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a b s t r a c t 

There is wide acknowledgement that solar energy is a promising and renewable source 

of electricity. However, complementary sources are sometimes required, due to its limited 

capacity, in order to satisfy user demand. A Hybrid Intelligent System (HIS) is proposed in 

this paper to optimize the range of possible solar energy and power grid combinations. It 

is designed to predict the energy generated by any given solar thermal system. To do so, 

the novel HIS is based on local models that implement both supervised learning (artificial 

neural networks) and unsupervised learning (clustering). These techniques are combined 

and applied to a real-world installation located in Spain. Alternative models are compared 

and validated in this case study with data from a whole year. With an optimum parameter 

fit, the proposed system managed to calculate the solar energy produced by the panel with 

an error that was lower than 10 −4 in 86% of cases. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction and previous work 

Renewable Energy (RE) has a key role to play in the field of increased sustainability and is one of the most relevant

technologies in that respect [1] . As a consequence, many buildings and especially new ones now incorporate RE facilities.

This general European trend has also been applicable to Spain over recent years, where the rate of new RE installations, in

general, and solar thermal energy, in particular, is increasing. One reason is found in the Spanish legal regulation on this

matter [2] , which states that solar system installations are mandatory in new buildings. Obviously, the energy generated

by these installations implies a saving on other sources of energy that would otherwise have been used for that purpose.

If the energy needs are known in advance, such information may be used to predict the energy thresholds and when the

available energy will no longer be demanded. [3] . As a result, it will be possible to take corrective actions with the purpose

of reducing the energy from non-renewable energy sources. Various works have addressed that challenge in different ways.

In [4] , a new strategy was proposed for the optimal scheduling problem, taking into account the impact of uncertainties in

wind, solar PV, and load demand forecasts. 
✩ This paper is for CAEE special section SI-aires. Reviews processed and recommended for publication to the Editor-in-Chief by Guest Editor Dr. Mustapha 
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Artificial Intelligence techniques and paradigms have been combined in the Hybrid Intelligent Systems (HIS) and applied

to a wide variety of problems, ranging from environmental issues [5–7] to cybersecurity [8,9] . 

The present paper addresses the above-mentioned forecasting problem by proposing the novel HIS, designed to predict

the energy generated by solar electricity systems. The model works with the information obtained from monitoring radiation

and consumption. When applied to certain problems, HIS is required to manage a huge amount of information, which

implies the use of smart computing methods [10] . 

Intelligent techniques have previously been applied to solar-energy management: the performance of a solar collector

system using Phase Change Material was experimentally investigated for 1 month in [11] . Useful energy and collector effi-

ciency were predicted by means of Artificial Neural Networks (ANN), Adaptive-Network-Based Fuzzy Inference Systems, and

Support Vector Machines (SVMs). The authors of [12] proposed the application of ANN, Random Forest, and Smart Persis-

tence to forecast the three components of solar irradiation (global horizontal, beam normal, and diffuse horizontal). They

compared the three methods when predicting hourly solar irradiations for time horizons between h + 1 and h + 6. 

According to [13] , machine-learning-based prediction models can be categorized into: 

• Global models: a model, based on an available training dataset is obtained, with the aim of optimal error reduction. ANN

[14] and SVMs [15] are included in the set of techniques that can be considered in this category. 
• Local models: the dataset is divided into some groups with similar characteristics, by using the k -means clustering al-

gorithm [16] , the SOM (Self-Organizing Maps) [17] , or neural gas [18] . Local models [19] are considered very helpful

methods for time-series predictions. 

As previously stated, a local model-based system will be proposed in this research work, in order to make reliable pre-

dictions of the power generated at a solar thermal plant. Its novelty relies on the application of some regression techniques

over previously-obtained clusters, to obtain the best performing local model. The k -means clustering algorithm was applied

at the clustering step. 

The content of the following sections of this paper will be organized as follows: the proposed HIS and the applied models

will be described in Section 2 . The case study to which the HIS was applied will be detailed in Section 3 ; together with the

results that will be presented in Section 4 . Finally, the conclusions to the present study will be outlined in Section 5 . 

2. Hybrid Intelligent System 

As previously stated, both supervised and unsupervised learning models are combined in the framework of an HIS to

improve regression results. New models are combined to fit this prediction problem from a previously proposed diagram

( Fig. 1 ), successfully demonstrated in [20] . 

The model developed in [20] is based on a combination of clustering and prediction algorithms, which obtain local

models of lower complexity and accuracy than a general model for the whole system. In a first step, a cluster algorithm was

applied to the dataset to identify clusters of samples with similar behavior. In a second step, a prediction algorithm was

trained for each the previously identified clusters. The complete process to arrive at the final models can be summarized as

follows (see Fig. 1 ): 

• Data Acquisition: the Solar Energy System is sampled and the data are gathered. 
• Data Pre-processing: 

◦ Filtering: the dataset is filtered and incorrect (empty and/or negative values) measures are removed. 

