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a b s t r a c t

Most scientific databases consist of datasets (or sources) which in turn include samples (or files) with
an identical structure (or schema). In many cases, samples are associated with rich metadata, describing
the process that leads to building them (e.g.: the experimental conditions used during sample generation).
Metadata are typically used in scientific computations just for the initial data selection; atmost, metadata
about query results is recovered after executing the query, and associated with its results by post-
processing. In this way, a large body of information that could be relevant for interpreting query results
goes unused during query processing.

In this paper, we present ScQL, a new algebraic relational language, whose operations apply to
objects consisting of data–metadata pairs, by preserving such one-to-one correspondence throughout the
computation. We formally define each operation and we describe an optimization, called meta-first, that
may significantly reduce the query processing overhead by anticipating the use ofmetadata for selectively
loading into the execution environment only those input samples that contribute to the result samples.

In ScQL, metadata have the same relevance as data, and contribute to building query results; in this
way, the resulting samples are systematically associated with metadata about either the specific input
samples involved or about query processing, thereby yielding a new form of metadata provenance. We
present many examples of use of ScQL, relative to several application domains, and we demonstrate the
effectiveness of the meta-first optimization.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction and motivation

The organizations of scientific databases are very different. In
many scientific fields, such as biology and astronomy, big consortia
produce large, well-organized data repositories for public use. In
other contexts, such as public administrations, data are open but
much less organized and much more dispersed. Other big data
players, such as Internet companies or mobile phone operators,
produce information mostly for internal use, but often support
third parties in research studies (e.g., about consumers’ interests)
by providing them with services for data retrieval.

We abstract a scientific data source as a container of several
datasets, that in turn consists of thousands of samples, one for
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each experimental condition, often stored as files and not within
a database; typically, samples are described by metadata, i.e., de-
scriptive information about the content and production process of
each sample. Inmeteorology, typical metadata describe ‘‘theWDM
station, the sources ofmeteorological data, and the period of record
forwhich the data is available’’; then the samples describemillions
of records registered at the station. In genomics, typical metadata
describe ‘‘the technology used for DNA sequencing, the process of
DNA preparation, the genotype and phenotype of the donor’’; then,
samples describe millions of genomic regions collected during the
experiment.

Metadata support the selection of the relevant experimental
data by means of user interfaces (e.g. see genomic repositories
such as ENCODE (the Encyclopedia of Genomic Elements, [1]) or
TCGA (The Cancer Genome Atlas, [2]). When a source exposes
APIs or WEB interfaces, metadata associated to each sample (such
as Twitter’s hashtags or timestamps) support data retrieval. As a
result, data scientists select the best datasets and samples within
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sources after analyzing the metadata, but typically they do not
further use them; in most cases, then they retrieve samples and
use scripting languages to query and analyze them. In this paper,
we present a new query language for scientific databases where
metadata and samples are processed together, thereby allowing for
important optimizations and also producing metadata describing
query results.

Our approach is influenced by our experience in biological
databases. In that domain,wedevelopedGMQL (GenoMetric Query
Language) [3], a language for the integration of heterogeneous
biological datasets. Some of the lessons learned in that domain
include aspects that can be shared and generalized to virtually all
scientific databases, namely:

• Metadata describing the content and production process of
a sample can be explicitly associated with the sample in the
form of attribute–value pairs.

• Samples can be represented as parts of larger datasets (e.g.,
files in a file system or tables in a database) to be loaded
for the query process. Metadata associated with them can
be used at query execution time for selectively loading data
from the relevant repositories and transferring them to the
query processing components. Such components can, e.g., be
the nodes of a cloud computing system running dedicated
database engines.

• The query language must allow for metadata-aware query
processing: metadata should thus be enriched as the oper-
ations are applied to samples and should describe the partial
as well as the final results produced by the query.

However, GMQL was tailored to meet the requirements of bio-
logical data andwas based on several domain-specific assumptions
that only apply when observations refer to DNA regions.

The aim of this paper is, instead, to widen the applicability of
metadata-aware query languages by providing a general-purpose
approach that encompasses arbitrary observations of scientific
databases. To this end, we present the new Scientific Query Lan-
guage ScQL. We provide a formal definition of the language se-
mantics, which makes it possible to explain the interplay between
metadata and observations during the evaluation of ScQL opera-
tions and the propagation of metadata to partial and final results.
The precise definition of ScQL semantics also enables us to define
an important optimization principle, called meta-first, that allows
executing the computation of metadata operations before loading
the observation samples, thereby offering remarkable efficiency
improvements.

ScQL supports a new notion of provenance: in its classic use, this
term denotes the ability to understand, for each observation in the
result, which individual observations of the input have contributed
to its generation; we refer to this notion as fine-grained database
provenance, associated to each database tuple. In our approach,
datasets produced as query result are decomposed into homo-
geneous samples, and the observations within each sample are
globally described by metadata. Meta-data of each result sample
are either properties of the input samples that contributed to
its construction or aggregate properties computed during query
processing. Hence, our approach provides a more global notion of
sample provenance, which is easier to compute than fine-grained
database provenance and yet provides very relevant information
to the data scientist.

Sample provenance can be very effective for follow-up activities
of data analysis and mining applied to query results; for instance,
resulting samples can be classified or clustered by using as param-
eters, in addition to their values, also their metadata.

From an implementation point of view, metadata and obser-
vation computations can take place separately, possibly using
very different implementation strategies and even technologies,

as metadata are several orders of magnitude smaller than observa-
tions. In this paper, we do not discuss how ScQL should bemapped
to a physical representation and therefore we cannot discuss its
physical optimization.

However, we define the metadata-first optimization, a repre-
sentation independent optimization based on the simple idea of
anticipating the computation ofmetadata over observationswhen-
ever possible. The metadata-first optimization is fully original, it
emphasizes the use of metadata in order to simplify the queries in
a way that can give dramatic advantages and it is formally defined
and proved correct. We believe that the meta-first optimization
may inspire a class of optimization methods based on similar
abstractions.

2. Scientific data model

A scientific database is based on the notions of datasets and
samples. Datasets are collections of samples, and each sample
consists of two parts: the observations, which describe specific
scientific facts or events, and themetadata, which describe general
properties of the sample.

2.1. Motivation

Experimental data have a variety of file formats;we just assume
them to be self-described through a schema, as advocated in Jim
Gray’s interview reported in the Fourth Paradigm book [4]. The
distinguishing aspect of our approach is that experimental data
are associated with metadata describing their provenance, and
metadata are processed together with experimental data, so as
to propagate the provenance to the query results. Due to the
lack of agreed standards for metadata, they are modeled as free
attribute–value pairs; we expect metadata to include at least the
experiment type, the data collection or analysis method used for
data production, and then domain-specific aspects.

2.2. Samples and datasets

We define a sample s as a triple of the following form:

s = ⟨j,M,O⟩ (1)

where:

• j is the sample identifier, distinct for every sample. This is also
denoted id(s).

• M ⊂ A × V is the metadata set; both A (attributes) and V
(values) are unconstrained sets of strings. The metadata set
of s is also denotedmeta(s).

• O ⊆ X is the observation set, i.e., a set of vectors in a vector
spaceX = X1 ×X2 × . . .×Xn, where every dimensionXi is a
set of floating point numbers, integers or strings. SetO is also
denoted obs(s). As customary, every attribute Xi is associated
with a distinct attribute name Ai. The sequence ⟨A1, . . . , An⟩ is
called the schema of the sample, also indicated as Schema(s).
Given an observation o = ⟨x1, x2, . . . , xn⟩ ∈ O, we write o[Ai]

to denote xi, i.e., the value of the attribute labeled by Ai in o.1

A dataset is a set of samples over the same vector space and
schema. In the following, we assume that, for every dataset D,
metadata andobservations are stored in separate structures,DM

=

⟨j,M⟩ and DO
= ⟨j,O⟩, respectively. Each sample s = ⟨j,M,O⟩

can be simply reconstructed by joining upon the identifier j.

1 Both in observations and metadata, any type of data for which properties
of equality and relative ordering between instances are defined can be used. For
the sake of simplicity, we restricted to basic types for which such properties are
naturally defined.
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Table 1
Observations and metadata of a rainfall dataset.
Id Date Time Rainfall

1 12-3–2016 0:17 0.002
1 12-3–2016 0:18 0.004
1 12-4–2016 3:19 0
1 12-4–2016 3:20 0
2 12-3–2016 0:17 0
2 12-3–2016 0:18 0.001
2 12-4–2016 3:19 0
2 12-4–2016 3:20 0
3 12-3–2016 0:17 0.001
3 12-3–2016 0:18 0.004
3 12-4–2016 3:19 0
3 12-4–2016 3:20 0

Id Attribute Value

1 region Tuscany
1 city Florence
1 device R23-Meter
2 region Lombardy
2 city Bormio
2 device R45
3 region Tuscany
3 city Pisa
3 device R24-Meter

Table 2
Observations and metadata of a snow level dataset.
Id Date Time Snowfall

1 11-3–2016 15:00 0.2
1 12-3–2016 15:00 0.3
2 11-3–2016 15:00 0
2 12-3–2016 15:00 0.1
3 11-3–2016 15:00 0.2
3 12-3–2016 15:00 0.2

Id Attribute Value

1 region Tuscany
1 city Florence
1 device S10
2 region Lombardy
2 city Bormio
2 device S50
3 region Tuscany
3 city Pisa
3 device S7

2.3. Examples

Every dataset is typically produced within the same project, by
using the same technology and tools, but with different experi-
mental conditions, described by metadata; for instance, a dataset
may describe rainfalls observed at a variety of locations, or the
tweets extracted for different input hashtags, or genomic data
collected at a genomic research center or within an international
consortium.

Each dataset is represented by using two tables, one for ob-
servations and one for metadata. Observations have an arbitrary
schema, but they must include a sample identifier. Metadata are
simple triples that add the sample identifier to an attribute–value
pair. Identifiers provide a many-to-many relationship between
observations and metadata of each sample.

Tables 1 and 2 contain two datasets: the first one is related to
rainfallswhile the second one to snowfalls. In both datasetswe have
asmetadata the region and citywhere themeasurement take place
and also the identifier of the meter. The observations are temporal
series of values of rainfall and snowfall. The temporal coordinates
are the date and the time of measurement.

An example of twitter dataset is shown in Table 3; note that
each tweet is extracted by a specific access using the Twitter API,

Table 3
Observations and metadata of a tweet dataset.
Id Account Date Time Text

1 @tom 12-3–2016 0:17 memories of #Aprica
1 @bob 12-3–2016 0:20 good sky #Aprica
1 @alice 12-3–2016 0:17 red sunset #Aprica
2 @billy 12-4–2016 3:17 hot water of #Bormio
2 @bob 12-4–2016 3:18 #Bormio forever
2 @alice 12-4–2016 3:21 #Bormio hard slopes

Id Attribute Value

1 hashtag #Aprica
1 Date 12-3-2016
1 Time 0:21
1 Max 300
2 hashtag #Bormio
2 Date 12-4-2016
2 Time 3:25
2 Max 500

Table 4
Observations and metadata of a genomic dataset.
Id Chr Left Right strand Pvalue

1 1 345656 454676 + 0.000024
1 1 3467 45446 – 0.000053
1 3 895656 914676 – 0.000013
1 3 1345656 1454676 + 0.000024
1 11 36667 45555 – 0.000021
2 1 1345656 1454676 + 0.000034
2 1 346777 465446 – 0.000023
2 3 85656 91676 – 0.000033
2 3 5656 14476 + 0.000024
2 14 85656 91476 – 0.000013
2 17 124 455 – 0.000021
2 17 8556 9176 – 0.000016

Id Attribute Value

1 Cell CLL
1 Tissue Blood
1 Sex F
1 Disease Cancer-brca
1 Disease Diabetes
2 Cell CLL
2 Tissue Blood
2 Disease Cancer-coad

hence a Twitter access corresponds to a sample, individual tweets
correspond to observations within each sample (with their handle,
date, time, text), metadata include the query hashtag, date, time of
query submission and max number of retrieved tweets.

