) is an innovative transmission scheme
which is based on OFDM. OFDM-IM scheme have better per-
formance in high mobility scenarios by exploiting subcarrier
indices to carry part of the information [1]. In OFDM-IM
scheme, all information bits will be divided into two parts,
index selecting bits and constellation modulation bits. In an
OFDM-IM frame, all of the subcarriers will be divided into
several subblocks. In every subblock, subcarriers will be in one
of two states, active or silent. The indices of active subcarriers
will be determined by index selecting bits and constellation
modulation bits will be systematically mapped into these active
subcarriers.

AMR is a method to determine modulation parameters from
received signal. With the development of modern communi-
cations system, the AMR algorithm plays an indispensable
role in plenty of civilian and military applications such as
spectrum sensing and management, electromagnetic counter-
measure, etc. In general, AMR methods can be classified in
two classes: likelihood-based (LB) methods and feature-based
(FB) methods respectively [2].

The main principle of LB methods is exploiting probabilistic
and statistical hypothesis testing. In [3–7], several likelihood
functions were proposed as a LB-AMR method. Though
LB methods could have optimal performance, it is hard to
implement due to its high computational complexities. Usually,
there are two main steps in FB methods, feature extraction
and classification. Features for AMR have been studied in

many papers including higher order statistics (cumulants [8, 9],
statistics [10, 11]), transform domain features (wavelet trans-
forms [12, 13], short-time Fourier transform [14]), etc. Many
classification algorithms also have been widely used in AMR
such as support vector machine (SVM) [9, 13], minimum
distance classifier (MDC) [15], multilayer perceptron (MLP)
[16, 17], etc.

In lately years, with the rise of machine learning technique,
many researchers have made a lot of breakthroughs in wireless
communication [18–23]. Machine learning could extend AMR
as a powerful classifier. In [21], the author proposed an DNN
based AMR method which employs a kind of time-frequency
transformation as feature extractor and exploits convolutional
neural network (CNN) as classifier. Machine learning could
also be an end-to-end AMR method which units feature extrac-
tion step and classification step. In [22], the author proposed
a recurrent neural network (RNN) based AMR method which
takes N timesteps time domain amplitude and phase vector
as input. The method also was verified on a standard dataset
[24]. In [23], the author proposed a convolution neural network
model for AMR which could extract features automatically.

With the rapid development of modern communication
technology, the new wireless communication scheme brings
us new AMR challenge. Different from conventional AMR
problem, the modulation parameters in OFDM-IM scheme
includes both M-ary signal constellations and indices of the
subcarriers in OFDM-IM scheme. Hence, the AMR in OFDM-
IM scheme is to identify both modulation type M and the
number K of active subcarriers in each subblock. In [25], a
LB based AMR method was proposed for OFDM-IM scheme
and it is the first paper that study on this problem. In this paper,
we extend FB based AMR method for OFDM-IM scheme and
proposed a practical DNN based method to solve this problem.

II. PROBLEM STATEMENT

A. System Model

The structure of OFDM-IM transmitter is shown in Fig.
2. There are Nc subcarriers in every OFDM-IM frame. These
subcarriers will be divided into G subblocks and N subcarriers
in each subblock, i.e., Nc = N ∗ G. In every subblock,
the number of active subcarriers K keeps in fix. Only K
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Fig. 1. Structure of the OFDM-IM transmitter

subcarriers will be used to transmit signal in each subblock.
The rest N −K subcarriers keeps in silent.

Correspondingly the incoming L-bits into OFDM-IM trans-
mitter will be also divided into G groups with each containing
P -bits, i.e., L = P ∗G. In every subblock, the P -bits will be
divided into P1-bits and P2-bits further. The P1-bits will be
used to determine which subcarriers should be active. Hence,
P1 = ⌊log2C(N,K)⌋ in which C(N,K) denotes the binomial
coefficient and ⌊.⌋ represents floor operator. The P2-bits will
be mapped into M -ary QAM or PSK constellation symbols
on K active subcarriers. Obviously, P2 = K ∗ log2M .