◦ Training and testing: once filtered, the dataset is divided into 2 subsets. There is a subset for training (two thirds of

the filtered data: 23,091 samples) and another for testing (one third of the filtered data: 11,545 samples). 
• Clustering: a clustering method is applied to the whole dataset. As a result, every training and testing sample is assigned

to one of the given clusters. 
• Regression: using the samples previously assigned to the clusters, a regression model is trained for each cluster and the

best model is selected on the basis of the testing error. 

In the first step of the original formulation of this HIS [20] , both Principal Component Analysis (PCA) and the SOM were

applied for data clustering. In the present paper, clustering was performed by an alternative algorithm: k -means. Both the

Multilayer Perceptron (MLP) and the Least Square-Support Vector Machine (LS-SVM) were applied as regression models. The

Radial-Basis Functions Network (RBFN) was introduced as a new regression model and the MLP was once again applied, for

comparative purposes. In the interests of a comprehensive comparison, 5 different learning algorithms were tested when

training the MLP. 

As in the original paper, a 10-fold cross validation [21] scheme was followed, in order to carry out exhaustive tests on

the regression techniques. 

2.1. Local models 

When a system presents different behaviors that can be clustered into groups, the application of machine-learning tech-

niques to multiple local models will obtain better results than a single global model [13,20] . 
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Fig. 1. Hybrid intelligent system for solar energy prediction. 

 

 

 

 

 

In a nutshell, local models can be defined as low-complexity models that are created over small regions of the input

space. On the contrary, a global model works over the whole input space. Consequently, the knowledge extracted from each

local model (associated to a certain region of the input space) provides a more comprehensive and interesting vision of the

dataset to be analyzed. The final system of local models consist of a group of experts with specific training over specific

regions of the dataset. Then, the final goal function ( f(x) ) can be seen as the union of the goal functions ( f (x) ) of each local
i 
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model ( M ), as stated in (1) . 

f ( x ) = 

M ⋃ 

i =1 

ˆ f l ( x ) (1) 

In the present research, the local models were based on samples of the system working in a similar area of behavior.

For each local model, various regression techniques were applied, in order obtain the best fit with the behavior of the real

system. 

Local models [22] can be classified into classical (linear) models and extended (non-linear) models. In this research, the

non-linear local models were applied. 

Several algorithms can be used during the clustering step, to reveal the structure of the analyzed dataset, such as k -

means, standard winner-take-all competitive learning, SOM, fuzzy competitive learning, and PCA, among others. In the

present study, the widely-used k -means algorithm was applied to define the clusters from the original dataset that were

consequently used for training each local model. 

2.2. k -means 

Cluster analysis organizes data, grouping data samples according to a given criteria (mainly distance). Two individuals in

a valid group will be much more similar than those in different groups. The clustering k -means algorithm [23] groups data

samples into a previously defined number of groups. Two input parameters are required, in order to apply it: the number of

clusters ( k ) and their initial centroids. Firstly, each data sample is assigned to the cluster with the nearest centroid. Once the

groups are defined, the centroids are recalculated and a reallocation of the samples takes place. Those steps are repeated

until there is no further modification of the centroids. The quality criterion to measure the grouping is the Sum of Squared

Errors ( SSE ). The algorithm intended to minimize it can be defined as follows: 

SSE = 

k ∑ 

j=1 

∑ 

x ∈ G j 

p( x i , c j ) 

n 

(2) 

where, k is the number of groups, p is the proximity function, c j is the centroid of group j , and n is the number of data

samples. 

From among all the proposed distances, the authors applied the main ones, for this clustering algorithm [24] . After

comparing the results, the Cityblock distance was selected. It is a distance measure where each centroid is placed in the

component-wise median of all the samples in the group. The distance from point x to each of the centroids was calculated

as: 

d st = 

n ∑ 

j=1 

∣∣x s j − y t j 

∣∣ (3) 

where, j is an instance of the vector, x . 

2.3. Radial-basis function network 

The RBFN [25] is a neural network where a centroid is associated with each node in the hidden layer. For each of the

input vectors, x = ( x l , x 2 , …, x n ), it computes the distance between the node centroid and x . The output of the unit is then

calculated as a non-linear function of this distance. Finally, the output of the hidden nodes is weighted and combined in

the nodes of the output layer. 