Finally, an example of genomic dataset is shown in Table 4. Each
sample corresponds to an experiment; observations are genomic
regions, having specific coordinates (the chromosome where the
region belongs, the region’s left and right end, the strand describ-
ing the direction of DNA reading) and a specific measure (the
P_value representing how significant a peak of expression is
in that genomic region). Metadata typically include the cell line,
tissue, experimental condition (e.g., antibody target) and organism
sequenced; in case of clinical studies, individual’s descriptions
including phenotypes. Note that sample 1 has 5 observations and
4metadata attributes, sample 2 has 7 observations and 3metadata
attributes. Attributes may have multiple values (e.g., the Dis-
ease attribute can have both values ‘Cancer’ and ‘Diabetes’).
Throughout the next section we will use genomic examples.

3. Scientific query language

The Scientific Query Language (ScQL) is an extension of Rela-
tional Algebra for expressing scientific computation and dealing
explicitly with metadata management.
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3.1. Rationale of language design

A scientific query (or program) is expressed as a sequence of
operations with the following structure:

<variable> = operation(<parameters>) <variables>

where each variable stands for a dataset. ScQL operations form a
closed algebra: results are expressed as new datasets derived from
their operands. Operations are either unary (with one input vari-
able) or binary (with two input variables), and construct one result
variable. The unary operations are: SELECT, SEMIJOIN, PROJECT,
EXTEND, ORDER, MERGE, and GROUP; the binary operations are:
UNION, DIFFERENCE, and JOIN. They are extensions of classic
Relational Algebra operations; domain-specific operations may be
added to serve specific domain needs, e.g., in genomics [5].

Compared with languages which are currently in use by the
scientific community, ScQL is declarative (it specifies the structure
of the results, leaving its computation to each operation’s imple-
mentation) and high-level (each operation typically substitutes for
a long program that embeds calls to scientific computations).2 The
progressive computation of variables resembles other algebraic
languages (e.g., Pig Latin [6]).

Metadata are typically used for selecting the samples of interest
from larger datasets, but the distinguishing aspect of ScQL is that
metadata are then processed together with experimental data. In
many cases, metadata computation is implicit and consists in their
transfer from the input variable(s) to the output variable. However,
the language allows one to override the implicitmetadatamanage-
ment and to explicitly deal with their projection, join, grouping,
and sorting. It is important to realize that implicit metadata man-
agement is made possible by the scientific data model, which links
metadata and observations.

Operators are carefully chosen for an effective and complete ex-
pression of relational computations over complex dataset objects
formedby observations andmetadata, inwhich each dataset object
is further organized as collection of samples and the metadata and
observation parts of a sample share the same sample identifier.

Although the design of operations descends from classic Rela-
tional Algebra, some operations introduce features that are very
specific of our data model, which links observations andmetadata.
Among them, EXTEND computes aggregate properties of observa-
tions for each sample and stores them in the sample metadata;
GROUP creates new samples as the aggregation of those samples
with identical values of the grouping attributes.

An important aspect of the language is the implicit manage-
ment of the sample identifiers, achieved by OID invention in the
operations of MERGE and JOIN and by a careful workflow with
information passing between the table-level operations.

Additional design principles of the language are relational com-
pleteness and orthogonality (see Section 3.13 for more details).

Motivational example (sketch)

Consider the two dataset shown in Tables 1 and 2. In particular
let us call the rainfall dataset RAINDS and the snowfall dataset
SNOWDS.

We now show an example where we compute the average
rainfall and maximum snowfall for a given region and day, we join
on the city being observed andwe extract the top 100 observations
in decreasing values of average rainfall.

2 However, note that within the database community algebraic languages are
considered as procedural while calculus and SQL are considered as declarative.

DS1 = SELECT[region=’Tuscany’;date=12/3/16] RAINDS
DS2 = SELECT[region=’Tuscany’;date=12/3/16] SNOWDS
DS3 = EXTEND[sumrain as sum(rainfall)] DS1
DS4 = EXTEND[maxsnow as max(snowlevel)] DS2
DS5 = JOIN [city] DS3, DS4
RESULT = ORDER[DESC LEFT.sumrain; TOP 100] DS5

In the next sections the semantics and exact signature of the
ScQL operators used in this example will be given. As for now
we can anticipate that the SELECT operator enables to filter a
dataset based on a condition on metadata and also observations.
On the other hand, the EXTEND operator builds a new metadata
attribute (sumrain and maxsnow) based on an aggregation on a
specific attribute of the observation data. The JOIN operator has a
semantics similar to the SQL join and extends it with the possibility
on joining on the values of metadata (city). The ORDER operation
has an intuitive semantics and signature: it will order the samples
of the resulting dataset by adding a metadata attribute order to
each of them specifying their ranking.

In Table 5 the resulting dataset RESULT is shown.
We have one sample for each city and themetadata of the result

indicate the exact location of meters and we can correlate, within
given cities, the heaviest rain falls and actual flooding of the city
spots with snow levels at the meters surrounding the city.

3.2. Rationale of language specification

The specification of each operation applies to observations and
to metadata separately: the observation part of an operation com-
putes the result observation, the metadata part of the operation
computes the associated metadata. Identifiers preserve the many-
to-many mapping of observations and metadata.

The logical separation, in every dataset D, between metadata
and observations in two different structures, DM and DO , makes
the language specification useful also for ScQL processing: meta-
data are several orders of magnitude smaller than observations,
and therefore we assume that implementations of ScQL will use
different data storage and management technologies for them.

The semantics of ScQL operations is described by means of
table-level operations, e.g., simpler operations that act either upon
metadata (‘‘M’’ suffix) or upon observations (‘‘O’’ suffix). They are
listed in Fig. 1, showing themapping fromScQL operations to table-
level operations. Thus, the semantics of every ScQL operation is
obtained as the composition of two separate aspects: theworkflow,
which describes how several table-level operations interact, and
then the semantics of each individual table-level operation.

This choice allows us to use the semantics directly for driving
our implementation, whose upper layers consist of a translator
mapping ScQL to a workflow of table-level operations. The work-
flow can be optimized independently of a mapping to a physical
engine, and indeedwedefine a powerful optimization, calledmeta-
first, consisting in a graph rewriting, which separates metadata
operations from observation operations; the optimization is appli-
cable to most queries and is always beneficial, although the actual
benefit is data-dependent and becomes known at execution time.
Table-level operations must instead be translated into engine-
specific implementations; hence factoring them is highly beneficial
— factoring applies to few cases due to language orthogonality but
is still useful.

We next proceed with the definition of ScQL operations.

3.3. Selection

Selections use predicates on both metadata and observations,
built by arbitrary Boolean expressions of simple predicates, as it is
customary in Relational Algebra. They have a different interpreta-
tion here.
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Table 5
Resulting dataset RESULT of the motivational example query.
Id Left.Date Left.Time Left.Rainfall Right.Date Right.Time Right.Snowfall

100 12-3–2016 0:17 0.002 12-3–2016 15:00 0.3
100 12-3–2016 0:18 0.004 12-3–2016 15:00 0.3
101 12-3–2016 0:17 0.001 12-3–2016 15:00 0.2
101 12-3–2016 0:18 0.004 12-3–2016 15:00 0.2

Id Attribute Value

100 Left.region Tuscany
100 Left.city Florence
100 Left.device R23-Meter
100 Left.sumrain 0.006
100 Right.region Tuscany
100 Right.city Florence
100 Right.device S10
100 Right.maxsnow 0.3
100 Order 1
101 Left.region Tuscany
101 Left.city Pisa
101 Left.device R24-Meter
101 Left.sumrain 0.005
101 Right.region Tuscany
101 Right.city Pisa
101 Right.device S7
101 Right.maxsnow 0.2
101 Order 2

Fig. 1. ScQL Operations and Table-level operations.

• Predicates on metadata have an existential interpretation
over samples: they select the entire sample if it contains
attributes such that the predicate evaluation on their values
is true. A predicate can refer to any attribute, even one that is
not present in the metadata; when the attribute is missing in
a sample, the predicate evaluates to false.

• Predicates on observations have a classical interpretation:
they select the observationswhere the predicate is true. Pred-
icates must use the attributes in the observation’s schema,
else the operation is illegal.

3.3.1. Syntax

Dout = SELECT([pm][; po])Din (2)

The syntax refers to two selection predicates (pm for the metadata
and po for the observations), and allows either to be missing, but
not both. Both predicates are Boolean parenthesized expressions
formed with the logical operators AND, OR and NOT, and atoms of
the form a ◦ v, where a is an attribute, v is a value, and ◦ ∈ {=,

̸=, <,≤, >,≥}. As customary, here and in the other operators, *
refers to the full list of attributes.

3.3.2. Workflow
The predicate pm is evaluated by the SelectM operation,

thereby returning a set J of identifiers of the selected samples.
These are used by PurgeO to filter observation samples. Then,

Fig. 2. Workflow for SELECT.

SelectO selects the observations that satisfy the predicate po.
Fig. 2 illustrates this workflow.

3.3.3. Semantics
We write p(M) to indicate that predicate p holds when evalu-

ated against a metadata setM. When p is an atom of the form a◦v

we have:

p(M) iff ∃v′
| ⟨a, v′

⟩ ∈ M ∧ v ◦ v′.

The usual semantics of Boolean operators is used to extend to non-
atomic expressions including AND, OR and NOT.

SelectM applies the predicate pm to the metadata of Din. The
output of SelectM is the set J of identifiers of samples of Din
satisfying pm, i.e.:

J = {j | ∃M ⟨j,M⟩ ∈ DM
in ∧ pm(M)}.

The corresponding set of selected metadata sets, along with their
identifiers, is:

DM
out = {⟨j,M⟩ | ⟨j,M⟩ ∈ DM

in ∧ j ∈ J }.

PurgeO receives the set J of identifiers extracted by SelectM
and outputs the corresponding sets of observationsO ofDin having
those identifiers:

O = {⟨j,O⟩ | ⟨j,O⟩ ∈ DO
in ∧ j ∈ J }
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Table 6
Dataset D1 .
id meta Observations

1 antibody,BRD4 chr1,10,100,*,0.1
antibody,CTCF chr1,20,300,*,0.5
organism,HG19 chr2,250,300,+,0.3

chr3,20,30,*,0.2
2 antibody,CTCF chr1,40,90,*,0.4

organism,HG19 chr1,20,300,*,0.5
chr2,250,300,+,0.1

3 antibody,BRD4 chr2,25,30,+,0.1
organism,HG19 chr3,20,40,+,0.2

chr2,50,300,+,0.5

Table 7
Dataset D2 .
id meta Observations

1 antibody,BRD4 chr1,10,100,*,0.1
antibody,CTCF chr3,20,30,*,0.2
organism,HG19

2 antibody,CTCF chr2,250,300,+,0.1
organism,HG19

SelectO applies the predicate po to the observations of O.
Each atomic predicate p of the form a ◦ v is evaluated on a given
observation o as follows:

p(o) holds iff o[a] ◦ v.