For every subblock g, the indices of K active subcarriers
are given by

Ig = {ig,1, ig,2, ..., ig,K} (1)

where ig,k ∈ [1, 2, ..., N ] for g = 1, 2, ..., G. The modulated
symbols which created by M -ary mapper is given by

Sg = {sg,1, sg,2, ..., sg,K} (2)

where sg,k ∈ S , k = 1, 2, ...,K and S denotes the set of the
M -ary complex signal constellation. Then, the OFDM block
creator will take in Ig and Sg from every subblock for g ∈
{1, 2, ..., G} and create the frequency domain (FD) signal

xFD = {x1, x2, ..., xNc}

in which

x(g−1)∗N+n =

{
sg,k , if n = ig,k

0 , others

where g = 1, 2, ..., G, n = 1, 2, ..., N and x(g−1)∗N+n stands
for the n-th subcarrier in g-th subblock.

After that, the same procedures as the classical OFDM
like IFFT, adding cyclic prefix (CP), parallel to series (PS)
conversion will be applied. The FD signal will be transformed
into time domain (TD) signal

XTD =
Nc√
GK

IFFT{xFD} =
1√
GK

FH
Nc

xFD

where FH
Nc

is the discrete Fourier transform (DFT) matrix
with FH

Nc
∗ FNc

= Nc ∗ INc
and Nc/

√
GK stands for the

normalization factor since only GK of Nc subcarriers are
mapped to M -ary constellation symbol. After adding CP and
PS conversion, the equivalent FD received signals is given by:

yFD =
Nc√
GK

xFDh+w

where yFD is the FD received signal, h is the channel fading
coefficient, w is the additive white gaussian noise (AWGN)
with w ∼ CN (0, σ2

f ).

B. Problem Formulation

The aim of AMR in OFDM-IM scheme is identifying the
combinated modulation parameter (K,M) in different cases
including AWGN channel or fading channel. We assume
that the candidate set of K is K = {1, 2, ..., N} and the
candidate set M of M includes various modulation type. The
distribution of K and M should be random and equally. The
number G of subblocks and the number N of subcarriers per
subblock is assumed known.

The probability of correct classification (PCC) will be
employed to assess the performance. The PCC is defined by
p(H = Ĥ) where H = (K,M) and Ĥ = (K̂, M̂) are the true
and estimated combinated modulation parameter separately.

III. DNN-BASED AMR METHOD

We proposed an end-to-end DNN-Based AMR method to
recognize the parameters in OFDM-IM scheme.

A. Architecture of Proposed DNN Architecture

The structure of proposed DNN model is shown in Fig. 1.
The input yFD is the in-phase and quadrature (I/Q) samples
of one OFDM-IM frame which is a 2D vector with the size
of Nc × 2. The output is the estimated modulation parameter
combination (K̂, M̂). The whole network could be divided
into two sub-networks. The sub-network in the right region
is used to estimate the modulation type M̂ and we call it



M -network. M -network consists of 3 stacked convolutional
layers for feature extraction and 3 stacked dense layers for
classification. This structure is proved to be a kind of effective
model for modulation types recognition [18]. The sub-network
in the left region is used to estimate the number K̂ of active
subcarriers and we call it K-network. The K-network takes
both yFD and the estimated M̂ from M -network as input and
give the final estimated K̂.
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Fig. 2. Structure of the OFDM-IM transmitter. The text ’Conv 64 2,2 +
ReLU’ means this layer is convolution layer with the kernel number is 64
and the kernel size is 2 × 2 and the activation function is ReLU. The text
’Dense 128 + Softmax’ represents there are 128 nodes in this layer and the
activation is Softmax.

Generally speaking, DNN is a deeper feedforward neural
network (FNN) with various network structures in different
layers. We could describe our DNN model with a mapping
function

(K̂, M̂) = f(yFD; θ)

where f(.) is the network structure and θ denotes the network
parameter. The L-layers network structure f(.) can also be
described as L iterative processing steps :

rl = fl(rl−1; θl), l = 1, ..., L (3)

where fl(.), θl, rl−1, rl are the network structure, network
parameters, input vectors, output vectors in l-th layer respec-
tively.

In our model, the convolutional layers are performed as
a higher-level feature extractor. Convolutional layer can be
described as

rfl (i, j) = fcnn(rl−1; θl)

=

m−1∑
p=0

n−1∑
q=0

W f
m−p,n−qrl−1(i− p, j − q)

(4)

where Wf ∈ Rm×n is the f -th convolutional kernel which is
a trainable vector parameter, rl−1(i, j) ∈ RI×J is the input
vector. It should be noted that rl−1(i, j) = 0 in calculation
when i /∈ [1, I] or j /∈ [1, J ].

