
978-1-5386-9346-9/19/$31.00 ©2019 IEEE

Oncological Inspired Techniques for Intelligent Software Testing
Lipsa Sadath1, Reshmi Nair2

1Faculty, Information Technology, Amity University, Dubai, UAE
1lsadath@amityuniversity.ae, 2rnair@amityuniversity.ae

Abstract: Biologically inspired computing techniques are
highly on demand due to the inter-connection of various
specialized fields and their requirement of adaptable methods
in solving software engineering problems. Mutation testing
has acquired much importance in this scenario. The concept
of mutation testing has originated from the bio immune
system. This paper is a novel study on mutation testing that
proposes a framework OSWM (oncological software
mutation) from oncological tests performed in human
pancreatic cancer cells. The framework connects the
relationship between cancer cell tests and software tests
ensuring mutation tests owe its origin from human cells
tested. The study argues an intelligent software with an
efficient immune system can therefore aim at testing,
diagnosing and healing on its own.

Keywords: Mutation testing, Oncology, Mutants, Clinical
trials, Parameters, Mutant score, Operators.

I. INTRODUCTION

The significance of software testing is attributed in achieving
and evaluating the excellence of software specifications as per
the standard requirements. The essentiality of testing a
software is huge so as to ensure you deliver the right product
to the market.

Software tests can be conducted in different patterns. Typically
this depends on the set of data you choose to test your software
with. That is the data that can hold more probability of finding
errors or that can have lesser probability of finding errors.
Therefore any software product is expected to have undergone
rigorous testing before it reaches the market especially if has to
be dealing with human safety [1]. Thus the understanding of
true software testing can make a profound difference in the
success of a project [2].

The concept of unethical and dangerous laboratory
experiments being eliminated using executable biological
prediction software [3] has gained a lot of importance in the
bio-inspired conceptual algorithms.

A system has an ability to be itself dependable in a persistent
way even when there are failures in the system [4]. This
concept is many a time matched with the fault tolerance
system in a software to prove its resilience when matched with
the bio-immune system.

Clinical trials are experimental trials performed at the research
level in medical institutions. These are involved with human
participants with biomedical and behavioral research study
strategies designed to obtain specific treatment conditions.
These include drug absorption, novel vaccines, dietary
supplements, medical devices and its responses. These
information generate data on safety, bioavailability and
efficacy of the test samples [28, 29].

Pancreatic cancer is one among the top types of the cancers
with worst diagnosis according to World Cancer Statistics
[30]. At the later stage of diagnosis, it invades further organs
across pancreas available in the vicinity such as stomach,
duodenum, colon, kidney and spleen is observed [31, 32, 33].

This paper discusses basics, types and importance of software
testing for reliability with mutation testing on focus which is
oncology test inspired. Concepts picked in the discussions for
generating biological test cases are from oncological test point
of view.

Section II are software error terminologies, section III explains
the myths in software testing, section IV describes the types of
test levels, both structural and functional tests, further more
section V explains software mutation with mutant order,
execution, testing and suite explanation. Section VI describes
the related works on mutation tests, section VII is oncological
mutation describing oncological mutants and their types in
comparison with software mutations at each level, section VIII
is the description of the framework OSWM and section IX
with future works and scope as test model.

II. TERMINOLOGIES

Errors are mistakes that could be syntactical, or logical. These
mistakes in codes are called bugs. These bugs may create other
problems in the program that may be termed faults. Such faulty
programs may cause programs to crash or not deliver the
functionality which could be termed as a failure of the project.
Testing approaches with an intension to find the defect while
debugging targets to remove the bugs [6] and make the
software fault free.

III. MYTHS IN SOFTWARE TESTING

Software engineers believe themselves to have all confidence
in coding. They may not have the feeling of having errors in
their software until they are tested by the software testers. It is
often believed that if the engineering tools used are perfect,

328

any software can go error free. Typically anyone who develops
a software finds it difficult to find an error in their own product
as long as the functionality of the customer requirements are
met well.