As before, the usual semantics of Boolean operators is used to
extend to non-atomic expressions including AND, OR and NOT. Let
us, for a set of observations O and an observation predicate p, use
the classical relational algebra notation σpO to indicate the set of
observations in O satisfying p, i.e.,σpO = {o | o ∈ O ∧ p(o)}.

The resulting sets of observations, along with their identifiers,
are obtained as follows:

DO
out = {⟨j,σpoO⟩ | ⟨j,O⟩ ∈ O}

The dataset Dout is the combination of the metadata sets of DM
out

and the sets of observations of DO
out

Dout = {⟨j,M,O⟩ | ⟨j,O⟩ ∈ DO
out ∧ ⟨j,M⟩ ∈ DM

out}. (3)

The combination of themetadata partDM
out and the observation part

DO
out will not be shown for the remaining ScQL operations, as it can

be performed exactly as in (3).
Overall, the semantics of SELECT, as specified in (2), is captured

by the following expression:

Dout = {⟨j,M,σpoO⟩ | ⟨j,M,O⟩ ∈ Din ∧ pm(M)}. (4)

3.3.4. Example
All examples of unary operations (from Section 3.3 to Section

3.10), including the dataset D1 in Table 6, use an input schema
consisting of five attributes:

Schema(D1) = (Chr, Left, Right, Strand, Value).

The following SELECT produces as output the dataset D2 in
Table 7:

D2 = SELECT(antibody = "CTCF"; Value < 0.25)D1

In all examples with the exception of projection (Section 3.5) the
schema of the result is not changed.

The next example illustrates what happens when the metadata
of a sample matches, but none of the observations matches the
observation predicate.

D3 = SELECT(antibody = "BRD4"; Left > 100)D1

The resulting output D3 is shown in Table 8, and consists of two
samples, one of which contains no observations.

Table 8
Dataset D3 .
id meta Observations

1 antibody,BRD4 chr2,250,300,+,0.3
antibody,CTCF
organism,HG19

3 antibody,BRD4
organism,HG19

Fig. 3. Workflow for SEMIJOIN.

3.4. Semi-join

The semi-join operation is also used to select the samples of a
dataset, based on an equi-join predicate on its metadata referring
to another dataset (called external dataset).3

3.4.1. Syntax

Dout = SEMIJOIN(Am;DE)Din. (5)

Here,Din andDE are datasets andAm is a list of attributes appearing
in the metadata of both DE and Din.

3.4.2. Workflow
The attribute list Am is used by the SemiJoinM operation to

return a set J of identifiers of those samples of Din that, for each
metadata attribute in Am, match the corresponding value in the
external dataset DE . These identifiers are used by PurgeO to filter
observation samples. Fig. 3 illustrates this workflow.

3.4.3. Semantics
SemiJoinM applies toDin by retaining only thosemetadata sets

that agree with a metadata set in DE on all attribute–value pairs
for the attributes in Am. Let us write Am(M) to indicate that the
metadata set M has the above property:

Am(M) iff ∀a ∈ Am ∃s ∈ DE ∃v ⟨a, v⟩ ∈ M ∩ meta(s).

The resultDout will contain a subset of the samples ofDin, whose
identifiers are:

J = {j | ∃M ⟨j,M⟩ ∈ DM
in ∧ Am(M)}.

The corresponding set of selected metadata sets, along with their
identifiers, is:

DM
out = {⟨j,M⟩ | ⟨j,M⟩ ∈ DM

in ∧ j ∈ J }.

PurgeO receives the identifiers in J and retains the observa-
tions of Din having those identifiers:

DO
out = {⟨j,O⟩ | ⟨j,O⟩ ∈ DO

in ∧ j ∈ J }

3 Although SEMIJOIN uses a second dataset DE , we treat it as a unary operator,
because the result is strictly contained in the operand dataset Din . Also, only the
metadata of DE are used, while its observations are completely disregarded; with
binary operators, instead, both inputs are used in full.
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Fig. 4. Workflow for PROJECT.

Overall, the semantics ofSEMIJOIN is captured by the following
expression:

Dout = {⟨j,M,O⟩ | ⟨j,M,O⟩ ∈ Din ∧ Am(M)}. (6)

3.4.4. Example
Consider again datasetD1 from Table 6 and a datasetD3 consist-

ing of one sample with the metadata pairs <antibody, CTCF>,
<organism, HG19>.

The operation

D2 = SEMIJOIN(organism)D1 D3

produces in D2 all the samples of Din.
The operation

D2 = SEMIJOIN(organism, antibody)D1 D3

produces in D2 the samples with identifiers 1 and 2 of D1.

3.5. Projection

It is used to projectmetadata and observation attributes.4 It can
also be used to build new attributes as scalar expressions (e.g., for
metadata, the age from the birth date; for observations, the length
of a region as the difference between its right and left ends).

3.5.1. Syntax

Dout = PROJECT(am1[AS f1], . . . , amm[AS fm];

ao1[AS g1], . . . , aon[AS gn])Din (7)

where the ami’s denote metadata attribute names, the aoi’s denote
observation attribute names, and the fi’s and gi’s denote scalar
functions computed by using parenthesized mathematical expres-
sions built from attribute names, constant values and standard
arithmetic operations.

3.5.2. Workflow
The projection is independently applied to metadata and to

observations (with ProjectM and ProjectO, respectively). Fig. 4
illustrates this workflow.

3.5.3. Semantics
ProjectM. Let Anew

m be the set of metadata attribute names
that are syntactically associated by the PROJECT operation with a
scalar function. For each aj ∈ Anew

m , let fj be the function associated
with aj and let fj(M) indicate the value obtained by applying fj on

4 A syntactic variant (using the keywords ALL BUT) allows one to specify only
the attributes that are removed from the result; this variant is very useful with
datasets having hundreds of metadata.

Table 9
Dataset D3 .
id meta Observations

1 antibody,BRD4 chr1,10,100,*,0.1
antibody,CTCF chr1,20,300,*,0.5
total,1.1 chr2,250,300,+,0.3
count,4 chr3,20,30,*,0.2

2 antibody,CTCF chr1,40,90,*,0.4
organism,HG19 chr1,20,300,*,0.5
total,1.0 chr2,250,300,+,0.1
count,3

3 antibody,BRD4 chr2,25,30,+,0.1
organism,HG19 chr3,20,40,+,0.2
total,0.8 chr2,50,300,+,0.5
total,0.9
count,3

Table 10
Dataset D4 .
id meta Observations

1 antibody,BRD4 chr1,10,100,90
antibody,CTCF chr1,20,300,280
count,4 chr1,250,300,50
avg,0.275 chr1,20,30,10

2 antibody,CTCF chr1,40,90,50
count,3 chr1,20,300,280
avg,0.333 chr2,250,300,50

3 antibody,BRD4 chr3,25,30,5
count,3 chr3,20,40,20

chr2,50,300,250

the metadata set M.5 Let Aold
m be the set of the other attribute

names in the PROJECT operation. Then, for every sample of Din
with metadata M, Dout will contain a corresponding sample with
metadata τm(M), i.e.:

DM
out = {⟨j, τm(M)⟩ | ⟨j,M⟩ ∈ Din},

where τm(M) is defined as follows:

τm(M) = {⟨a, v⟩ | ⟨a, v⟩ ∈ M ∧ a ∈ Aold
m } ∪

{⟨aj, fj(M)⟩ | aj ∈ Anew
m }.

ProjectO. If observation attribute name aoi, 1 ≤ i ≤ n,
is associated with a scalar function gi in the PROJECT operation,
we let gi(o) indicate the value obtained by applying gi on the
observation o; otherwise, we let gi(o) indicate the value o[aoi]
associated with attribute aoi in observation o.

Then, for every sample of Din with observation set O, Dout will
contain a corresponding sample with observation set τo(O), i.e.:

DO
out = {⟨j, τo(O)⟩ | ⟨j,O⟩ ∈ Din},

where τo(O) is defined as follows:

τo(O) = {⟨g1(o), . . . , gn(o)⟩ | o ∈ O}.

3.5.4. Example
Consider the dataset D3 in Table 9. The following PROJECT:

D4 = PROJECT(antibody, count, avg AS total/count;
Chr, Left, Right, Length as (Right − Left)) D3

produces as output the dataset D4 in Table 10, with schema:
Schema(D4) = (Chr, Left, Right, Length)

5 When a scalar function is applied to an attribute with either missing or
multiple values, its result is undefined and no corresponding metadata attribute
is generated.
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Fig. 5. Workflow for EXTEND.

3.6. Extension

It generates new metadata as the result of aggregate functions
applied to observation attributes.

3.6.1. Syntax

Dout = EXTEND(am1 AS f1, . . . , amn AS fn)Din (8)

where the ami’s denote metadata attribute names and the fi’s
denote aggregate functions computed over parenthesized math-
ematical expressions built from attribute names, constant values
and standard arithmetic operations. Supported aggregate func-
tions include COUNT (applicable to any type), MIN, MAX (applicable
to any ordered type, including lexicographically ordered strings)
and SUM, AVG, MEDIAN, STD (applicable to numeric types).

3.6.2. Workflow
The BuildO operation is applied to the observation set of each

sample of Din to compute, for each attribute, a corresponding ag-
gregate value. BuildO produces such attribute–value pairs (along
with the sample identifier); with that, ExtM constructs the meta-
data of the result Dout . The observations of Din are kept unchanged
in Dout . Fig. 5 illustrates this workflow.

3.6.3. Semantics
BuildO produces the following set of newmetadata attribute–

value pairs, along with the corresponding sample identifiers:

AV = {⟨j, ami, fi(O)⟩ | ⟨j,O⟩ ∈ DO
in ∧ 1 ≤ i ≤ n},

where fi(O) indicates the value computed by the aggregate func-
tion fi on the observations O of the sample with identifier j.

ExtM builds the metadata sets of Dout from AV and from the
metadata sets of Din as follows:

DM
out = {⟨j,M ∪ τ (j)⟩ | ⟨j,M⟩ ∈ DM

in },

where τ (j) is the set of attribute–value pairs associated with id j:

τ (j) = {⟨am, v⟩ | ⟨j, am, v⟩ ∈ AV},

As mentioned, the observations are kept unchanged, i.e.:

DO
out = DO

in .

3.6.4. Example
Consider the dataset D5 in Table 11. The following EXTEND

produces as output the dataset D6 in Table 12.