In the case of r input nodes and m output nodes, the response function of each one of the output nodes can be calculated

[25] as: 

M ∑ 

i =1 

W i ∗ k 

(
x − z i 
σi 

)
= 

M ∑ 

i =1 

W i ∗ g 

(‖ 

x − z i ‖ 

σi 

)
(4) 

where, x is an input vector, M Є N is the number of hidden units; W i ε R 

m are the weights linking the i th hidden-layer

unit to the output nodes; K is a kernel function that is radially symmetric; σ i is the smoothing factor of the i th kernel node;

z i is the centroid factor of the i th kernel node; and, g: [0, ∞ ) → R is the activation function. 

2.4. Multilayer Perceptron 

The MLP is a well-known ANN consisting of several layers of nodes. There are weights associated with the connected

nodes and the output signals are generated by calculating the activation from the sum of the inputs. Its architecture consists

of an input layer that passes the input vector to the other layers of the network. The terms “input vectors” and “output

vectors” refer to the inputs and outputs of the MLP and are represented as single vectors [26] . Additionally, an MLP has one
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or more hidden layers, together with the output layer. MLPs are fully connected; that is, every node is connected to each

one of the nodes in the previous and the following layer. 

During training, the updating of weights is performed with the backpropagation algorithm. In this study, the follow-

ing implementations of this algorithm were applied: Bayesian Regularization (BR); Scaled Conjugate Gradient (SCG); Batch

Training with bias and weight learning rules (RB); Gradient Descent with adaptive learning rates and momentum (GDX) and,

the Levenberg-Marquardt (LM) algorithm. 

2.5. Multiple Linear Regression 

Multiple Linear Regression (MLR) models the relationship between a target variable and some explanatory variables by

generating a linear equation for the observed data [27] . A value of the target variable ( y ) is linked to a value of the inde-

pendent variable ( x ). The regression line for p explanatory variables (x 1 , x 2 , …, x p ) is defined as follows: 

u y = β0 + β1 x 1 + β2 x 2 + . . . + βp x p (5)

The fitted values b 0 , b 1 , …, b p estimate the parameters β0 , β1 , …, βp of the regression line. Then, Eq. (5) describes the

variation of the mean response, u y , according to the explanatory variables. The observed values for y change around the

mean response, u y , and the same standard deviation is computed ( σ ). 

The model can be expressed as DATA = FIT + RESIDUAL, where the "RESIDUAL" term refers to the deviations of the

observed values, y, from the mean response, u y , and "FIT" is represented by (5) . 

2.6. Multiple Non-Linear Regression 

A different type of regression was also applied in this study, called Multiple Non-Linear Regression (MN-LR). Here, the

data are modeled by a function that depends on (one or more) independent variables [28] where the model parameters are

non-linear combinations. The parameters can be of any type of non-linear function, such as trigonometric, exponential, etc.

An iterative algorithm is used to determine the non-linear parameter: 

y = f ( X, B ) + ε (6)

where, X is the criterion variable; B is the non-linear parameter estimate to be computed; and, ε is an error term. 

3. Case Study: solar energy prediction 

The proposed HIS was used for the prediction of energy obtained from a real-life installation. The system under analysis

was a solar thermal panel forming part of the RE systems installed in a bioclimatic house in Galicia (north-western Spain).

This thermal system is shown in Fig. 2 and can be divided into two functional sections: energy capture and energy storage.

The continuous red line in Fig. 2 demarcates the part of the thermal system that corresponds to hot liquid, while the

dotted blue line is associated with cold liquid. The solar thermal part is based on solar panels placed on the north façade

of the building, inclined at 19 °. This part is connected to the hot liquid accumulator through a closed circuit employing

ethyleneglycol. The fluid is circulated by a hydraulic pump that transports the ethyleneglycol to the solar panel inputs (S1

and S2). The solar panels are divided into two sections working in parallel, each consisting of four simple thermal solar

panels. The ethyleneglycol in circulation through the panels makes it possible to capture the heat from the sun. The fluid

then flows out through S3 and S4 at a higher temperature. After that step, the hot fluid is taken to the heat exchanger of

the accumulator (S8) where the heat is transferred to the stored water. The liquid is then pumped back to the thermal solar

panels as it leaves the accumulator (S6). 

When the bioclimatic house was designed, it was established that the solar thermal installation would cover approxi-

mately 90% of the hot water needs. The performance of the solar panels was 78.1%, and losses of between 5% and 10% were

estimated, due to their inclination. The specific location of the bioclimatic house required an inclination of 43 º. However,

the criterion was to assume the losses, but taking the same inclination as the roof of the building. 

3.1. Dataset 

The proposed HIS was validated with data for one year, after the energy from the power system installed in the previ-

ously described bioclimatic house had been sampled. These data samples were split into 12 different datasets, by the month

of the year in which they were collected (from September to December 2010 and from January to August 2011). 