IV. TYPES OF TESTING

Alpha tests are performed at the developer’s site creating an
environment equivalent to that of the original one while a beta
test occurs at the customers’ site which is the original site
where the software performance is checked. Acceptance tests
are performed to validate all requirements for the customers in
a well-planned manner.

A. Test Levels

Unit testing calls to check individual modules or classes,
methods etc., integration testing checks the capability of the
software when the modules are integrated with one another
while the system testing covers the whole system function for a
complete error free system including security and robustness
of the system, Figure:1[1, 2, 7].

Fig. 1. Test Levels

B. Structural and Functional Tests

These tests can be both structural and functional. A functional
test typically checks the functionality of the software keeping
in view the user requirements, whereas a structural test catches
code errors that a functional test may skip at times. This is
because there are situations where some codes do not disturb
the functionality of a software. Structural tests looks at the
logic examination generating test cases which is the prime
activity of white box testing.

The functional and structural tests have different types of
testing in themselves. While functional tests may include
different test patterns such as analysis of boundary value test

data, test by creating equivalence classes so that the classes
catch all similar types of errors, testing by decision tables,
cause effect graphing technique, special value testing etc. to
confirm the functionality of a program, the structural tests
include data flow, path testing, cyclomatic complexity tests,
graph matrices, mutation tests etc. [1]. Structural tests are
impressive as they are expected to go through the codes of the
program in different patterns to check the structure of a
software.

V. SOFTWARE MUTATION

The test is based on fault simulation techniques making copies
of the original program. These simulated copies are called
mutants. Basically mutants are deviation obtained from the
original software program. If mutants are developed and left
without testing those using test cases, they are dead codes. Test
cases are documentations of testing steps.

Therefore effective test cases are generated to check these
mutants. A mutant which is checked by these test cases when
detected with errors are then killed [1]. Otherwise they are
called equivalent mutants which are similar to the original
program with no errors in the mutants created. Therefore the
process of mutation aims at finding test cases to effectively kill
huge number of mutants. That is, these mutants are injected
with the test cases to verify that the test cases catch the errors
there and typically check the codes meet the requirements they
are intended for.

Mutants are chosen very carefully. When operators are used to
generate them, we call mutant operators.

For Example;
For an original expression, p+1 in the program, it’s better to
use a mutant p+2 than using a p*50 which has no relation.

A. Mutant Order

Whenever a code is mutated there needs to be a way by which
the mutation levels are measured, as to how many times the
same codes have undergone mutations. Thus a single change
made to an expression is considered first order mutant and a
mutant from the first order is then considered a second order
mutant.

B. Mutant Execution

While executing mutants, it becomes very important that the
input values are chosen carefully. Otherwise many mutants
may go unexecuted and could show a functional success than a
structural success for the time being.

Consider the following example below where the Sum is got
only when the value of l is less than m and m is equal to n. In
such cases mutants are generated only when the two conditions
are met at the same time and the loop is entered.

329

Read (l, m, n);
If (l<m) and (m=n) then
{
Sum: =l+ m+ n; {Make mutants, m1, m2, m3….}
}

Therefore the killing of these mutants depend largely on their
location in a program. This is inspired from the concept of the
cancer cells located in human body, detected, killed and treated
for the disease.

Rankings may be used while rating the score of a program as
the number of killed mutants against the total number created
and the equivalent mutants.

{#killed / (#total-#equivalent)}*100……………… (1)

C. Mutation Testing

Mutation testing is known to be a fault based testing method
providing a preferable test measure with the aid of mutant
system [14]. The fundamentals of Mutation testing is achieved
by representing the errors made by the programme test suite.
The detailed analysis of them can be obtained by choosing the
location, parameters in the prevailing system before and after
incorporating to the test suite [1]. The test adequacy criteria
can also be simulated by these above mentioned parameters
[14]. The mutants in the testing unit are executed against the
test suite in order to weigh the quality or score of a generated
test suite. If there is a difference between the results of running
a mutant and the original program, the error denoted by the
mutant is detected by the test suite. Mutation score is the
expected outcome of the mutation testing process. This is
achieved by the input test data quality. Therefore mutation
score is defined as the ratio of the number of detected errors or
bugs against the total number of the implanted faults.