D6 = EXTEND(avg_V AS AVG(Value),
min_V AS MIN(Value)) D5

Table 11
Dataset D5 .
id meta Observations

1 antibody,BRD4 chr1,10,100,*,0.1
antibody,CTCF chr1,20,300,*,0.5
organism,HG19 chr2,250,300,+,0.3

chr3,20,30,*,0.2
2 antibody,CTCF chr1,40,90,*,0.4

organism,HG19 chr1,20,300,*,0.5
chr2,250,300,+,0.1

3 antibody,BRD4 chr2,25,30,+,0.1
organism,HG19 chr3,20,40,+,0.2

chr2,50,300,+,0.5

Table 12
Dataset D6 .
id meta Observations

1 antibody,BRD4 chr1,10,100,*,0.1
antibody,CTCF chr1,20,300,*,0.5
organism,HG19 chr2,250,300,+,0.3
avg_V,0.275 chr3,20,30,*,0.2
min_V,0.1

2 antibody,CTCF chr1,40,90,*,0.4
organism,HG19 chr1,20,300,*,0.5
avg_V,0.333 chr2,250,300,+,0.1
min_V,0.1

3 antibody,BRD4 chr2,25,30,+,0.1
organism,HG19 chr3,20,40,+,0.2
avg_V,0.266 chr2,50,300,+,0.5
min_V,0.1

3.7. Order

It is used for ordering samples, observations, or both of them.
The default ordering is ascending, and can be turned to descending
by an explicit indication. Sorted samples have a new attribute
Order, added to metadata, observations, or both of them,6 The
value of Order reflects the result of the sorting. If sorting is applied
to samples or observations that were previously ordered, such
previous ordering is not considered. Identifiers of the samples of
the operandDin are assigned to the result. The clause TOP k extracts
the first k observations or samples.

3.7.1. Syntax

Dout = ORDER([[DESC]am1, . . . , [DESC]amn[TOP k]] (9)
[; [DESC]ao1, . . . , [DESC]aom[TOP h]])Din

where the ami’s denote metadata attribute names and the aoi’s
denote observation attribute names.

3.7.2. Workflow
The ordering is independently applied to metadata and to ob-

servations. When the TOP clause is used in the metadata to filter
some of the samples, the corresponding identifiers, computed by
OrderM, are included in the set J and used by OrderO (see Fig. 6).

3.7.3. Semantics
For a dataset D, let rankD(j) indicate the rank, between 1 and

|D|, of the sample identified by j when the samples of D are sorted
according to themetadata attributes listed in the ORDER operation.
Similarly, for an observation set O, let rankO(o) indicate the rank
between 1 and |O| of observation o ∈ O when the observations of
O are sorted according to the observation attributes listed in the
ORDER operation.

6 Order and Group are reserved words that cannot be used as attribute names.
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Fig. 6. Workflow for ORDER.

Table 13
Dataset D7 .
id metadata Observations

1 antibody,CTCF chr1,10,20,+,0.3
count,5 chr1,10,20,+,0.1

chr1,15,20,+,0.5
2 antibody,CTCF chr1,10,20,+,0.3

count,3 chr2,10,30,+,0.2
chr1,15,20,+,0.1

Table 14
Dataset D8 .
id metadata Observations

1 antibody,CTCF chr1,10,20,+,0.3,2
count,5 chr1,10,20,+,0.1,1
Order,2

2 antibody,CTCF chr1,15,20,+,0.1,1
count,3 chr2,10,30,+,0.2,2
order,1

OrderM. Let k be the parameter of the TOP k clause (consider
k = +∞ if the TOP k clause is not present). Then the set of retained
sample identifiers is as follows:

J = {j | ∃M ⟨j,M⟩ ∈ DM
∧ rankD(j) ≤ k}

The metadata set of each retained sample is extended with an
Order attribute as follows:

DM
out = {⟨j,M ∪ {⟨Order, rankD(j)⟩}⟩ | ⟨j,M⟩ ∈ DM

}

OrderO. The schema of Dout is obtained from the schema of Din
by adding the Order attribute, i.e.:

Schema(Dout ) = Schema(Din) · ⟨Order⟩

where · indicates tuple concatenation. For every observation set
O of a sample in Din whose identifier is in J , every observation
o ∈ O is then modified by adding a value rankO(o) for the Order
attribute, as specified below, where h is the parameter of the TOP h
clause (consider h = +∞ otherwise):

DO
out = {⟨j, τ (O)⟩ | ⟨j,O⟩ ∈ DO

∧ j ∈ J }

where, for an observation set O, τ (O) is computed as follows:

τ (O) = {o · ⟨rankO(o)⟩ | o ∈ O ∧ rankO(o) ≤ h}

3.7.4. Example
Consider the dataset D7 in Table 13. The following ORDER pro-

duces D8 in Table 14.

D8 = ORDER(Count; Value TOP 2)D7

3.8. Group

It is used for grouping samples or observations according to
distinct values of grouping attributes, and then for computing
aggregate values for each group.

Fig. 7. Workflow for GROUP.

• For what concerns metadata, each combination of distinct
values of the grouping attributes is associated with one new
attributeGroup, which carries a distinct value for each group;
samples having missing values for any of the grouping at-
tributes are discarded. As metadata attributes are multi-
valued, samples of the input dataset are partitioned by each
subset of their distinct values (e.g., samples with a Disease
attribute equal both to ‘Cancer’ and to ‘Diabetes’ are
within a group that is distinct from the groups of the samples
with only one value, either ‘Cancer’ or ‘Diabetes’). New
metadata attributes are added to the output samples for
storing the results of aggregate function evaluations over
each group.

• For what concerns observations, grouping applies to the ob-
servations having the same values for the grouping attributes.
The resulting schema includes new attributes for storing the
results of the evaluation of aggregate functions on each group.

Note that, after a GROUP operation, every sample of the input
dataset with a legal grouping value corresponds to a sample of the
output dataset; the MERGE operation, which is next discussed, can
then be used tomerge all samples belonging to the same group into
a single sample.

3.8.1. Syntax

Dout = GROUP(
[am1, . . . , amm[, am′

1 AS f1, . . . , am′

m′ AS fm′ ]]

[; ao1, . . . , aon[, ao′

1 AS g1, . . . , ao′

n′ AS gn′ ]])Din (10)

where the ami’s denote metadata attribute names of Din used for
grouping, the aoi’s denote observation attribute names used for
grouping, the am′

i ’s denote newmetadata attribute names, the ao′

is
denote new observation attribute names, the fi’s and gi’s denote
aggregate functions used for computing the values corresponding
to the new attribute names. Aggregates are defined as in the
EXTEND operation. For convenience, we let Am = am1, . . . , amm
indicate the grouping metadata attributes.

3.8.2. Workflow
The grouping metadata attributes Am are used by the GroupM

operation to identify a partitioning of Din’s samples. Each partition
is identified by a new sample identifier k and associated with the
set Jk of identifiers of the samples of Din that are mapped to k.
These identifiers are passed to AggrM and to AggrO for computing
aggregates on metadata and observations. As the grouping on
metadata is optional, if it is omitted then the aggregates are directly
computed on the initial samples in Din (see Fig. 7).
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3.8.3. Semantics
GroupM. Given the grouping metadata attributes Am and the

metadata sets of Din, GroupM creates distinct groups for each
grouping value. Two samples si and sj of Din belong to the same
group, denoted as si ≈Am sj, if and only if they have exactly the
same set of values for every attribute am ∈ Am, i.e.

si ≈Am sj iff
{⟨am, v⟩ | ⟨am, v⟩ ∈ meta(si) ∧ am ∈ Am}

= {⟨am, v⟩ | ⟨am, v⟩ ∈ meta(sj) ∧ am ∈ Am}.

Given this definition, grouping has important properties:

• reflexive: si ≈Am si;
• commutative: si ≈Am sj ⇐⇒ sj ≈Am si;
• transitive: si ≈Am sj ∧ sk ≈Am si ⇐⇒ sk ≈Am sj.

Let G be the partition of Din based on Am, i.e., the set of sets of
samples of Din belonging to the same group based on Am. Then,
the output of GroupM is a structure

T = {⟨id(G), idg(G)⟩ | G ∈ G}, (11)

with

idg(G) =

⋃
s∈G

id(s), (12)

where id(G) is a new group identifier associated with the partition
G; T associates each group identifier id(G) with the set idg(G) of
identifiers of the samples associated with the group.

GroupM also produces the set J of identifiers of all the samples
of Din that belong to some group:

J =

⋃
G∈G

{s | s ∈ idg(G)}

AggrM receives as input T and produces the metadata of the
output samples. The metadata set of each retained sample s is first
extended with a Group attribute as follows:

M = {⟨j,M ∪ {⟨Group, id(G)⟩}⟩ |

⟨j,M⟩ ∈ DM
in ∧ j ∈ idg(G) ∧ G ∈ G}.

Then, AggrM computes the aggregate functions for metadata;
if grouping on metadata is omitted, it directly applies to Din, and
all samples are associated with the metadata tuple ⟨Group, 1⟩. Let
am′

h denote the newmetadata attribute that must be computed by
an aggregate function fh, and let vkh be the result of the evaluation
of fh over the kth group, i.e.

vkh = fh(G), where k = id(G) and G ∈ G.

The metadata sets of Dout are then built by adding to the meta-
data sets of M the new pairs ⟨am′

h, vkh⟩ to the samples of the kth
group, for every new metadata attribute am′

h:

DM
out = {⟨j,M ∪ ∆M(j)⟩ | ⟨j,M⟩ ∈ M},

where ∆M(j) is the set of new attribute–value pairs to be added to
the metadata of the sample with identifier j, i.e.:

∆M(j) =

⋃
1≤h≤m′

{⟨am′

h, vkh⟩ | k = id(G) ∧ G ∈ G ∧ j ∈ idg(G)}.

AggrO receives as input J and computes the aggregate func-
tions for the corresponding observations. If grouping on metadata
is omitted, it directly applies to Din.

The resulting schema of dataset Dout is the concatenation of
the grouping observation attributes and the new observation at-
tributes, i.e.:

Schema(Dout ) = ⟨ao1, . . . , aon, ao′

1, . . . , ao
′

n′⟩.

Table 15
Dataset D9 .
id metadata Observations

1 antibody,CTCF chr1,10,20,+,0.1
chr1,10,20,+,0.3

2 antibody,CTCF chr1,10,20,+,0.1
chr2,20,50,-,0.2

3 antibody,CTCF chr2,30,40,+,0.1
antibody, POL2 chr2,30,40,+,0.4

Table 16
Dataset D10 .
id metadata Observations

1 antibody,CTCF chr1,10,20,+,0.1
group,1 chr1,10,20,+,0.3
new,2

2 antibody,CTCF chr1,10,20,+,0.1
group,1 chr2,20,50,-,0.2
new,2

3 antibody,CTCF chr2,30,40,+,0.1
antibody, POL2 chr2,30,40,+,0.4
group,2
new,1

Table 17
Dataset D11 .
id metadata Observations

1 antibody,CTCF chr1,10,20,0.3

2 antibody,CTCF chr1,10,20,0.1
chr2,20,50,0.2

3 antibody,CTCF chr2,30,40,0.4
antibody,POL2

The observation sets of Dout are computed from those in D as
follows:

DO
out = {⟨j, τo(O)⟩ | ⟨j,O⟩ ∈ DO

in }

where τo(O) extends the observations ofOwith the new aggregate
values:

τo(O) = {⟨o[ao1], . . . , o[aon], g1(O′), . . . , gn′ (O′)⟩ |

o ∈ O ∧ O′
= σao1=o[ao1]∧...∧aon=o[aon]O}

3.8.4. Examples
Consider the dataset D9 in Table 15. The following two GROUP

operations produce the result datasets D10 in Table 16 and D11 in
Table 17, respectively.