The equipment used for their measurement was as follows: 

• Power meter: Kamstrup type Multichannel 601, capable of measuring temperature, flow, and thermal power. 
• Radiation meter: Apogee model PYR-P, capable of measuring solar radiation with a sensitivity of 0.200 mV per Wm 

-2 . 
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Fig. 2. Case study under analysis: solar thermal system. 

Table 1 

Range of values for each variable: maximum, minimum, average. 

Flow Solar Radiation Ta Tb Tc Td 

Maximum 1200.00 1303.69 93.65 110.33 144.95 142.88 

Minimum 0.00 −0.24 −7.29 −7.11 −4.13 −3.94 

Average 130.30 175.49 20.79 22.36 33.12 34.37 

 

 

 

 

 

 

 

 

 

 

The output for each data sample was the thermal power generated (in Watts). On the other hand, the following six

inputs were associated with each data sample: 

• Flow: water flow of the solar thermal system (in m 

3 /h) 
• Solar Radiation: measured radiation level over the panels (W/m 

2 ) 
• Ta: input Temperature on the lower panel ( °C) 
• Tb: input Temperature on the upper panel ( °C) 
• Tc: output Temperature on the lower panel ( °C) 
• Td: output Temperature on the upper panel ( °C) 

Each component (both input and output) was recorded with a 10-min measurement period. The dataset analyzed by the

HIS was previously described in [20] . It was obtained by pre-processing the raw data and removing all outliers, obtaining a

final dataset composed of 34,636 samples. 

In Table 1 , the dataset was presented in terms of the diversity and the scale of each variable, representing each variable

and its maximum, minimum, and average values. Based on those results, a normalization process between [0,1] was needed,

as the variables presented very different ranges of values. 

The frequency distribution histograms of each variable are shown in Fig. 3 (a)–(f), in order to present the diversity of the

dataset variables. Comparing the histograms, it can be concluded that variable flow and solar radiation presented similar

sample distributions with a remarkable tail to the left of the histogram. It corresponds to periods of time when no power

was produced (very small flow and very little radiation). 

The correlation matrix between all variables is shown in Table 2 . There is only one clear correlation between variables

Tc and Td. 

Finally, after a normalization process for each variable [0,1], all of them are compared by means of a boxplot in Fig. 4 .

The image shows several outliers that are removed in the case of variable flow, to produce the final dataset. 
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Fig. 3. Frequency distribution histograms of each variable. 
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Table 2 

Variables correlation matrix. 

Flow Solar Radiation Ta Tb Tc Td 

Flow 1 0.50572176 0.04717336 0.05336151 −0.0574075 −0.0355189 

Solar Radiation – 1 0.18187044 0.18509537 −0.0767962 −0.0431432 

Ta – – 1 0.23368599 0.25093049 0.27284253 

Tb – – – 1 0.22828923 0.24805207 

Tc – – – – 1 0.93438843 

Td – – – – – 1 

Fig. 4. Boxplot of each variable after the normalization process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Results & discussion 

The HIS described in Section 2 was applied to the different datasets described in Section 3.1 : 

1. 12 datasets corresponding to the 12 months of the year without grouping the data (12-Month datasets). 

2. 36 datasets, three groups for each of the 12 months, resulting from applying the k -means clustering technique to the

whole dataset (36-Grouped datasets). A value of 3 was selected for the k parameter, as it is the optimum number of

groups previously identified [20] for the dataset under analysis. 

The regression methods were applied to these two datasets, in order to predict the thermal power generated by the

solar system. They were validated by the n -fold Cross-Validation (CV) scheme. CV is a technique that splits the data, in

order to measure the error of each algorithm, into two subsets (training and testing). The training samples were used for

training each algorithm, while the testing samples were used for its validation. Finally, the algorithm with the smallest CV-

estimated error was selected [29] . The number of the n parameter (data partitions) was set to 10 (standard value) for all

the experiments in the present study. 

The total number of samples for each month before and after clustering (with k -means and Cityblock distance measure)

are shown in Table 3 . The data were split in training and testing subsets for the CV. 

The process of training the neural models was repeated 10 times (once for each fold ). Moreover, training was repeated

10 times for each training algorithm with the same combination of parameters in the case of MLP. The main purpose of this

repetition was to reduce the effect of randomness and obtain more representative results. The Normalized Mean Squared

Error (NMSE) for all ten folds is presented for all the experiments ( Tables 4 to 10 ). The NMSE is a regression performance

metric calculated as the mean of the squared errors. 

In the case of the MLP and RBFN, experiments with a varying number of hidden neurons (10, 20, and 30) were conducted.

