
2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)

978-1-5386-7942-5/19/$31.00 ©2019 IEEE

The Impact of Artificial Intelligence on Software
Testing

Hussam Hourani
Faculty of Science and IT

Al Zaytoonah University of Jordan
Amman, Jordan

hussam.hourani@gmail.com

Ahmad Hammad
Faculty of Science and IT

Al Zaytoonah University of Jordan
Amman, Jordan

ahmad.hammad94@yahoo.com

Mohammad Lafi
Faculty of Science and IT

Al Zaytoonah University of Jordan
Amman, Jordan
lafi@zuj.edu.jo

Abstract—Artificial Intelligence (AI) plays an important
role in our life and touch base most of our surrounding
applications and systems. A huge amounts of data are created
every day from many different sources that need to be
monitored and analyzed properly and report results and take
actions. A more complex software applications have been
built, time is becoming a critical factor to release applications
that must be fully tested and comply with Business
Requirements. AI plays a key role in Software Testing and can
get more accurate results and saves time. This paper discuss
the Artificial Intelligence key pillars that can be used in
Software Testing. It also open a window on how the future will
look like in terms of Artificial Intelligence and the Software
Testing. The results show that AI can achieve better results in
Software Testing and AI-driven testing will lead the new era of
the quality assurance (QA) work in the near future. AI
Software Testing will reduce time to market and will increase
the efficiency of the organization to produce more
sophisticated software and will create smarter automated
testing.

Keywords— Artificial Intelligence, the Software Testing, Test
Automation.

I. INTRODUCTION

Artificial intelligence started playing many roles in the
applications around us and soon it will be an essential part of
our societies and our life. The oxford definition of artificial
intelligence is: “The theory and development of computer
systems able to perform tasks normally requiring human
intelligence, such as visual perception, speech recognition,
decision-making, and translation between languages” [1].
The key pillars of AI are: machine learning, deep learning ,
natural language processing (NLP), expert system and
others. AI covers many areas like: data analysis, prediction,
decision making, intelligent systems and many others.

In recent years, machine learning, deep learning, NLP
and the related algorithms and techniques have achieved a
great breakthroughs in many fields and specifically in robots
industry. Machines started understanding verbal commands,
evaluating information, recognizing images, driving cars,
analyzing data and playing games better than we do.

Due to the increasing maturity of AI’s algorithms and
techniques, and due to the amazing development in the
technology and computer hardware that increased the
computers speed and provided a huge memory, AI started
acting an important role in many areas and one of them is
software testing. Software testing is an imperative process

that ensures business requirement fulfilment and lead to
customer satisfaction and a success journey during the
software development lifecycle. Machine learning, deep
learning and nature language processing algorithms and
techniques are the key players in software testing. In the next
section we will give an overview of machine learning and
software testing.

A. Mchine Learnig Overview

Machine learning (ML) is the science of getting

computers to learn and act like humans do. It uses

algorithms and mathematical models to progressively

improve their performance on a specific task. ML has the

following three main categories and sub categories that are

shown in Figure 1:

� Supervised learning: is to use an algorithm to learn
the mapping function from the input to the output.
Classification and regression are examples on the
subcategories of supervised learning.

� Unsupervised learning: is trying to find hidden
structure in unlabeled data. Clustering and
dimensionality reduction are the sub categories for
unsupervised learning.

� Reinforcement learning: It allows software agents to
automatically determine the ideal behavior within a
specific context, in order to maximize its
performance.

Figure 1. Machine Learning Categires

����������	
������������
���	
�����
���������
������������������������������
����
�������
�
����	�����

565

B. Software Testing Overview

The definition of testing according to the ANSI/IEEE
1059 standard is the process of analyzing a software item to
detect the differences between existing and required
conditions (that is defects/errors/bugs) and to evaluate the
features of the software item [2].

Software testing is the practice and processes to check
whether the software actual results match the expected
results as per the requirements and specifications and ensure
that the software is defect free. The goals of the software
testing are to identify errors, faults, gaps and missing
functionalities as per the requirements and specifications.
Software testing types are as following:

� Manual testing: Testing of the software manually
without using any automated tool or scripts [2].