D10 = GROUP(antibody, New AS count(∗))D9

D11 = GROUP(; Chr, Start, Stop, New AS max(Value))D9

3.9. Merge

It generates a dataset consisting of a single sample by merging
both metadata and observations. Optionally, it is possible to group
samples by distinct values of the grouping attribute, as in the
GROUP operation; in such a case, merging applies to each group
and produces a single sample for each group.

3.9.1. Syntax

Dout = MERGE[(am1, . . . , amm)]Din, (13)

where am1, . . . , amm are grouping metadata attributes.
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Fig. 8. Workflow for MERGE.

Table 18
Dataset D12 .
id metadata Observations

101 antibody,CTCF chr1,10,20,+,0.1
chr1,10,20,+,0.3
chr2,20,50,-,0.2

102 antibody,CTCF chr2,30,40,+,0.1
antibody, POL2 chr2,30,40,+,0.4

3.9.2. Workflow
First, grouping is performed by GroupM, as defined above for

GROUP. Then, for each group, MergeM combines in a single meta-
data set all the metadata sets of the samples in the same group.
Similarly, MergeO combines in a single observation set all the
observation sets of the samples in the same group (see Fig. 8).

3.9.3. Semantics
GroupM generates the structure T = ⟨k,Jk⟩ as in (11), where k

is a new sample identifier and Jk is the set of identifiers of samples
of Din that belong to the group identified by k. When no grouping
is specified, T is a singleton.

MergeM creates one metadata set per group:

DM
out = {⟨k,

⋃
s∈Din, id(s)∈Jk

meta(s)⟩ | ⟨k,Jk⟩ ∈ T }

MergeO creates one observation set per group:

DO
out = {⟨k,

⋃
s∈Din, id(s)∈Jk

obs(s)⟩ | ⟨k,Jk⟩ ∈ T }

3.9.4. Example
Consider the dataset D9 in Table 15. The following MERGE oper-

ation produces the result datasets D12 in Table 18.

D12 = MERGE(antibody)D9

3.10. Union

It is used to merge observations of two datasets within a single
dataset. Union can be applied only to observations with the same
schema; schema differences can be resolved by suitable projec-
tions.

3.10.1. Syntax

Dout = UNION Din1 Din2 (14)

whereDin1 andDin2 are datasetswith the same schema. The schema
of the result Dout is also the same, i.e.,

Schema(Dout ) = Schema(Din1 ) = Schema(Din2 ).

Fig. 9. Workflow for UNION.

3.10.2. Workflow
The operation is independently applied to metadata and to

observations (see Fig. 9).

3.10.3. Semantics
The samples in Dout are the union of those in Din1 and Din2 , but

the identifiers are reassigned to each sample so that they are still
unique within Dout . Let a1(id(s1)) denote the identifier assigned to
a sample s1 ∈ Din1 and a2(id(s2)) the identifier assigned to a sample
s2 ∈ Din2 .

UnionM puts together the metadata of the samples of Din1 and
Din2 so that the result has the following metadata sets along with
the new identifiers:

DM
out = {⟨a1(j),M⟩ | ⟨j,M⟩ ∈ DM

in1 } ∪

{⟨a2(j),M⟩ | ⟨j,M⟩ ∈ DM
in2 }.

UnionO takes care of the observations:

DO
out = {⟨a1(j),O⟩ | ⟨j,O⟩ ∈ DO

in1} ∪

{⟨a2(j),O⟩ | ⟨j,O⟩ ∈ DO
in2}.

3.11. Join

The JOIN operation applies to two datasets and acts in two
phases. In the first phase, pairs of samples which satisfy the meta
join clause are identified; the join predicate is an implicit equality
comparison among metadata attributes listed as parameters of
the operation. In the second phase, observations from matched
pairs of samples that satisfy the observation join clause are joined.
When the first clause is missing, the Cartesian product of samples
is performed. When the second clause is missing, the Cartesian
product of tuples is performed. The schema of Dout is obtained as
the concatenation of the schemas of Din1 and of Din2 , i.e.:

Schema(Dout ) = Schema(Din2 ) · Schema(Din2 ).

3.11.1. Syntax

Dout = JOIN([Am][; po]) Din1 Din2 (15)

where Am is a list of metadata attributes, po is the join predicate
for observations, built as a conjunctive expression whose atoms
are in the form ao1 ◦ ao2, with ao1 ∈ Schema(Din1 ) and ao2 ∈

Schema(Din2 ) and ◦ ∈ {=, ̸=, <,≤, >,≥}. Note that a disambigua-
tion prefix may sometimes be prepended to an attribute name; we
use ‘‘Left.’’ to refer to Din1 and ‘‘Right.’’ to Din2 ; if nothing is
indicated, the left operand refers to Din1 , and the right one to Din2 ,
as customary in database notation.

3.11.2. Workflow
The MatchM operation produces the pairs P of identifiers of

input samples that satisfy the meta join predicate. Such pairs are
used by JoinM and JoinO for building the metadata sets and
observation sets of the result (see Fig. 10).
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Fig. 10. Workflow for JOIN.

3.11.3. Semantics
MatchM builds the set of pairs of identifiers of the samples of

Din1 andDin2 that agree on themetadata attributes inAm. Therefore
P is built as follows:

P = {⟨j1, j2⟩ | ⟨j1,M1⟩ ∈ DM
in1 ∧ ⟨j2,M2⟩ ∈ DM

in2 ∧

∀am ∈ Am ∃v (⟨am, v⟩ ∈ M1 ∩ M2)}. (16)

For each pair ⟨j1, j2⟩ of identifiers in P , we let νj1,j2 denote a new
distinct identifier. Note that, when themeta-join clause is omitted,
P simply coincides with the Cartesian product of the identifiers of
the samples of Din1 and Din2 .

JoinM receives P and builds the metadata of Dout . Then, the
metadata sets of Dout , along with their new identifiers, are com-
puted as follows:

DM
out = {⟨νj1,j2 ,M1 ∪ M2⟩ | ⟨j1, j2⟩ ∈ P ∧

⟨j1,M1⟩ ∈ DM
in1 ∧

⟨j2,M2⟩ ∈ DM
in2 }.

JoinO receives in input the pairs in P and generates the obser-
vation sets of Dout by concatenating the observations of Din1 and
Din2 :

DO
out = {⟨νj1,j2 , τ (O1,O2)⟩ | ⟨j1, j2⟩ ∈ P ∧

⟨j1,O1⟩ ∈ DO
in1 ∧

⟨j2,O2⟩ ∈ DO
in2 },

where τ (O1,O2) takes care of producing the resulting observation
set by concatenating the observations that satisfy the observation
join clause po:

τ (O1,O2) = {o1 · o2 | o1 ∈ O1 ∧ o2 ∈ O2 ∧ po(o1, o2)}

3.11.4. Example
Consider the input datasets DL and DR in Table 19, with a simple

schema consisting of Chrom, Start, Stop. The following JOIN
operation produces D13 in Table 20:

D13 = JOIN(ant; Chrom = Chrom AND Start > Start) DL DR

with schema:

Left.Chrom, Left.Start, Left.Stop,
Right.Chrom, Right.Start, Right.Stop

3.12. Difference

This operation applies to two datasets (minuend and subtra-
hend) with the same schema, and produces one sample in the
result for every sample of the first operand (the minuend), with

Table 19
Datasets DL and DR .
Dataset DL

id metadata Observations

1 ant,CTCF chr1,10,20
org,HG19 chr1,40,50

chr2,15,20
2 ant,CTCF chr1,20,30

Dataset DR

id metadata Observations

1 ant,CTCF chr1,15,25
dis,cancer chr2,15,20

2 ant,BRD4 chr1,15,25
chr2,15,20

Table 20
Dataset D13 .
id metadata Observations

201 ant,CTCF chr1,40,50,chr1,15,25
org,HG19
dis,cancer

202 ant,CTCF chr1,20,30,chr1,15,25
dis,cancer

Fig. 11. Workflow for DIFFERENCE.

identical identifier and metadata. It considers all the observations
of the second operand (the subtrahend), which we denote as nega-
tive observations, and includes in the corresponding result sample
those observations that do not appear as negative observation.
When a list of metadata attributes is present, for each sample
of the minuend we consider as negative observations only the
observations of the samples matching such attributes.

3.12.1. Syntax

Dout = DIFFERENCE[(Am)]Din1 Din2 (17)

where Am is a list of metadata attributes.

3.12.2. Workflow
The MatchM operation builds the setP of pairs of input samples

matching the metadata attributes in Am. For such pairs, DiffO
builds the observations (see Fig. 11).

3.12.3. Semantics
MatchM builds the set P of pairs of samples matching the

metadata attributes in Am as already shown in (16).
DiffO receives in input the pairs in P and generates the obser-

vations of each sample s ofDout from the samples ofDin1 as follows:

DO
out = {⟨j1,O1 − N (j1)⟩ | ⟨j1,O1⟩ ∈ DO

in1}



P. Pinoli, S. Ceri, D. Martinenghi et al. / Information Systems 81 (2019) 1–20 13

Table 21
Dataset D14 .
id metadata Observations

1 ant,CTCF chr1,10,20
org,HG19 chr1,40,50

2 ant,CTCF chr1,20,30

whereN (j1) is the set of negative observations to be considered for
the difference with the sample with identifier j1:

N (j1) =

⋃
⟨j1,j2⟩∈P∧

⟨j2,O2⟩∈DOin2

O2

3.12.4. Example
Consider the input datasetsDL andDR in Table 19. The following

DIFFERENCE statement produces D14 in Table 21:

D14 = DIFFERENCE(ant) DL DR

3.13. Additional design principles

Here we present a discussion on the properties of relational
completeness and orthogonality, which we used as driving factors
in the design of ScQL.

With relational completeness, we indicate that, although the
data model at hand is not itself relational, the classical algebraic
manipulations are all supported by simply emulating the notion
of relational table through the observation set of a sample. To
this end, consider a restricted usage of our model, in which meta-
data are ignored and each dataset consists of a single sample
(and thus its observation set corresponds to a relational table).
This suffices to capture the expressive power of classical rela-
tional algebra: indeed, when omitting the specification of meta-
data attributes/predicates in ScQL’s SELECT, PROJECT, UNION,
DIFFERENCE, and JOIN operators, they capture, respectively, rela-
tional algebra’s selection, projection, union, difference, and Carte-
sian product, which are the conventional minimal set of relational
operators introduced by Codd [7].7

Orthogonality indicates that no operator can be obtained as
a combination of other operators. In ScQL, admittedly with the
exception of SEMIJOIN (which corresponds to the composition of
SELECT and JOIN, but was introduced in order to facilitate query
formulation, as customary inmany languages), all the operators are
orthogonal.

Formally, we say that the (ScQL) operators in a set S are orthog-
onal if, for every operator op ∈ S , there is a ScQL query using op
that cannot be expressed in ScQL by only using operators inS\{op}.