For the sake of brevity, only the results obtained with a configuration of 10 hidden neurons are shown. The main reason is
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Table 3 

Total number of samples for each month (both training and testing subsets). 

Month Total Cluster 1 Cluster 2 Cluster 3 

Train Test Train Test Train Test Train Test 

January 2979 331 2716 301 180 20 84 9 

February 2977 330 2500 277 267 29 211 23 

March 3011 334 2305 256 283 31 423 47 

April 2456 272 2328 258 84 9 44 5 

May 2717 301 1628 181 532 59 557 61 

June 2745 305 1745 194 509 56 500 55 

July 2700 300 1813 201 419 46 469 52 

August 2699 300 1802 200 451 50 447 49 

September 2546 282 1787 198 395 43 365 40 

October 1885 209 1241 137 305 34 340 37 

November 1767 196 1578 175 152 16 38 4 

December 2695 299 2388 265 276 30 32 3 

Table 4 

MLR and MN-LR results for the 12-Month datasets. 

Month MLR MN-LR 

NMSE Time (s) NMSE Time (s) 

January 2.6E −04 0.1617 7.7E −05 0.2513 

February 2.5E −04 0.1270 6.2E −05 0.1777 

March 2.3E −04 0.1227 3.9E −05 0.1909 

April 3.4E −04 0.1274 3.1E −04 0.2006 

May 2.2E −04 0.1214 4.2E −05 0.1929 

June 2.3E −04 0.1228 4.1E −05 0.2007 

July 2.4E −04 0.1247 4.2E −05 0.2078 

August 2.3E −04 0.1242 3.9E −05 0.2013 

September 2.6E −04 0.1269 7.5E −05 0.2121 

October 3.3E −04 0.1255 5.1E −05 0.1856 

November 4.4E −04 0.1234 1.6E −04 0.1800 

December 2.8E −04 0.1256 8.3E −05 0.1986 

Table 5 

RBFN results for the 10 folds of the 12-Month datasets. 

Month NMSE Time (s) 

Mean STD Mean STD 

January 2.1E −05 6.1E −07 0.0641 0.1270 

February 2.3E −05 5.6E −07 0.0374 0.0816 

March 1.6E −05 3.2E −07 0.0378 0.0813 

April 2.3E −05 1.1E −06 0.0388 0.0836 

May 2.3E −05 4.9E −07 0.0384 0.0835 

June 2.3E −05 3.5E −07 0.0421 0.0955 

July 2.0E −05 3.6E −07 0.0386 0.0837 

August 2.1E −05 5.9E −07 0.0403 0.0880 

September 3.1E −05 7.5E −07 0.0403 0.0882 

October 2.4E −05 6.5E −07 0.0402 0.0879 

November 3.0E −05 1.2E −06 0.0404 0.0889 

December 2.8E −05 1.0E −06 0.0394 0.0862 

 

 

 

 

 

that adding more neurons would significantly increase the execution times, but not the accuracy of the results, according to

the NMSE. The training algorithm had a stronger influence on the results than the number of neurons in the hidden layer.

The best balance between execution speed and NMSE was achieved when using 10 hidden neurons. 

A sigmoid activation function in the hidden layer and a linear activation function in the output layer was employed by

MLP. A radial-basis transfer function was applied in the case of RBFN. 

4.1. Results from the 12-month datasets 

The results (considering both NMSE and execution time) of applying the previously described models to the 12-month

datasets are presented in this section ( Tables 4–7 ). To begin with, the results obtained by MLR and MN-LR are shown in

Table 4 . 
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Table 6 

MLP results for the different training algorithms and 10 folds of the 12-Month datasets. 

Month NMSE - Mean and STD 

LM GDX RB SCG BR 

Mean STD Mean STD Mean STD Mean STD Mean STD 

January 4.2E −06 8.9E −07 9.6E −04 8.2E −04 5.0E −04 3.9E −04 5.4E −06 3.7E −07 3.5E −06 2.9E −07 

February 2.4E −06 2.0E −07 2.9E −03 3.1E −03 5.2E −04 4.5E −04 3.8E −06 1.2E −06 2.1E −06 1.9E −07 

March 1.4E −06 1.6E −07 2.1E −03 2.0E −03 2.5E −04 1.8E −04 2.5E −06 3.9E −07 1.2E −06 1.1E −07 

April 6.3E −07 2.5E −07 2.0E −03 5.2E −04 7.3E −04 1.5E −04 1.7E −06 1.1E −06 6.8E −07 1.2E −07 

May 6.6E −06 2.8E −07 1.6E −03 1.3E −03 4.7E −04 2.3E −04 8.1E −06 2.8E −07 6.3E −06 2.6E −07 

June 5.4E −06 4.3E −07 1.7E −03 1.4E −03 6.3E −04 5.2E −04 7.7E −06 2.2E −07 5.1E −06 3.3E −07 