D. Test Suite

A test suite consists of one or more test cases that can be
executed individually against mutants. Test Cases and suites
[1], Figure: 2 are developed mostly manually by the testers.
Therefore smart ideas are supposedly sometimes outperformed
by some random testing [5].

Fig. 2. Test Case

VI. RELATED WORKS

Automated test generation approaches were used for
generating test cases in mutation analysis by Enoiu et.al, [8].
The model used mutants and the original program to develop
the test cases. The test activity costs in a software were much
reduced with effective automated test cases generated by My
et.al, [9].

Automated unit tests were generated by Fraser et.al, [10] to
check object oriented classes’ mutations. Fraser et.al,
opinioned that defective mutants should be generated to
deliberately find faults in a software. The test suites built by
Fraser et.al [11] where two aspects were integrated. The suite
cut down on infectious conditions by avoiding redundancy on
mutants and then killing maximum number of mutants.

An ant colony optimization is used to generate cost effective
strategy in mutation test by Ayari, et al. [12]. The concept is
compared with other revolutionary algorithms. Higher
mutation scores were generated by May Peter [13] which were
much inspired from the immune system algorithms. These
mutation systems took very less execution time.

VII. ONCOLOGICAL MUTATION

A. Oncological Mutants

Mutation is the process of sudden alteration within the genetic
system of an organism [15]. This can arise due to the error in
the central dogma of biological system which causes DNA
damage [16] thereby influencing the DNA replication and
translation mechanisms. Mutations can result in normal and
abnormal biological mechanism thereby leading to cellular
evolution, development of immune system and carcinogenic
cells. According to a medical study conducted in 2017, more
than 66% of the mutations resulting in cancer are random,
while 29% as a result of environmental effect and less than 5%
through inheritance [17][18]. Carcinogenesis or oncogenesis is
the formation of abnormal cell growth wherein normal cells
are transformed into cancerous cells. There are various check
points in the cellular, genetic, epigenetic and abnormal cell
division steps. Figure: 3 depicts a detailed understanding of the
cellular instability leading to cancer cells. When there is an
alteration in the normal metabolic cell growth and
differentiation of a cell, this results in cancer cells [19]. In the
process of protein synthesis, initiated from transcription to
translation, there are chances of occurrence of genetic and
epigenetic changes due to chromosomal defects. This
condition can furthermore result in the DNA nucleotide
damage or silencing of various pro-active genes throughout the
genetic module of a cell [20] [21]. Oncogenes can also be
defined as normal genes undergoing uncontrolled division of
cells that express at a higher level in comparison with normal
cells. Moreover, it is expressed with the property of altered
genes that have unique features depicted during cell division.

330

Fig. 3. Cell division mechanism leading to cancer cells

B. Types of mutation

(i) Missense Mutation: A point mutation is observed when
change in a single nucleotide coding sequence can result in
gene sequence coding for entirely different amino acid [22].

Similar to the above state in a software, if the codes are
mutated with very less variations such as single operator, we
can refer to it similar to a missense mutation.

(ii) Nonsense mutation: The alteration in DNA sequence is
observed due to change in one DNA base pair. Thus, this
altered DNA sequence disrupts the protein formation [23].

Instead of a single code, a set of codes can be altered similarly
to get many nonsense mutants in a software.

(iii) Insertion: The protein developed becomes malfunctioned
due to insertion of DNA molecule thereby altering the base
pair sequence [24].

A similar situation in a software can occur when values
inserted have inaccuracies and such mutants may not actually
catch errors. This could be a difficult situation when software
developed is to serve accurate values regarding medical sample
variations or a signal controlled environment.

(iv)Deletion: The gene alteration occurs as a result of removal
of a piece of DNA [25]. Hence, the protein produced as a result
of translation has undergone functional changes.

Removal of certain codes in a program to create mutants can
cause functional testing requirements which may not be
attained. This is a situation where mutants can catch errors
typically.

(v) Frameshift: As a result of adding or deleting DNA base
pairs to a sequence, there is a change in conformation of
reading frame of the code sequence. Thus, in frameshift
mutation, the code for each specific amino acid is altered in the
complete genetic sequence. Hence, the protein formed will not
be functional as expected. This type of frameshift is validated
either by insertion or deletion of DNA bases [25].