Theorem 1. The ScQL operators in {SELECT, PROJECT, UNION,
DIFFERENCE, JOIN, MERGE, UNION, EXTEND, GROUP, ORDER } are
orthogonal.

Proof. The operators in { SELECT, PROJECT, UNION, DIFFERENCE,
JOIN } are orthogonal because the set of relational operators
{σ , Π, ∪, −, ▷◁} forms a minimal set of operators [7], and the
additional expressive power of the ScQL operators with respect to
their relational counterpart only concerns metadata.

The EXTEND operator cannot be expressed by any combination
of the other operators because it builds aggregate information
about the observations that is then modeled as new metadata

7 Technically, however, for relational completeness, one also needs a renaming
operator, whose functionality is straightforwardly achieved by ScQL’s PROJECT
operator.

information, and this basic operation is not supported by other
operators of the language.

MERGE is a unary operation whose effect is to create a single
sample out ofmany samples bymaking unions of observations and
metadata and cannot be expressed by other operations, including
UNIONwhich is a binary operation.

The GROUP operator is the only one able to aggregate separately
metadata and observation values creating new attributes of both
kindwith aggregate functions. Differently from MERGE it preserves
the same samples as the input.

ORDER is the only operator which builds an order relation
between samples or observations. This operation requires the com-
parison of observation or metadata values between samples and it
is not supported by any of the other operators. □

4. Optimization of ScQL queries

We recall from Section 3 that input metadata and observations
are stored separately. Metadata have a small size and are stored in
a structure DM

= ⟨j,M⟩; they can be implemented by standard
technology (e.g., relational) and make use of conventional index-
ing structures. Observations have a big size and are stored in a
structure DO

= ⟨j,O⟩; we assume DO to be the file system, and
j to stand for the file name or identifier. Thus, observations must
be selectively loaded into the distributed memory of an execution
framework before being used for query computation. This organi-
zation is typical of most scientific applications, as observations are
stored within global servers and their implementation is based on
cloud computing frameworks. Tomake the interaction of the query
with the repository environment more explicit, we add operations
LOAD and STORE to the query.

4.1. Example

A simple example of query Q1, consisting of two SELECT and
one JOIN, is shown next:

LOAD INPUT1;
LOAD INPUT2;
A = SELECT(antibody="CTCF";

score > 0.4) INPUT1;
B = SELECT(antibody="JUN";

score > 0.4) INPUT2;
Result = JOIN(CellLine;

(Left.Start < Right.End AND
Right.Start < Left.End)) A,B;

STORE Result;

In the above query, INPUT1 and INPUT2 are the input datasets,
collecting observations from a genomic repository; the program
extracts into the variables A and B samples that are treated with
the Antibody equal to CTCF and JUN, whose observations have
a sufficient significance (Score > 0.4); then it joins A and
B producing the variable Result, returned as query result. The
samples of Result are paired from the samples of A and B when
the values of the metadata attribute CellLine are equal, and the
regions of Result are composed from the regions of A and Bwhen
the regions of A precede the regions of B and they intersect.

4.2. Query translation

The execution of ScQL queries uses table-level operations that
were introduced in Section 3. The query compiler produces an
abstract representation, called operator DAG, which describes the
precedence between table-level operators; see Fig. 12. The figure
shows that query optimization can be separated into two parts, a
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Fig. 12. Translation and execution of ScQL.

Fig. 13. DAG Representation.

logical optimizationwhich applies to the DAG and the physical opti-
mizationwhich applies to the execution environment; thus, logical
optimization is independent of the execution environment. Query
execution consists of a recursive traversal of the DAG, triggered
by the ScQL operation STORE; we consider queries with a single
STORE operation.8

Fig. 13 shows the translation of query Q1; the figure includes
nodes for LOAD, STORE, and for the variables INPUT1, INPUT2
and Result, and then the workflow describing the translation of
SELECT andJOIN, as defined in Sections 3.3 and 3.11. Intermediate
variablesA,B are not shown, becauseSELECT’s outputs are directly
connected to the JOIN inputs. The resulting DAG consists of table-
level operations, partitioned into the two sets DM of operations
on metadata and DO of operations on observations.

By looking at the topology of the DAG in Fig. 13, we note that
precedences between nodes of the two sets are all drawn from
the nodes of DM to the nodes of DO . This inspires a rewrite of
the DAG, shown in Fig. 14, where the logical precedence of nodes
of DM with respect to nodes of DO is highlighted by the DAG’s
topology, and anewarc is drawn from thenodeM , representing the
metadata results, to the LOAD operation relative to observations of
Input1 and Input2. The new precedence arc hints to a power-
ful optimization, i.e., the selective load of just those observation
samples that contribute to the result M . Such optimization, called
meta-first, is discussed in the next section.

4.3. Metadata-first optimization

We now introduce some notations and definitions that will be
necessary to state and prove our results regarding metadata-first
optimization.

8 When a DAGs has multiple STORE operations, at least one of them does not
depend on any stored variable; this induces a partial order of STORE executions.

Fig. 14. Metadata-first Optimization.

Definition 1 (Input and Output of a Query). For a ScQL query Q , we
writeQ (IQ ) to indicate the set (called output) of all the datasets that
are written by Q to the persistent storage if IQ (the input) is the set
of all the datasets that are loaded by Q from the persistent storage.

Definition 2 (Meta-equality). Two input sets IQ and I ′Q are meta-
equal if and only if IQ = {D1, . . . ,Dk}, I ′Q = {D′

1, . . . ,D
′

k} and
DM
i = D′M

i for 1 ≤ i ≤ k.

In other words, two input sets are meta-equal if there ex-
ists a one-to-one correspondence between the metadata of their
datasets.

Definition 3 (Meta-separability). A query Q ismeta-separable if, for
everymeta-equal input datasets IQ and I ′Q , Q (IQ ) and Q (I ′Q ) are also
meta-equal.

Intuitively, a query Q ismeta-separable if, for every input IQ , all
metadata sets of all the datasets in Q (IQ ) are independent of all
of the observation sets in all of the samples of IQ . From the DAG
point of view a query is meta-separable if none of the nodes that
manipulate metadata takes as input the result of any of the nodes
that operate on observations. Practically, meta-separability means
that all themetadata in the output Q (IQ ) can be computed without
even looking at the observations in IQ . Note that the converse is
not required, i.e., in a meta-separable query, the computation of
the observations may still depend on the metadata in IQ .

The example query Q1 is meta-separable: Fig. 14 shows that
metadata operations precede observation operations. By construc-
tion, every query in ScQL is meta-separable except for those that
contain an EXTEND statement. Indeed, the only intermediate rep-
resentationmetadata node that takes as input a set of observations
is ExtM, which is used only within the EXTEND operator.

We now define the relevant notions that will allow us to ef-
ficiently compute meta-separable queries. To this end we focus
on the class of queries that share the same metadata parts and
isolate those sample identifiers that are potentially useful for the
computation.

Definition 4 (Meta-class). Let dag(·) be a function that takes as
input a query and returns a triplet:

dag(Q ) = ⟨DAG, parammeta, paramobs⟩

where DAG is the topology of the query DAG, parammeta a map that
associates every metadata node with its parameters and paramobs
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a map that associates every observation node with its parameters.
For any query Q , we define the meta-class of Q as the set:

MC(Q ) = {Q ′
: ∃D,m, o, o′ dag(Q ) = ⟨D,m, o⟩∧

dag(Q ′) = ⟨D,m, o′
⟩}

that is the class of all the queries, including Q , with the same DAG
topology and the same parameters in every metadata node.

Thanks to the previous definitions, given a queryQ and an input
set IQ , we can now introduce the meta-minimum id set of Q with
respect to IQ .

Definition 5 (Meta-minimum id Set). Consider a query Q and an
input IQ . Let S(IQ ) be the set of all the IDs of all the samples in IQ .
The meta-minimum id set S(IQ ,Q ) ⊆ S(IQ ) of IQ with respect to Q ,
is a set of identifiers such that:

• for every query input I ′Q meta-equal to IQ and for every query
Q ′

∈ MC(Q ), if we denote A(D, S) = {s : s ∈ D ∧ id(s) ∈ S},
then:

Q ′(I ′Q ) = Q ′

(
{A

(
D, S(IQ ,Q )

)
: D ∈ I ′Q }

)
• there exists no set S ′

⊆ S(IQ ) for which the previous point
holds and |S ′

| < |S(IQ ,Q )|.

Given a query and an input set for which we elaborated the
metadata part, the meta-minimum id set comprises only the iden-
tifiers of those samples that are necessary to correctly compute the
observation part of the query output, regardless of the parameters
of the observation nodes and the observations.

We now focus onmeta-separable queries and describe a proce-
dure for building the set of identifiers of the samples in the meta-
minimum id set. To do this, we build the provenance set for each
sample s, i.e., the set of identifiers of samples in IQ that contribute
to the construction of s.

Definition 6 (Provenance Set). Let Q be a ScQL query and IQ an
input. The provenance set P(j,Q , IQ ) for sample identifier j is in-
ductively defined as follows:

1. if j identifies a sample in IQ , then P(j,Q , IQ ) = {j};
2. else let Op be a metadata table-level operation in the DAG

representation of Q and let j occur in Op’s output; then
P(j,Q , IQ ) is defined by the following rules:

• if Op is AggrM or MergeM: let T , as in (11), be the set of
pairs received as input by the operator, and let G be j’s
group, i.e., ⟨id(G), idg(G)⟩ ∈ T and j ∈ idg(G). Then,

P(j,Q , IQ ) = ∪j′∈idg(G)P(j′,Q , IQ ),

i.e., the provenance set of each sample in the output of
the operator is the union of the provenance sets of the
samples involved in the grouping;

• if Op is JoinM: let P , as in (16), be the set of pairs of
sample identifiers involved in the join and let j = νj1,j2 .
Then

P(j,Q , IQ ) = P(j1,Q , IQ ) ∪ P(j2,Q , IQ ),

i.e., the provenance set of the join sample is the union
of the provenance sets of the input samples identified
by j1 and j2;

• no other operator modifies provenance sets (note,
however, that SelectM, OrderM, SemiJoinM and
MatchM may discard some samples and, thus, their
corresponding provenance sets).

The provenance set of Q (wrt. IQ ) is the set

P(Q , IQ ) =

⋃
D∈Q (IQ )

s∈D

P(id(s),Q , IQ ).

The construction of Definition 6 can be used to speed up the
execution of the observation side of the query, by selectively load-
ing only those samples whose identifiers are in the provenance set
of Q , among those that occur in a dataset in IQ . In other words,
as claimed in Theorem 2 below, for a meta-separable query Q ,
the provenance set of Q correctly identifies the meta-minimum id
set; therefore, once the provenance set is computed by evaluating
the metadata side of Q on the entire input IQ , the more expensive
observation side can be executed on only those samples whose ids
are in the meta-minimum id set.

Obviously, if two input sets IQ and I ′Q are meta-equal, then
for every query Q it holds that P(Q , IQ ) = P(Q , I ′Q ), since the
provenance set is derived solely from the metadata components
of the two input sets.

Theorem 2. Let Q be a meta-separable query and IQ an input. Then

P(Q , IQ ) = S(IQ ,Q ).