July 6.0E −06 2.0E −07 2.2E −03 1.5E −03 5.6E −04 2.7E −04 7.5E −06 1.8E −07 5.8E −06 2.5E −07 

August 4.4E −06 1.8E −07 1.7E −03 1.8E −03 3.9E −04 2.5E −04 6.7E −06 5.8E −07 4.1E −06 1.2E −07 

September 6.0E −06 5.9E −07 4.0E −03 5.5E −03 4.7E −04 2.9E −04 8.9E −06 1.5E −06 5.2E −06 6.8E −07 

October 2.6E −06 3.9E −07 1.7E −03 1.5E −03 4.7E −04 2.6E −04 3.4E −06 1.5E −07 2.4E −06 4.4E −07 

November 7.2E −06 1.3E −08 1.9E −03 1.6E −03 6.9E −04 3.0E −04 1.0E −05 1.1E −07 6.2E −06 9.5E −09 

December 8.9E −06 1.2E −05 2.2E −03 6.6E −04 6.6E −04 3.6E −04 7.2E −06 1.0E −06 4.5E −06 4.6E −07 

Table 7 

MLP execution times for the different training algorithms and 10 folds of the 12-month datasets. 

Month Time (s) - Mean and STD 

LM GDX RB SCG BR 

Mean STD Mean STD Mean STD Mean STD Mean STD 

January 0.071 0.105 0.185 0.015 0.414 0.083 0.182 0.015 0,117 0,093 

February 0.062 0.070 0.167 0.007 0.335 0.032 0.109 0.008 0.091 0.062 

March 0.066 0.072 0.177 0.007 0.332 0.044 0.058 0.011 0.068 0.058 

April 0.067 0.069 0.176 0.007 0.328 0.027 0.215 0.028 0.387 0.054 

May 0.068 0.064 0.180 0.010 0.351 0.032 0.081 0.006 0.123 0.011 

June 0.068 0.071 0.192 0.012 0.349 0.032 0.071 0.011 0.241 0.015 

July 0.072 0.062 0.190 0.015 0.359 0.029 0.074 0.009 0.091 0.064 

August 0.075 0.056 0.193 0.010 0.411 0.039 0.084 0.011 0.076 0.049 

September 0.070 0.067 0.189 0.009 0.381 0.026 0.175 0.028 0.208 0.084 

October 0.070 0.068 0.179 0.010 0.363 0.036 0.080 0.009 0.157 0.025 

November 0.070 0.066 0.177 0.009 0.353 0.032 0.058 0.007 0.070 0.024 

December 0.072 0.065 0.186 0.010 0.390 0.079 0.179 0.010 0.088 0.118 

Table 8 

MLR and MN-LR results for the different clusters in the 36-Grouped datasets. 

Month MLR (NMSE) MN-LR (NMSE) 

C1 C2 C3 C1 C2 C3 

January 1.8E −04 6.1E −04 8.9E −05 1.6E −04 4.6E −04 8.8E −05 

February 1.8E −04 4.1E −04 1.5E −04 1.6E −04 3.4E −04 7.5E −05 

March 2.1E −04 3.7E −04 8.9E −05 1.9E −04 3.0E −04 1.9E −05 

April 2.4E −05 1.4E −04 2.0E −03 2.4E −05 5.7E −05 6.5E −04 

May 2.6E −04 2.1E −04 7.2E −05 2.2E −04 1.6E −04 3.8E −05 

June 2.1E −04 2.1E −04 8.3E −05 1.8E −04 1.5E −04 4.3E −05 

July 2.4E −04 2.7E −04 7.6E −05 2.1E −04 2.1E −04 3.6E −05 

August 2.6E −04 2.5E −04 8.2E −05 2.2E −04 1.6E −04 3.8E −05 

September 2.0E −04 3.0E −04 1.2E −04 1.8E −04 2.2E −04 7.4E −05 

October 3.8E −04 3.3E −04 1.0E −04 3.4E −04 2.0E −04 3.0E −05 

November 3.2E −04 6.4E −04 3.6E −04 2.9E −04 5.4E −04 2.3E −04 

December 2.4E −04 4.0E −04 1.9E −04 2.1E −04 2.4E −04 1.8E −04 

 

 

 

 

 

 

 

In Table 4 , similar results over the 12-month period may be seen for both regression techniques. The results were con-

stant for all the datasets in the case of MLR. The MN-LR technique obtained lower error rates than MLR for all the datasets.

On the contrary, the execution times of MN-LR were higher than those of MLR. Better values can be observed for both

algorithms in the NMSE for the spring and summer seasons. 