� Automated testing: It is also known as “Test
Automation”, is when the tester writes scripts and
uses another software to test the software [2].

Software testing life cycle-phases take place throughout
the software development life cycle (SDLC). It is generally
divided into a number of distinct phases as following:
requirements analysis, test planning, test development, test
execution, evaluating exit criteria and test closure as shown
in Figure 2 [3].

Figure 2 Software Testing Life Cycle-Phases

Testing is done throughout several levels and stages as
shown in Figure 3, the following are the main levels:

� Development Testing:it consists of the following
types:

o Unit Testing: Testing basic units such as
method or class and focusing on
functionality.

o Component Testing: Integrating software
units and testing them, focusing on testing
the components interface.

o System Testing: Integrating components
from different teams and reusable code and
third party code then testing the whole
system.

� Release Testing : it consists of the following types:

o Requirements Testing: Inventing test case
from each requirements.

o Scenario Testing: Inventing scenario of the
system and using and testing this scenario.

o Performance Testing: is designed to check
that the system can process its intended
load.

� User Testing : it consists of the following types:

o Alpha Testing: is done in development
environment.

o Beta Testing: is done in the user
environment.

o Acceptance Testing: is performed by
customers.

Figure 3 Testing Levels

The key issue is how quality assurance can facilitate the

Software Testing and generate more test cases that are
accurate and easy to execute with competitive time frame
while still meeting the business requirements and the client’s
expectation. Artificial intelligence and its key pillars like
Machine learning and NLP can play a major role in this and
can facilitate the software testing in most of the areas.

Automate testing will save time and enhance the
accuracy. Auto generating of the test cases and execute them
automatically is becoming an important subject to the
software development industry. One of the key reasons to
automat testing is to ensur that your testing is successful and
you get the maximum return on investment (ROI). By using
AI in this areas, organizations can enhance the testing quality
and generate smart and more accurate test cases for systems
and enhance the testing coverage by using machine learning,
deep learning and NLP algorithms and techniques.

In the next section we will provide a summary of the
literature review of the artificial intelligence and software
testing.

����������	
������������
���	
�����
���������
������������������������������
����
�������
�
����	�����

566

II. LITERATURE REVIEW

Machine learning has many techniques and algorithms to
be used in the scope of software testing. The algorithms and
techniques in AI are defer from each other in terms of: how
they work, their mathematical and statistical models,
assumptions, characteristics, their accuracy, their strengths
and weaknesses and their solving category if they solve
classification or regression or other problems. During our
review on previous work in this field, we have identified
many techniques and algorithms used to integrate the AI
with software testing and generate acceptable and good
results. This section highlights the main references in this
scope as shown hereafter. One note to highlight in this
section is that we did not review every single research in this
area. We have chosen the most popular researches. However
we believe that the selected researches and papers cover most
of the testing areas across the software testing lifecycle.

One of the proposed solutions highlighted in [4] is called:
MELBA (MachineE Learning based refinement of BlAck-
box test specification), a partially automated iterative
methodology based on the C4.5 algorithm (C4.5 is an
algorithm in machine learning used to generate a decision
tree). The resulting test suites were significantly more
effective in terms of fault detection while only requiring a
modest size increase [4]. Another ML proposed solution is
highlighted in [5]. In this research, the goal was to
understand which features can be used to train a model able
to predict the coverage achieved by automated tools. The
features for coverage prediction results show that SVR is the
most accurate algorithm among the considered ones. Also to
some extent, the study showed that ML algorithms are a
viable option to predict the coverage in automated testing
[5]. Machine learning has also used in graphical user
interface (GUI). In reference [6, 7], they highlighted how to
use AI to automatically test GUI. Hybrid genetic algorithms
(HGA) have been used in this area. They proposed a
framework that includes two important optimizations: test
sequence optimization and test case optimization [6, 7]. In
[8], Authors proposed a test case classification methodology
based on k-means clustering to enhance regression testing.
The paper found out that the clustering-based approach
performs better when first the statement coverage criterion is
utilized [8]. Study [9] has evaluate the machine learning
techniques used in 21 fault prediction studies. They
concluded that there remains much to be done to improve the
quality of machine learning techniques used in software fault
prediction [9]. Machine Learning also used to check test case
feasibility. In [10], the research has highlighted that
classifying test case feasibility is possible. The report
highlighted that one advantage to grammar induction is that
the induced grammars can show software testers the types of
event sequences that cause infeasible test cases [10].