Note that the construction of Definition 4 only requires a traver-
sal of themetadata part of the DAG. In otherwords, the provenance
set of a meta-separable query is computed by determining the
samples retained by the query, which is done by only inspecting
the metadata part of the samples, while keeping track of prove-
nance information for each processed sample.

Proof. First, note that ScQL forces a one-to-one relationship be-
tweenmetadata and observation sets, therefore the samples in the
output of the query forwhichwe computed themetadata setwhile
computing the provenance set of Q are exactly the samples for
which we need to compute the observation set.

Now, assume by contradiction that there exists an identifier j in
S(IQ ,Q ) such that j is not present in the provenance set of Q . If so,
one of the following situations has to have happened:

• jwas not an identifier of any of the samples in IQ , which is not
possible since j is in S(IQ ,Q );

• j has been removed at some point from the provenance set,
which, again, is not possible since no identifier is ever re-
moved from a provenance set (by construction);

• one of the operators that produce new identifiers (AggrM,
MergeM, and JoinM) did not add j, but, again by construction,
these operators add all the new identifiers to the correspond-
ing provenance sets.

Contradiction.
Vice versa, assume by contradiction that there exists an identi-

fier j such that j is in the provenance set of Q but not in S(IQ ,Q ).
This means that at a certain point jwas added to some provenance
set where it was not necessary. But, the only operators that add an
identifier are AggrM, MergeM, and JoinM, and each of them adds
to the provenance set only the necessary identifiers, i.e., such that
there exists an observation set that would make them part of the
output and therefore in S(IQ ,Q ). For instance, JoinM adds the new
identifier νj1,j2 whenever j1 and j2 identify two matching samples
in the input; similarly for AggrM and MergeM. Contradiction. □

Overall, ourmeta-first optimization consists in

1. identifying meta-separable queries or subqueries;
2. executing such queries or subqueries on the metadata part

only, so as to construct their provenance set;
3. loading the observations of only those samples whose iden-

tifiers are in the provenance set and executing the observa-
tion part of the query on them.
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Note that, implementation-wise, this optimization can be easily
accommodated in any system endowed with metadata and ob-
servation management, e.g., by adopting the following principles,
which are defined at the logical level and are not dependent on the
data format or on the specific deploy technology:

• each provenance tuple ⟨id(s), j⟩ can be stored in the meta-
data by adding the pair ⟨provenance, j⟩ to meta(s), with
the precaution of never eliminating provenance metadata by
PROJECT operations;

• after producing provenance sets based on the metadata side,
such sets are distributed to the operations that are in charge
of loading input observations, so as to selectively load their
relevant samples; after that, provenance sets can be deleted.

4.3.1. Relaxing meta-separability
From the definition of meta-separability, all queries including

an EXTEND statement violate the definition. Clearly, if a query
mentions the new attributes that are built by an EXTEND in any
operation that uses metadata predicates for filtering the samples,
then such query is not separable. By construction, these operations
are SELECT, JOIN, SEMIJOIN and ORDER operations with a TOP
clause; we collectively call them selective operations. A query with
EXTEND operations whose new attributes are not mentioned in
selective operations is called weakly meta-separable. This query
property can be determined by simply inspecting the query.

The execution of a weakly meta-separable query can be per-
formed by ignoring ExtM operations when they are found during
the recursive traversal of the DAG and by storing a copy of the
metadata that are in input to such operations and to all subsequent
operations of the DAG useful to build themetadata result. Thenwe
proceed with the meta-first optimization of LOAD operations and
the recursive descent of the observation subtree;when theBuildO
operation is executed, ExtM and its subsequent operations on the
DAG are recomputed, using the copies of metadata inputs, so as to
deliver the correct metadata result.

EXTEND is typically used for computing statistics about obser-
vations, and, if such statistics are not further used by selective
operations, then the queries remain weakly meta-separable, as
only the selective operations may cause the exclusion of samples
from the results.

4.3.2. Benefits of meta-first optimization
The following example presents a real-world biological com-

putation executed on actual experiments, and shows how the
efficiency of the meta-first optimization depends on the actual
values that are provided at execution time. We consider the bi-
ological problem of finding the overlapping genome regions be-
tween two specific transcription factors and other regions known
as ‘‘presumed enhancers’’. The former regions are extracted from
two collections of the ENCODE repository (respectively named
ENCODE_BROAD and ENCODE_NARROW), with a schema consisting
of Chrom, Start and Stop. Since several samplesmay be present
for each transcription factor, samples are merged and then joined.
Presumed enhancers are produced by means of a process that ex-
tracts and extends the regions corresponding to the two antibody
targets ‘H3K27ac’ (acetylation) and ‘H3K4me1’ (methylation) from
theENCODE_BROAD repository and then intersects them. The result
is given by a third intersection of the twopartial results bymeans of
a join, but such intersection has to be computed for compatible cell
lines; this may lead to useless region processing, as this third join,
which imposes cell-line identity, is postponed to data extraction,
merge, projection over suitable regions, and confirmation by the
first and second joins.

This computation is expressed in ScQL by the following query
pattern, where we set the second antibody target to ‘BACH1’,
whereas we will try several different choices for the first antibody

target by replacing the <AT1> placeholder with an appropriate
value; L and R in the join predicates denote the left and right
operands of joins.

LOAD ENCODE_BROAD;
LOAD ENCODE_NARROW;
broad = SELECT(antibody = <AT1>) ENCODE_BROAD;
narrow = SELECT(antibody = ’BACH1’) ENCODE_NARROW;
mbroad = MERGE(cell) broad;
mnarrow = MERGE(cell) narrow;
int = JOIN(cell;

((L.Start <= R.Start AND L.Start <= R.Stop)
OR

(R.Start <= L.Start AND L.Start <= R.Stop))
AND

L.Chrom = R.Chrom
) mbroad mnarrow;

acet = SELECT(antibody = ’H3K27ac’) ENCODE_BROAD;
l_acet = PROJECT(; left as (left-100),

right as (right+100)) acet;
met = SELECT(antibody = ’H3K4me1’) ENCODE_BROAD;
l_met = PROJECT(; left as (left-100),

right as (right+100)) met;
en = JOIN(cell;

((L.Start <= R.Start AND R.Start <= L.Stop)
OR

(R.Start <= L.Start AND L.Start <= R.Stop))
AND

L.Chrom = R.Chrom
) l_met l_acet;

bind = JOIN(cell;
((L.Start <= R.Start AND R.Start <= L.Stop)

OR
(R.Start <= L.Start AND L.Start <= R.Stop))
AND

L.Chrom = R.Chrom
) int en;

STORE bind;

The join predicate used in all JOIN clauses is a common biolog-
ical requirement for computing intersections of transcriptions.

We tested five different versions of the above query pattern,
each corresponding to a different choice of the first antibody target.
In practice, we replaced the placeholder <AT1>with values such as
‘CTCF’ and ‘JUND’, corresponding to a number of samples varying
between 154 and 14, so as to cover a wide range of scenarios for
tested transcription factors. The list of tested values and corre-
sponding input samples is reported in Table 22. In all cases, the
query result has 2 samples (corresponding to the cell lines K562,
H1-hESC), but only a few input samples contribute to the result,
and hence need to be loaded after the meta-first optimization. For
instance, only 9 ‘CTCF’ out of 154 samples are actually needed— see
Table 22 for all five cases.

Experiments were performed over an Apache Spark implemen-
tation of ScQL, running on a single server equipped with a Dual
Intel Xeon ES-2650 processor and 380 GB of RAM. Observation
files are kept on Apache HDFS, as it is typical of many data science
applications. The meta-first optimization is performed as a trans-
formation of the load operation of the observation files. Execution
times are evaluated by an implementation of the observation oper-
ations that is essentially unchanged in the version with meta-first
optimization, however operating on a much reduced input, as the
only samples that contribute to the result are loaded into the Spark
engine execution environment and then processed.
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As for execution times, improvements are equally impressive.
With the antibody target ‘CTFC’, it takes 858 s to compute the result
with our prototype; however, when exploiting the meta-first opti-
mization, execution time drops to 314 s (2.73× improvement). The
smallest improvement corresponds to antibody target ‘ELAVL1’, in
which execution time drops from 298 s to 246 s with the meta-
first optimization, thus still obtaining a non-negligible 1.22× im-
provement. Note that execution time improvements exceed 2× in
4 cases out of 5. Table 22 reports all tested cases.

Note that the metadata-first optimization relies both on a
compile-timemodification of the query plan and on a runtime com-
putation of the provenance set which, despite its logical nature,
cannot be inferred from the text of the query. It is an optimization
because the cost of computing operations onmetadata is negligible
when compared to the cost of loading observations and of com-
puting operations on them. Also, note that it is possible to build
arbitrarily large improvements, e.g., by using in a biological query
transcription factors that have no cell in common, or by building
artificial data whose meta-join condition fails. Having ascertained
the benefits of the meta-first optimization both in a practical,
real-world case and with theoretical considerations, we think that
showing other experiments for corroborating this point would
be of little use. Instead, in the remainder of the section we shall
discuss further opportunities for optimization. Further scenarios
of applicability of the meta-first optimizations are discussed in
Section 5.

4.4. Other logical optimizations

Standard logical optimizations apply to the computation of a
DAG by considering table-level operators. In particular, it is rele-
vant to focus on meta-separable queries and to consider the sub-
DAG that builds the observations of the result, for which classical
relational optimization techniques are most significant (note that
observations have a schema, regardless of how they are stored).

In addition, the operator tree is a classical tree of relational
operations, and those operations that reduce the sizes of operands
can be anticipated thanks to operation commutativity; in partic-
ular, they can be pushed to the LOAD operations. SelectO com-
mutes with no changes with all the operations over observations;
ProjectM commutes with SelectM, JoinM, OrderM and AggrM
after extending the list of projection attributes with the attributes
mentioned by these operations.

5. Applicability of the approach

We already presented comprehensive examples from the do-
main of genomics in the previous section. We now present exam-
ples from two more domains: software management and social
analytics.

5.1. Commits on Github

Among several big data sources, Google is publishing Github
commits.9 GitHub is home to the largest community of open source
developers in the world, with over 12 million people contributing
since 2008; the 3TB+ dataset comprises a full snapshot of the
content of more than 2.8 million open source GitHub reposito-
ries, including more than 145 million unique commits, each with
an observation consisting of a very large record, whose schema
includes the filename, id and path of the committed file and the
difference between the current and previous version. Commits can
be searched by project, date, and author, andwe can consider these
as part of the metadata of each commit observation. As a general

9 https://cloud.google.com/bigquery/public-data/github.

observation, when data sources support an API for retrieval, it is
possible to load them selectively by making use of their API, by
considering the API input parameters as metadata.

We then consider an Apache dataset, where each sample is a
project; there is one observation for each version (with date and
note), whereas the metadata include generic aspects about the
Apache project, including the project’s name, category, and license.

We then consider a query extracting from the Github dataset
the authors of commits of Apache projects of the cloud category.
This piece of information is not directly available on the Github
repository, thus a semi-join with the Apache project is required.
The corresponding ScQL query is:

LOAD GITHUB_COMMITS;
A = EXTEND(modified as count(*)) GITHUB_COMMITS;
B = GROUP(author, total as SUM(modified)) A;
C = SELECT(category = ’cloud’) APACHE_PROJ;
result = SEMIJOIN(project; C) B;
STORE result;

This program can be improved according to several optimiza-
tions:

• Standard algebraic optimization can be used for anticipating
the semi-join before the extend operation.