A frameshift can be compared to a mutant situation where
codes in a software are altered invariably here and there. In
such situations, no mutant is expected to be an equivalent one.
Test data should be effective to catch the errors here.

(vi)Repeat Expansion: These expansion mutations are common
in cases where the nucleotide sequence gets repeated in more
numbers considering the entire row. In this type of mutation,
the sudden alteration occur when short DNA sequences get
repeated. Hence, thy also effect the translation mechanism
thereby developing a nonfunctional protein moiety [26, 27].

A repeat expansion may be referred to a redundancy in codes
or test data that may not be useful in testing a software.

VIII. PROPOSED FRAMEWORK

Cancer cells and Clinical Trials: Cancer patient samples from
various stages are collected in order to test the mutation rate of
the cells. These cancer cells are highly mutagenci in nature
which is depicted with the aid of various characterization
techniques. There are 4 stages in the entire clinical trial process
[34] Stage I indicates the clinical trials test conducted for a
small group which less than 100 patient samples with novel
biomedical composition to evaluate the efficacy and safety.
Stage II accounts for a larger group analysis of the novel
composition which is cleared from stage I. This validates the
further safety concerns and efficacy of the medical component.
Stage III investigates further efficacy of the composition with
the aid of larger patient samples ranging from hundreds to

331

thousands with a detailed comparison on standard equipment.
This also validates the negative effects on to the samples
evaluated and combine the safety results followed up by
previous stages [35]. Stage IV clinical trials are the final
analysis before the medical composition enters into the market
scenario. This elaborates on the bio-availability of the novel
composition to the general population samples and compile
information on the detailed effects for a long term usage. [35,
36].

For analyzing the above mentioned categories of cancer cells
in the clinical trial framework, we have listed few parameters
such as Age, Gene mutation rate, Flow cytometry results,
Necrotic and apoptotic cell count.

The age group of the patients with pancreatic cancer has been
observed to be 40-60 years with increased genetic mutation
rate [37]. Apoptosis is a form of cellular death occurring as a
part of normal cell growth and differentiation in all
multicellular organisms. While, necrosis is a form of cellular
injury resulting in the death of cells by the process of autolysis
initiated by lysosomes.

The flow cytometric analysis gives the apoptotic effect of
cancerous cells which provides characteristic differentiation of
fluorescently labelled cells. Thus, they are excited by the laser
to emit light at varying wavelengths depicting four different
quadrants. In the figure below, Q1 indicates early necrotic cells
while Q2 is late necrotic cells. On the other hand, Q3 specifies
the features of early apoptotic cells whereas Q4 indicates late
apoptotic cells.

Fig. 4.

Flow cytometry result with pancreatic (Mia-Paca 2) cancer
cells indicating 13.2% late necrotic cell count and 25.7% late
apoptotic cell count.

Fig. 5. Oncological Software Mutation (OSWM)

The framework OSWM proposed is developed from the
oncological test pattern. A similar test suite is suggested for
any mutant developed for software. Multiple mutants are
generated. The pre-requisites used are sample programs which
can be similar to these. The parameters used are the age of the
program which is expected to be in the developing stage or to
be specified as a modification of an already existing software.

Mutant operators, methods, modules, functions, mutants that
are killed or equivalent become the parameters for analysis.
While in oncological tests the determinant of cancer factors are
an increased p53 expression, in software tests, the mutants’
score determine the fault factors.

The situation where mutants are injected with the test cases
should have effective test data. All mutants effectively take the
same set of test data to satisfy one test case and then followed
by a test suite of the test cases. For example; a boundary value
of 14, 15, 16 used as test data should go through all mutants
developed to see their outputs whether as expected or not. This
is similar to a cancer cell test where the cellular samples go
through different characterization methods to analyze the stage
and type cancer and its diagnosis.