In [11], the study has highlighted the significant analysis
in the area’s subject to learn and stimulate the association
between the metric specifying the object orientation & the
concept of change proneness. As a result of this technique,
they have proposed a reduction in the efforts that are put in
the testing of software [11]. In study [12], they applied SVM
to learn a ranked classification model. The results revealed
considerable improvements compared to a random and
manual prioritization by test experts. The technique was able
to find failures earlier and allowing for more efficient
Regression Testing [12].

Research [13] developed models for predicting the
change proneness for object oriented system. The developed
models may be used to predict the change prone classes at
early phase of software development. Adaboost is showing
highest accuracy with 0.877. Other algorithms like random
forest and bagging show a competitive results [13]. Research
[14] has covered the application of machine learning tools
and variable selection tools to solve the problem of
estimating the execution effort of functional tests. In
environments where robust databases are available,
containing ten or more test process metrics and at least 30
records, the SVR model and the Weighted MLP model are
recommended to provide more accurate results, instead of the
linear regression model [14]. Research [15] has proposed a
framework for value-based software test data generation
through genetic algorithms. The framework has the
following features: prioritizing testing, electing to fulfill the
most valuable testing objectives, devising a more cost-
effective way to carry out the remaining testing objectives,
and obtaining a graceful degradation when the testing budget
is cut back. Genetic algorithms have been applied to test data
generation for the following types of testing: structure-based
testing, temporal testing, functional testing and safety testing
[15]. In [16], the research highlighted how to identify the
coincidental correct (CC) test cases, which implement the
faulty statement but with a correct output, for single fault
version programs. The results showed that the average recall
ratio and false positive ratio were 81% and 5% respectively,
and the effect of CBFL was improved with three strategies in
the different program versions [16].

Research [17], highlighted that in order to detect bugs in
early phases, researchers proposed various test case
prioritization (TCP) techniques. NLP has been employed to
assist the TCP techniques. The result shows that all of these
used strategies can help to improve the efficiency of software
testing, and the risk strategy achieved the best performance
across the subject programs [17]. In research [18], the study
proposed a test case failure prediction approach for manual
testing that can be used as a non-code/specification-based
heuristic for test selection, prioritization, and reduction. The
results showed that a simple history-based feature combined
with a linear regression model can accurately predict test
cases’ failure. In addition, the NLP-based approach can
provide more improvement on the accuracy of predictions by
the baseline approach [18]. In [19], the study proposed a
system that deals with automatic generation of test cases
from functional requirement using NLP. The goal of the
proposed system was to reduce effort and time consumed by
software tester to test the product [19]. In [20], the study has
proposed an approach to generate test case from software
requirements expressed in natural language using a natural
language processing technique. The study recommended that
the approach needs a tool to be automated, and it suggested
to use database such as Hadoop for storing the graphs
generated [20]. In research [21], they have presented a novel
approach UnitTestScribe that combines static analysis,
natural language processing, backward slicing, and code
summarization techniques in order to automatically generate
expressive NL descriptions concisely documenting the
purpose of unit test methods [21]. In [22], the aim was to
evaluate the feasibility of using natural language processing
techniques to help automate detection of duplicate defect
reports. The research has evaluated the identification
capabilities on a large defect management system and

����������	
������������
���	
�����
���������
������������������������������
����
�������
�
����	�����

567

concluded that about 40% of the marked duplicates could be
found [22].

 We have summarized the findings as shown in Table 1
below. The summary highlighted the AI algorithms and
techniques used in the selected papers and references along
with the software testing scope area and related components.