In the case of RBFN ( Table 5 ), constant error rates and execution times were obtained for the 12 months. In comparison

with previous results ( Table 4 ), RBFN obtained lower error rates in all months. Considering the execution times, RBFN also

proved to be faster than the regression techniques. Likewise, worth noting are the low values of the standard deviation

(STD) of the NMSE, which confirms the heterogeneity in the results of the 10 folds over all twelve months. The month of

March received a lower value in the calculation of the NMSE and achieved a lower NMSE, see Table 4 . 
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Table 9 

RBFN results for the 10 folds of the 36-Grouped datasets. 

Month NMSE - Mean Time (s) - Mean 

C1 C2 C3 C1 C2 C3 

January 5.6E −05 2.9E −04 7.5E −05 0.0109 0.0107 0.0102 

February 5.3E −05 2.2E −04 7.1E −05 0.0103 0.0096 0.0092 

March 1.8E −04 2.0E −04 1.8E −05 0.0099 0.0097 0.0099 

April 4.2E −06 4.2E −05 5.9E −04 0.0178 0.0103 0.0101 

May 1.1E −04 1.2E −04 3.5E −05 0.0096 0.0097 0.0098 

June 6.9E −05 1.3E −04 4.0E −05 0.0104 0.0099 0.0096 

July 1.8E −04 1.7E −04 3.6E −05 0.0095 0.0095 0.0094 

August 8.2E −05 1.3E −04 3.4E −05 0.0099 0.0096 0.0104 

September 1.7E −04 1.4E −04 7.3E −05 0.0099 0.0098 0.0097 

October 3.2E −04 1.5E −04 2.9E −05 0.0100 0.0107 0.0099 

November 2.8E −04 3.1E −04 2.1E −04 0.0096 0.0095 0.0098 

December 1.1E −04 1.7E −04 1.6E −04 0.0110 0.0095 0.0093 

Table 10 

MLP results for the 10 folds of the 36-Grouped datasets. 