332

The study argues that an intelligent software with an efficient
immune system can therefore aim at testing, diagnosing and
healing on its own. A test suite developed from this framework
can be trained as an intelligent system with data patterns to
generate automated mutants and capture errors as human
beings can do manually. The framework is a continuation from
the cancer tests analysis obtained from flow cytometric results
which is a characterizing equipment. This equipment’s
functionality can be performed in a machine trained
environment for software mutation testing thus making an
intelligent system.

IX. CONCLUSION AND FUTURE WORKS

The study was successful in analyzing the fundamental
comparison of concepts in mutation testing software and
cancer cell analysis at medical aid. Effectively we developed a
framework OSWM, which prove that any software developed
fresh or modified version, can depend on the bio-immune
system where a human body can tolerate to fault levels
functionally but may have problems structurally that is within
the system.

We propose to extent this work as a practical test tool in the
future with multiple test cases in the suite using the
framework.

REFERENCES

[1] Aggarwal, K.K. and Singh, Y. Software Engineering, New Age
International Publishers, Third Edition–2008.

[2] Myers, G.J., Sandler, C. and Badgett, T., The art of software
testing. John Wiley & Sons. 2011

[3] Krepska, E., Bonzanni, N., Feenstra, A., Fokkink, W.J.,
Kielmann, T., Bal, H.E., Heringa, J.: Design issues for
qualitative modelling of biological cells with petrinets. In:
Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 48–
62. Springer, Heidelberg (2008)].

[4] Autili, M., Di Salle, A., Gallo, F., Perucci, A. and Tivoli, M.,
September. Biological Immunity and Software Resilience: Two
Faces of the Same Coin?. In International Workshop on
Software Engineering for Resilient Systems (pp. 1-15).
Springer, Cham. 2015

[5] Meyer, B. Seven Principles of Software Testing. Computer,
41(8), 99-101. 2008

[6] Popentiu-Vladicescu, F. and Albeanu, G.. Nature-inspired
approaches in software faults identification and debugging.
Procedia Computer Science, 92, pp.6-12. 2016

[7] Spillner, A., Linz, T. and Schaefer, H.. Software testing
foundations: a study guide for the certified tester exam. Rocky
Nook, Inc. 2014.

[8] Enoiu E.P., Sundmark D., Čaušević A., Feldt R., Pettersson P.
Mutation-Based Test Generation for PLC Embedded Software
Using Model Checking. In: Wotawa F., Nica M., Kushik N.
(eds) Testing Software and Systems. ICTSS 2016. Lecture
Notes in Computer Science, vol 9976. Springer, Cham.2016

[9] My, H.L.T., Thanh, B.N. & Thanh, T.K."Survey on Mutation-
based Test Data Generation", International Journal of Electrical
and Computer Engineering, 5(5) 2015

[10] Fraser, G. & Zeller, A. "Mutation-Driven Generation of Unit
Tests and Oracles", IEEE Transactions on Software
Engineering, vol. 38,no.2,pp.278-292. 2012.

[11] Fraser, G. & Arcuri, A. "Achieving scalable mutation-based
generation of whole test suites", Empirical Software
Engineering, vol. 20, no. 3, pp. 783-812. 2015

[12] Ayari, K., Bouktif, S. & Antoniol, G. Automatic mutation test
input data generation via ant colony. 2007

[13] May,PeterS..“Test data generation: two evolutionary
approaches to mutation testing”, University of Kent at
Canterbury (United Kingdom), ProQuest Dissertations
Publishing, 2007.

[14] Yue Jia, Mark Harman.,qa An Analysis and Survey of the
Development of Mutation Testing. IEEE,vol 37(5) 649-678,
2010.

[15] Sharma S, Javadekar SM, Pandey M, Srivastava M, Kumari R,
Raghavan SC. "Homology and enzymatic requirements of
microhomology-dependent alternative end joining". Cell Death
& Disease. 6 (3), 2015.

[16] Chen J, Miller BF, Furano, "Repair of naturally occurring
mismatches can induce mutations in flanking DNA", Vol 3,
2014.

[17] "Cancer Is Partly Caused By Bad Luck, Study Finds". Health
news from NPR. 2017.

[18] Carol Bernstein, Anil R. Prasad, Valentine Nfonsam and Harris
Bernstein. DNA Damage, DNA Repair and Cancer.Intechopen.
2013.