The flatten layer is used to transfer a 2D vector to a 1D
vector. The dense layer is performed as a multiple classifier in
our model and takes extracted higher-level information from
flatten layer as input. The l-th dense layer can be described as

fl(rl−1; θl) = Wlrl−1 + bl (5)

where Wl ∈ RNl×Nl−1 , bl ∈ RNl , and Nl is the output size
of l-th layer.

The activation function σ(.) will be applied after convolu-
tional layer or dense layer. Rectified linear unit (ReLU) and
softmax are choosed in our model which can be described as

σReLU (xi) = max(0, xi) (6)

σsoftmax(xi) =
exi∑
j e

xj
(7)

In K-network, the Inception module is selected as feature
extractor instead of stacked convolutional layers. The main
idea of the Inception architecture [26] is built from convolu-
tional layers with different kernel size and make a combination
of all those layers with their output filterbanks concatenated
into a single output vector forming the input of the next stage.

B. Model Training and Testing

To training and evaluating the performance of our proposed
model, we use MATLAB for simulations and generate signal
dataset. The half of the signal dataset will be randomly
selected to train model. The rest will be equally divided into
two parts to test and validate separately. We train the CNN
by using 880000 samples and 440000 samples for validation
and testing. The construction, training and prediction of our
proposed model are implemented in Keras [27] running on top
of TensorFlow [28] on an NVIDA Cuda [29] enabled GeForce
GTX Titan GPU. The adaptive moment estimation (Adam)
[30] algorithm is employed as the training algorithm.

As shown in the Fig. 2, there are two steps in the training
process in our model. In the first step, the M -network will be
trained. In the second step, the output of the M -network will
be part of the input of K estimate sub-network. The parameters
in M -network will keep in fix and parameters in K-network
will be trained in step 2.



IV. SIMULATION AND RESULTS

We compared the performance among our DNN based
method and several other different methods including simple
CNN method and FNN method in this section. The simple
CNN applied the M -network architecture for both K and M
recognition and trained separately. The FNN model is formed
by four stacked hidden-layer which contains 256, 128, 64, 4
nodes separately. The PCC is used to assess the performance
of AMR algorithm. In this simulation, M includes BPSK,
QPSK, 8PSK and 16QAM which is M = {2, 4, 8, 16}.

As shown in Fig. 3, we compared our proposed DNN
method with a simple CNN method and FNN method in
AWGN channel. In this simulation, the number of subcarriers
in one OFDM-IM frame Nc is 128 and keeps fix. The length
of each subblock is N = 4 or 8, and the number of subblocks
in each OFDM-IM frame is G = 32 or 16 correspondingly.
The result shows that out proposed DNN method has the best
performance among these three models. The FNN model has
the worst performance which is lower 70% than PCC of DNN
and Simple CNN in high SNR (SNR >= 10 dB). Besides,
our proposed DNN method consistently outperform Simple
CNN method by 10% average better performance when SNR
in [-4dB, 4dB].

Fig. 3. The PCC curves with AWGN channel at N = 4 and N = 8.

Fig. 4 shows the training history about these three networks.
It shows how training loss and validate loss changes with
varying training epochs. We exploited cross entropy loss as
our training loss function. According to training history graph,
the loss of our proposed DNN method has the minimum
convergence value.

In Fig. 5, we provide a performance analysis of the PCC for
varying K when N = 4. It shows that our model has better
performance with decreasing K when SNR is low.

V. CONCLUSIONS

Different from classical wireless communication scheme,
the modulation parameters in OFDM-IM scheme includes
not only the signal constellation, but also the number of

Fig. 4. Training History

Fig. 5. The PCC curves for varying K with proposed DNN method when N
= 4

active subcarriers. In this paper, we extend FB based AMR
method for OFDM-IM scheme and proposed a practical DNN
based method to recognize parameters in OFDM-IM. The
PCC simulations show that our proposed DNN-based method
is effective for AMR in OFDM-IM, and has almost 100%
the recognition accuracy when SNR is above 6dB. Through
the analytical comparison with several models, our proposed
model has the best performance in different cases.
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