Ref

AI Algorithm/
Techniques used

Software Testing Area

4 C4.5 (Decision Tree
Algorithms)

Refine Black-Box test
specification and improve the
category-partition specification

5 Huber Regression, Support
Vector Regression (SVR)
and multi-layer perceptron

Predicting the coverage in
automated testing

6, 7 Hybrid Genetic Algorithms
(HGA)

Automatically test GUI, including
test sequence optimization and test
case optimization

8 K-Means Clustering Test case classification to enhance
regression testing

9 General Classification
Methods (SVM and others)

Software Fault Prediction

10 Support Vector Machines
(SVM),
Induced grammars

Identifying infeasible GUI test
cases

11 Ridor, Random trees,
Naïve bayes, Ordinal
classifier and others

Change Proneness

12 Support Vector Machine (
SVM) RANK

Test case prioritization in system-
level testing without code access.
for black-box testing

13 Logistic regression,
Random forest, Adaboost,
bagging. and others

Optimizing testing efforts based on
change proneness

14 Artificial Neural Network
(NN) , Support Vector
Machine(SVM) and Linear
Regression

Planning and scheduling of testing
activities

15 Genetic Algorithms Test data generation

16 K-Nearest Neighbor Identify coincidental correct test
cases

17 NLP Test case prioritization

18 NLP, linear regression Predicting manual test case failure

19 NLP Generating test cases using

20 NLP Generation of test cases from
software requirements

21 Static Analysis, NLP,
Backward Slicing and
Code Summarization
Techniques

Automatically documenting unit
test cases

22 NLP Detection of duplicate defect
reports

Table 1. AI &ST findings summary

III. ARTIFICIAL INTELLIGENCE & SOFTWARE TESTING

As seen in the literature review, AI has played a major
role in software testing. Machine learning and NLP cover
many testing areas as highlighted in Table 1. Researchers
have used and combined many algorithms and techniques to
target specific jobs in software testing and achieved a
competitive results.

Quality assurance is a journey that QA team and test
engineers engaged with thoroughly. There are many
challenges throughout this journey specially when there is a
manual testing that the QA needs to handle throughout the
testing life cycle. Manual testing requires dedicated human
resources which is costly and time consuming and less
reliable comparing with the smart automated testing. In
addition there are many changes in both manual and
traditional automated software testing including:
understanding requirements, testing coverage, testing
planning and time to execute, updating the test scripts and
cases, regression test coverage and many others.

As the software market demand grows, organizations
need to secure their challenges and be ahead of the
competitors. AI is a field that can be used in the software
testing to shorten the software development life cycle and
reduce time to market. Figure 4 highlights the AI software
testing key advantages.

Figure 4 The AI Software Testing Key Advantages

Quality Assurance professionals and test engineers
started considering the AI software testing is a key factor for
testing their software. By performing quality control checks
using AI models, algorithms and techniques, organizations
open a new era in software testing and started producing a
competitive applications that exceed expectations.

If we look into the software testing, we discover that all
related software components are data. The source code is
data, the screens, websites, databases, inputs and output are
just data. AI can handle huge data easily and effectively by
applying its algorithms and techniques and can response to
data very effectively comparing to human. AI can apply
methods on data for software testing purposes like
classifications, regression, clustering and dimensionality
reduction. AI can combines different algorithms all together
to get better and promising results from analysis and
predictions.

As we can see from Figure 5, AI already covers many
areas in the software testing from requirements analysis

����������	
������������
���	
�����
���������
������������������������������
����
�������
�
����	�����

568

phase till test execution and closures. This is what currently
in the market for the AI contribution in the software testing.

Figure 5.Current AI Software Testing Coverage.

The AI trends underway in the software testing industry

are very promising and AI will drive this industry with a
great results going forward. This is the future and companies
already started investing in this industry. The following are
the key expected contributions in the near future (4 to 8
years) for the AI in software testing area, this was based on
our research analysis and prediction study:

� The AI software testing will become an independent
industry and will play a major role in IT. We expect
that AI software testing will replace the QA and
testers engineers. QA team and testers engineers will
play a new role in tuning and monitoring the AI
results.

� AI will drive the software testing and will cover all
testing stages from test preparations to planning,

execution and reporting without human intervention
and errors.