[19] Croce CM. "Oncogenes and cancer". The New England Journal
of Medicine. 358 (5): 502–11. 2008.

[20] Lim LP1, Lau NC, Garrett-Engele P, Grimson A, Schelter JM,
Castle J, Bartel DP, Linsley PS, Johnson JM. "Microarray
analysis shows that some microRNAs downregulate large
numbers of target mRNAs". Nature. 433 (7027): 769–73, 2005.

[21] Balaguer F, Link A, Lozano JJ, Cuatrecasas M, Nagasaka T,
Boland CR, Goel A "Epigenetic silencing of miR-137 is an
early event in colorectal carcinogenesis". Cancer Research. 70
(16): 6609–18. 2010.

[22] Freese E. "The difference between spontaneous and base-
analogue induced mutations of phage T4. Proceedings of the
National Academy of Sciences of the United States of America.
45 (4): 622–33, 1959.

[23] Goh AM, Coffill CR, Lane DP. "The role of mutant p53 in
human cancer". The Journal of Pathology. 223 (2): 116–26,
2011.

[24] Ellis NA, Ciocci S, German J. "Back mutation can produce
phenotype reversion in Bloom syndrome somatic cells". Human
Genetics. 108 (2): 167–73, 2001.

[25] Hogan, C. Michael. "Mutation". In Monosson, Emily.
Encyclopedia of Earth. Washington, D.C.: Environmental
Information Coalition, National Council for Science and the
Environment. OCLC 72808636, 2010.

[26] Richards RI, Sutherland GR. "Dynamic mutation: possible
mechanisms and significance in human disease". Trends
Biochem. Sci. 22 (11), 1997.

[27] Viviana Salinas-Rios, Boris P. Belotserkovskii, and Philip C.
Hanawalt. "DNA slip-outs cause RNA polymerase II arrest in
vitro: potential implications for genetic instability". Nucleic
Acids Res. 39 (15) ,2011.

333

[28] Dimasi, Joseph A; Grabowski, Henry G; Hansen, Ronald W.
"Innovation in the pharmaceutical industry: New estimates of
R&D costs". Journal of Health Economics. 47, 2016.

[29] Van Spall HG, Toren A, Kiss A, Fowler RA. "Eligibility criteria
of randomized controlled trials published in high-impact general
medical journals: a systematic sampling review". JAMA. 297
(11): 1233–40, 2007.

[30] A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray, and
M.J. Thun, Cancer statistics. CA. A Cancer journal for
clinicians 58,71 2008.

[31] S. Yohe, Y.Masahiro, K.Jun-ichiro, K.Yoshikatsu, and
M.Yasuhiro, Antitumour activity of NK012,SN-38
incorporating polymeric micelles, in hypovascular orthotopic
pancreatic tumour. European journal of cancer 46 ,650 ,2010.

[32] A.L. Warshaw, and C. Fernandez-del, Pancreatic carcinoma.
The new engalnad journal of medicine 326,455, 1992.

[33] Snima KS, Nair RS, Nair SV, Kamath CR, Lakshmanan
VK.Combination of Anti-Diabetic Drug Metformin and
Boswellic Acid Nanoparticles: A Novel Strategy for Pancreatic
Cancer Therapy. 11(1),93-104,2015.

[34] Medical Devices, Premarket Clinical Studies for Investigational
Device Exemption". US Food and Drug Administration. 17
March 2017. Retrieved 2 October 2017.

[35] Sertkaya, Aylin; Wong, Hui-Hsing; Jessup, Amber; Beleche,
Trinidad. "Key cost drivers of pharmaceutical clinical trials in
the United States". Clinical Trials. 13 (2): 117–126, 2016.

[36] Lang T, Siribaddana S. "Clinical trials have gone global: is this
a good thing?". PLoS Medicine. 9 (6): e1001228, 2012.

[37] J. Permert, I. Ihse, L. Jorfeldt, H. von Schenck, H.J. Arnqvist
and Larsson J, Pancreatic cancer is associated with impaired
glucose metabolism. European Journal of Surgery 159 (2),
1993.