• Metadata-first optimization applies, because the attribute
modified, which is built by the EXTEND operation, is not
used in any subsequent selective operation; thus, the query
is weakly separable.

By effect of meta-first, instead of loading 176,157,745 observa-
tions regarding commits, it is possible to load just 22,233 commits
relative to apache cloud projects (i.e., just 0.01% of the commits);
all apache projects are 731,698, thus the meta-first optimization
for a query with no selection on cloud would amount to loading
only 0.41% of the overall commits.

Note that the ORDER with TOP operation can be applied to the
result; e.g., it is possible to select the tenmost prolific contributors
(by number of commits) of the Apache projects with category set
to cloud, as follows:

top = ORDER(total DESC, TOP 10) result;

Top contributors are commit authors, and their identity is found
by looking at the metadata attribute of the resulting dataset. Note
that, although the overall query is not weakly meta-separable
(because of the TOP construct), breaking it in two parts (first the
weakly meta-separable query for computing result, then the
query for top), as we did here, allowed us to benefit from the gain
of the meta-first optimization anyway.

5.2. Social analytics

Consider the posts about the world’s most important fashion
weeks (Milano, London, Paris, NewYork), collected from two social
sources: Instagram and Twitter. We consider the problem of iden-
tifying the fashion brands which were most represented, on both
social sources, at anyone of these event, and of identifying their
posts. We assume that the hashtags of the most popular brands
are known to experts; then, in a data preparation phase, posts can
be collected using suitable APIs. Specifically,

• Twitter has a powerful API where it is possible to compose
queries over brand/week pairs. We build a dataset called
TWEETBYBW by setting a brand/week hashtag pair as manda-
tory in each call to the API, thus producing one sample for
each pair of event and brand, with metadata attributes in-
cluding the event (valued as one of #MLW, #LFW, #PFW,
#NYFW) and the brand (e.g., #GUCCI).

https://cloud.google.com/bigquery/public-data/github
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Table 22
Benefits of the Meta-First Optimization on the number of loaded samples and on execution time.
AT1 Without Meta-First With Meta-First Gain factor

Loaded Samples Execution time Loaded Samples Execution time Samples Time

CTCF 154 858s 9 314s 17.11 2.73
H3K4me3 150 827s 14 324s 10.71 2.55
POLR2A 58 320s 9 138s 6.44 2.31
ELAVL1 15 298s 6 246s 2.5 1.21
JUND 14 78s 2 32s 7 2.4

• Instagram’s API does not allow multiple mandatory terms in
requests. In this case, we build a dataset called INSTABYW
by assembling within a dataset the results of simple requests
based on the four events (with onemetadata attributeevent)
and INSTABYB using simple requests based on the brand
(with one metadata attribute brand). Given that Instagram
posts have an identifier, a join on the common identifier of
INSTABYW and INSTABYB returns event/ brand pairs with
the intersection of the observations andwithmetadata brand,
event as in Twitter, as follows10:

INSTABYBW = JOIN (id;) INSTABYB, INSTABYW;

Then, a ScQL query must extend both TWEETBYWB and
INSTABYWBwith the counters of posts, join the two collections on
the metadata Brand and Week, compute a weighted sum of the
counters, and extract the top-k elements; the result is the set of
observations combining posts from Instagram and Twitter, whose
metadata contain theweek/brandpairs associatedwith the highest
weighed counts. The ScQL Query is composed by two parts:

LOAD INSTABYBW;
LOAD TWEETSBYBW;
A = EXTEND(Count_I AS Count(*)) INSTABYBW;
B = EXTEND(Count_T AS Count(*)) TWEETSBYBW;
result = JOIN(Brand,Week) A,B;
STORE result;

Note that this query is weakly separable, as metadata are com-
puted by EXTEND operations are not used by any selective opera-
tion. Thus, it is possible to perform the meta-first optimization. In
practice, the optimization has no effect if the brand list includes
few most popular brands, but can be significant if the brand list
includes several thousand small brands. We then add to the query
the following part:

C = PROJECT(Weight=Count_T + 10 * Count_I) result;
top = ORDER(Week; Weight, TOP 10) C;
STORE top;

This second part, which is not meta-separable, extracts the top
10 weighted brands for every fashion week.

6. Related work

The importance of metadata in big data management is now
widely recognized, and the appearance of many systems and tools
accommodating metadata as first-class citizens (e.g., [8]) testifies
to a general consensus on their crucial role in scientific workflows
systems to achieve important functionalities, such asworkflowand
service discovery, composition and provenance browsing, to name
a few. In 2006, Geerts et al. proposedMONDRIAN [9], an annotation
oriented datamanagement system.Many aspects of the concept of

10 To avoid the double extraction of Instagram posts, one can collect just IN-
STABYW, and then filter the posts specific to each brand by adding at the same time
their event metadata, with a custom data preparation.

annotation proposed by the authors are similar to ScQL metadata;
both allow one to track the provenance of the observation data
and to enrich those with additional information. However, strong
differences exist and motivate the introduction of ScQL. First of
all MONDRIAN annotations are fine grained (an annotation can
refer to single tuples or even to a subset of the fields of a tuple);
conversely, in the ScQL model every metadata pair refers to all the
observation in its sample. This allows us to define set-oriented op-
erations on metadata, which would not be feasible in MONDRIAN,
such as: grouping and ordering samples according to metadata
values, moving information frommetadata to observation and vice
versa and joining observations on metadata.

Xiao et al. in 2014 proposed an annotation-oriented database
system named InsightNotes [10]. Compared to ScQL, it provides
a data model for annotation (metadata), that culminates in the
notion of Annotation Summaries. The main concern of the paper
is very different from ours, as it focuses on knowledge extraction
based on such summaries through machine learning techniques.

Recent works in the context of metadata focused more on
representation and collaboration issues than on query processing
aspects [11,12]. In our approach, metadata are additionally used in
order to reconstruct the provenance of the different data samples
involved in a query. Provenance, too, is a well understood topic
in many data contexts, including scientific databases, where it
is perceived as a crucial component for ensuring reproducibility
of scientific analyses and processes [13–15] as well as validation
of experiments [16]. Several joint efforts have been targeting a
better andmore interoperable use of provenance, such as the Open
Provenance model [17].

A few other works in the context of scientific data have ex-
tended traditional relational query languages to include metadata
capabilities of some kind. Among these, wemention the context of
multi-dimensional grids or ‘‘arrays’’, which have received a long-
standing attention [18–20]. Arrays in practice are usually accom-
panied by metadata, which need a fruitful integration with the
processing paradigms of the DBMS, and often require dedicated
systems and models; among these, rasdaman [21], SciDB [22],
SciQL [23,24], and ASQL [25]. Similarly to the ASQL model, we as-
sume that scientific databases are ornamented withmetadata, and
aim to integrate this kind of information during query processing.

Unlike previous works, our use of metadata gives rise to a new
notion of provenance, moving from object provenance to sample
provenance, whose goal is to provide collective properties of the
results built during query processing, based on the selected input
samples and operations. In this respect, our notion of sample
provenance differs from the notion of record-based provenance
discussed in seminal work in the database community [26–28]
(see [29] for a survey on database provenance). Such works focus
on tracing the provenance of each individual record forming the
result, typically in the context of selective queries producing very
specific results. But in the context of data science, with millions of
records representing physical phenomena and thousands of files
collecting them, and with queries typically producing big datasets
to be used for subsequent data analysis, themost interesting notion
of provenance is at the file level, as is done in sample prove-
nance – also because each record is not associated with specific
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metadata, whereas files are. Sample provenance and record-based
provenance are therefore not comparable, as they address distinct
problems.

Some systems, such as Perm [30] and Orchestra [31], support
fine-grained provenance computations by rewriting SQL queries.
Although these systems support a more powerful notion of prove-
nance, their focus is different. In particular, Orchestra aims to
enable data sharing across locally controlled peers related by a net-
work of schema mappings. The query semantics depends then on
the mappings, and the result tuples are associated with probabili-
ties (e.g., ranging between ‘‘certain’’ results, when their derivation
occurs according to all possible sources andmappings, and ‘‘uncer-
tain results’’, whose trust scores depend on the trustworthiness of
the sources). In the data science contexts we consider, all sources
are trusted.

One of the key features of ScQL is that it leverages the co-
occurrence of metadata and observations to provide superior op-
timization opportunities, based on the meta-first approach. The
literature regarding logical query optimization is immense, start-
ing from [32] and subsequent works. Most works exploit schema
knowledge or integrity constraints [33,34] to perform compile
time query optimization [35,36], both for traditional database sys-
tems and more recent systems. In stream databases, for exam-
ple, dynamic metadata have been used for optimization purposes
focusing on single operations such as joins [37,38] as well as on
compile-time detection of ‘‘unsafe’’ queries [39]. The work [40]
uses semantic query optimization utilizing dynamic metadata at
runtime to find better query plans than those selected at compile
time. Although sharing the objective of improving query process-
ing, [40] attempts to find a different (better) query plan based
also on metadata, while our approach single-handedly improves
the selectivity of the operators involved in a query and potentially
discarding the loading of many samples, without changing the
logical query plan.

In [41] provenance is used to improve system performance.
Despite the overall approach has some similarities with metadata-
first optimization (i.e., both mechanisms rely on narrowing the
initial input) the two methods have strong differences. First of
all the concept of provenance adopted in [41] is extremely fine-
grained (provenance predicates are computed for every element
with respect to every transformation in the workflow that pro-
duces it) while in our case the provenance is at the level of samples.
Moreover, [41] uses provenance to efficiently perform the selective
refresh of single elements, in contrast to our approach where we
leverage sample provenance to optimize the evaluation of the
whole query.

GMQL [3,5] is a specialization of ScQL, with emphasis on bi-
ological operations for region management; its application to a
variety of biological problems dealingwith heterogeneous datasets
is discussed in [3], whereas its efficient implementation is dis-
cussed in [5]. This paper and [5] are complementary, as [5] is fo-
cused on domain-specific, region management operations (called
Genometric Join, Cover and Map) and does not discuss
metadata management, whereas this paper is focused on domain-
independent relational operations and on metadata management.
All domain-specific operations are meta-separable, hence the
meta-first optimization is applicable to them, yielding to signifi-
cant computational savings; however, proving this claim requires
the lengthy descriptions of domain-specific GMQL operations and
is outside of the scope of this paper.

7. Conclusions

ScQL is a domain-independent, algebraic relational language
giving the same relevance to metadata and to observations. It is
applicable whenever a dataset consists of several homogeneous

samples, each associated with a given experimental condition;
metadata describe the experimental conditions using a simple
format, consisting of attribute–value pairs. We have provided the
formal specification of ScQL, shown that it can be applied to several
domains, introduced meta-separable queries and proved that the
meta-first optimization can be applied to them. ScQL was inspired
by GMQL, a language for data-centric genomic computing that is
fully implemented on the Spark and Flink cloud-based database
engines. However, ScQL generalizesGMQL, andhas amuchbroader
applicability, as it can be used with arbitrary scientific domains.
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