� AI software testing industry will produce more
accurate results and will shorten the software
development lifecycle than traditional testing
techniques. When building software solutions,
meeting deadlines will be challenge specially that we
might not be able to keep up with the overwhelming
software demand, so AI will bridge this gap and will
facilitate this challenge by shorten the required
testing time.

� AI will eventually have dedicated tools to effectively
test the new technology like Cloud Computing, IoT,
Big Data and other future technologies. Combining
the new technologies will bring innovation to the AI
software testing because AI will play the integrator
role in generating the required testing data for a
specific product.

� We expect that there will be specialized software and
hardware solutions that can run AI deep learning and
other AI algorithms and techniques to achieve more
accurate testing results in a competitive timeframes.

� AI also will play a key role in testing the customer
requirements by applying the predictive analysis to
check other similar products and services, to better
understand what new features the customers need.

� AI Software Testing will reduce time to market and
will increase the efficiency of the organization to
produce more sophisticated and complex software in
a competitive timeframe. AI has the ability to
analyze complex data automatically by using smart
techniques and algorithms.

� AI will cover most of the software products testing
in all areas including: application development,
website development, database applications, mobile
applications, games industry, real time critical
applications, embedded solutions and others.

� The new AI software testing tools will be innovative,
agile and smart. They will provide greater results to
the beneficiaries and end users.

� By using AI algorithms and techniques,
organizations and businesses will improve the
customer experience, enhancing their products
offering and increase the quality of the provided
services and will bring software stability to their
products.

� The AI predictive analytics will play a major role in
discovering all possible test cases and will make the
software products more robust, reliable and will
exceed customer expectations.

Machine learning, deep learning, NLP and other AI areas
are considered as a leading edge of the most of the
technologies around us. As we highlighted and discussed,
bringing AI to software testing will release the great power
of the smart software testing automation and will move and
push the software development and testing industry in a new
era focusing on innovation and agility.

����������	
������������
���	
�����
���������
������������������������������
����
�������
�
����	�����

569

IV. CONCLUSION

Artificial intelligence has the ability to analyze complex
data automatically by using smart models and algorithms. AI
already showed that it can achieve better results in software
testing. AI-driven testing will lead the new era of the QA
work in the near future. It will manage and control most of
the testing areas and will add great value to the testing
outcome and will produce more accurate results in a
competitive timeframe. There is no doubt that AI will
influence QA and testing industry and will lead this going
forward. The smart automation of software testing will
improve the quality of the software and will have a major
impact on the customers experience through providing a
solid defect-free applications and solutions.

It is expected that AI will play a key role in software
testing eventually. The new role and scope for the testers will
be focusing on truing the AI models, algorithms techniques
to become smarter. AI Testing algorithms will also connect
to new technologies in the future (like Cloud technology,
IoT, Big Data and others) and will extract the best practices
techniques that suit the client application to get more
accurate and smart test cases and will generate perfect
results. Deep learning along with the NLP and other
techniques will play a major role in the software testing and
will have some specialized tools (Software and Hardware) to
use in all software testing lifecycle.

V. FUTURE WORK

Future work can look into other areas in the AI and
software testing. Deep learning is one promising area in the
AI that can provide better results than traditional AI
algorithms. This area can be investigated to see how deep
learning can play a role in software testing.

 Another area is to cover more studies to investigate other
testing areas that hasn’t been covered in this research.

VI. REFERENCES

[1] https://en.oxforddictionaries.com/definition/artificial_intelligence

[2] tutorialspoint.com, “Software Testing Tutorial”, 2010
[3] Isha, Sunita Sangwan ,” Software Testing Techniques and Strategieg

,” (Department of computer science) SBMNE College, Rohtak
INDI,2014.

[4] L. C. Briand, Y. Labiche, and Z. Bawar, “Using Machine Learning to
Refine Black-Box Test Specifications and Test Suites,” 2008 The
Eighth International Conference on Quality Software, 2008.

[5] G. Grano, T. V. Titov, S. Panichella, and H. C. Gall, “How high will it

be? Using machine learning models to predict branch coverage in

automated testing,” 2018 IEEE Workshop on Machine Learning

Techniques for Software Quality Evaluation (MaLTeSQuE), 2018.

[6] A. Rauf and M. N. Alanazi, “Using artificial intelligence to

automatically test GUI,” 2014 9th International Conference on

Computer Science & Education, 2014.

[7] D. J. Mala and V. Mohan, “IntelligenTester –Test Sequence
Optimization Framework using Multi-Agents,” Journal of Computers,
vol. 3, no. 6, Jan. 2008.

[8] Y. Pang, X. Xue, and A. S. Namin, “Identifying Effective Test Cases

through K-Means Clustering for Enhancing Regression Testing,” 2013

12th International Conference on Machine Learning and Applications,

2013.

[9] T. Hall and D. Bowes, “The State of Machine Learning Methodology

in Software Fault Prediction,” 2012 11th International Conference on

Machine Learning and Applications, 2012

[10] R. Gove and J. Faytong, “Identifying Infeasible GUI Test Cases

Using Support Vector Machines and Induced Grammars,” 2011 IEEE

Fourth International Conference on Software Testing, Verification and

Validation Workshops, 2011.

[11] K. Chandra, G. Kapoor, R. Kohli, and A. Gupta, “Improving software

quality using machine learning,” 2016 International Conference on

Innovation and Challenges in Cyber Security (ICICCS-INBUSH),

2016.

[12] R. Lachmann, S. Schulze, M. Nieke, C. Seidl, and I. Schaefer,

“System-Level Test Case Prioritization Using Machine Learning,”

2016 15th IEEE International Conference on Machine Learning and

Applications (ICMLA), 2016.

[13] A. K. Tripathi and K. Sharma, “Optimizing testing efforts based on

change proneness through machine learning techniques,” 2014 6th

IEEE Power India International Conference (PIICON), 2014.

[14] D. G. E. Silva, M. Jino, and B. T. D. Abreu, “Machine Learning

Methods and Asymmetric Cost Function to Estimate Execution Effort

of Software Testing,” 2010 Third International Conference on

Software Testing, Verification and Validation, 2010.

[15] D. Zhang, “Machine Learning in Value-Based Software Test Data

Generation,” 2006 18th IEEE International Conference on Tools with

Artificial Intelligence (ICTAI06), 2006.

[16] Z. Li, M. Li, Y. Liu, and J. Geng, “Identify Coincidental Correct Test

Cases Based on Fuzzy Classification,” 2016 International Conference

on Software Analysis, Testing and Evolution (SATE), 2016.

[17] Y. Yang, X. Huang, X. Hao, Z. Liu, and Z. Chen, “An Industrial Study

of Natural Language Processing Based Test Case Prioritization,” 2017

IEEE International Conference on Software Testing, Verification and

Validation (ICST), 2017.

[18] H. Hemmati and F. Sharifi, “Investigating NLP-Based Approaches for

Predicting Manual Test Case Failure,” 2018 IEEE 11th International

Conference on Software Testing, Verification and Validation (ICST),

2018.

[19] A. Ansari, M. B. Shagufta, A. S. Fatima, and S. Tehreem,

“Constructing Test cases using Natural Language Processing,” 2017

Third International Conference on Advances in Electrical, Electronics,

Information, Communication and Bio-Informatics (AEEICB), 2017.

[20] R. P. Verma and M. R. Beg, “Generation of Test Cases from Software

Requirements Using Natural Language Processing,” 2013 6th

International Conference on Emerging Trends in Engineering and

Technology, 2013.

[21] B. Li, C. Vendome, M. Linares-Vasquez, D. Poshyvanyk, and N. A.

Kraft, “Automatically Documenting Unit Test Cases,” 2016 IEEE

International Conference on Software Testing, Verification and

Validation (ICST), 2016.

[22] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of

Duplicate Defect Reports Using Natural Language Processing,” 29th

International Conference on Software Engineering (ICSE07), 2007.

����������	
������������
���	
�����
���������
������������������������������
����
�������
�
����	�����

570