Month Cluster NMSE - Mean 

LM GDX RB SCG BR 

January C1 4.7E −05 1.8E −03 9.5E −04 2.8E −05 3.4E −05 

C2 8.2E −05 4.5E −03 8.6E −04 1.0E −04 1.0E −04 

C3 2.3E −05 1.6E −03 3.7E −04 7.1E −06 7.9E −06 

February C1 5.5E −05 2.1E −03 8.5E −04 2.4E −05 6.3E −05 

C2 5.8E −05 3.0E −03 8.8E −04 7.7E −05 6.1E −05 

C3 6.7E −06 1.3E −03 4.1E −04 6.2E −06 3.6E −06 

March C1 1.1E −04 1.8E −03 1.1E −03 2.6E −05 8.9E −05 

C2 9.1E −05 2.8E −03 6.9E −04 1.1E −04 9.0E −05 

C3 1.0E −06 1.1E −03 2.6E −04 1.8E −06 9.9E −07 

April C1 8.5E −07 1.8E −03 3.4E −04 1.8E −06 6.9E −07 

C2 4.7E −07 9.2E −04 4.6E −04 9.6E −07 5.6E −07 

C3 2.4E −04 3.5E −03 2.3E −03 4.1E −05 8.2E −04 

May C1 3.1E −05 2.2E −03 9.0E −04 4.4E −05 3.0E −05 

C2 4.7E −05 1.3E −03 4.9E −04 6.4E −05 5.5E −05 

C3 1.3E −05 1.1E −03 2.3E −04 2.1E −05 2.0E −05 

June C1 9.1E −05 3.3E −03 7.7E −04 3.7E −05 2.8E −05 

C2 6.9E −05 1.7E −03 5.8E −04 8.1E −05 7.5E −05 

C3 1.5E −05 5.6E −04 2.2E −04 1.5E −05 9.6E −06 

July C1 3.1E −05 1.8E −03 6.8E −04 3.9E −05 3.1E −05 

C2 7.7E −05 1.5E −03 6.2E −04 9.1E −05 8.7E −05 

C3 2.7E −05 1.4E −03 1.9E −04 1.9E −05 1.5E −05 

August C1 3.3E −05 1.9E −03 1.1E −03 3.4E −05 2.2E −05 

C2 5.0E −05 2.7E −03 7.6E −04 6.1E −05 5.4E −05 

C3 1.7E −05 6.9E −04 2.4E −04 1.6E −05 1.1E −05 

September C1 3.7E −05 1.2E −03 5.4E −04 3.8E −05 2.8E −05 

C2 6.9E −05 1.6E −03 4.7E −04 9.2E −05 7.8E −05 

C3 2.0E −05 8.1E −04 2.5E −04 1.9E −05 1.2E −05 

October C1 1.0E −04 1.4E −03 8.6E −04 4.0E −05 1.5E −04 

C2 2.5E −04 1.9E −03 6.4E −04 6.9E −05 6.3E −05 

C3 1.9E −06 1.4E −03 4.3E −04 3.5E −06 2.2E −06 

November C1 7.0E −05 2.1E −03 1.3E −03 2.9E −05 8.2E −05 

C2 3.1E −04 2.1E −03 1.1E −03 1.1E −04 1.4E −04 

C3 9.3E −06 2.4E −03 6.0E −04 2.7E −05 3.2E −05 

December C1 5.8E −05 1.4E −03 1.5E −03 2.4E −05 7.2E −05 

C2 1.3E −04 2.4E −03 1.1E −03 4.4E −05 3.9E −05 

C3 3.3E −04 2.0E −03 5.6E −04 9.5E −06 1.8E −05 

 

 

 

 

In Table 6 , the results obtained by MLP are shown. As can be seen, the best results in the calculation of the NMSE were

obtained by the BR training algorithm in 11 of the 12 months, with similar results obtained by the LM training algorithms.

Furthermore, those three training algorithms obtained better results than RBFN ( Table 5 ), in terms of the NMSE. In a similar

way to the content of Tables 4 and 5 , the month of March once again showed the best results in terms of NMSE, which may

be due to low variability of the input parameters to the solar panel. 
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In Table 7 , the results obtained in terms of execution time by the MLP are shown. As can be seen, the LM training

algorithm obtained the best results over the 12 months. The LM training algorithm also obtained slightly shorter execution

times than the RBFN algorithm, as can be seen in Table 5 . Comparing these results with those shown in Table 6 , it can be

concluded that the LM algorithm achieved good execution times and was one of the most effective at NMSE calculation. 

4.2. Results from the 36-Grouped datasets 

The results in terms of NMSE ( Tables 8–10 ) and execution time ( Table 9 ), obtained when applying the same models to

the 36-Grouped datasets, are presented below. The results are shown according to the cluster (C1, C2, or C3) to which each

data item is assigned. First, the results obtained by MLR and MN-LR are shown in Table 8 . 

Comparing the results of these two regression techniques ( Table 8 ), they can be said to be similar for all the months.

The best results in the calculation of the NMSE were obtained by the MN-LR regression technique for 11 (out of 12) months
Fig. 5. Boxplot of the results in Table 8 , grouped by Clusters. 

Fig. 6. Boxplot of the MLP results (by training algorithm) when applied to the 36-Grouped Datasets. 
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Fig. 7. Fit between the October dataset and the BR training algorithm (MLP). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and in the C3 cluster. Additionally, the regression techniques applied to the grouped data outperformed their application to

the 12-month datasets ( Table 4 ). 

After analyzing the results of RBFN for the 36-Grouped datasets ( Table 9 ), it can be highlighted that the NMSE values

were, in general terms, lower than those obtained by the regression techniques on the same data and better than the results

obtained by RBFN on the 12-Month dataset ( Table 5 ). In a similar way to Table 8 , cluster C3 obtained the lowest NMSE in

8 (out of 12) months. Obviously, execution times were in this case also smaller, as the data had been split into 3 different

clusters. If these results are compared with those obtained in Table 4 , a better NMSE was only obtained in cluster C3. Once

again, the results underline that the lowest NMSE values were obtained in March. 

The results of applying the MLP to the 36-Grouped datasets are shown in Table 10 . The best results (according to the

mean NMSE) were obtained when applying the BR algorithm, and similar ones were obtained by the LM algorithm. In

a similar way to Table 6 , both algorithms obtained the best results, with slightly better results from the clustered data

(mainly cluster C3). 

Figs. 5 and 6 show the boxplots corresponding to the data in Table 10 . In Fig. 5 , the results are grouped by cluster

(including all the months, folds and algorithms) and in Fig. 6 they are grouped by training algorithm. 

It can be seen from Fig. 5 that cluster C3 has the lowest mean and deviation, while cluster C1 has the highest deviation

and cluster C2 the highest mean NMSE. 

In Fig. 6 , the training algorithms, LM, SCG, and BR with the lowest mean values of NMSE and the smallest deviations can

be clearly seen. 

Fig. 7 shows the fitting between the predicted values (red solid line) and the real output (blue dashed line) for October,

when applying the MLP with the BR training algorithm. The error for each data point is also shown (black stars). 

The MLP results in this study ( Tables 6 and 10 ) were better than those obtained by the original HIS. The predicted values

were also of greater accuracy, thanks to the local model regressions (clustering with k -means algorithm) that were applied.

It is important to emphasize the differences found between the five training algorithms applied, not only in the execution

times but in the NMSE that was obtained. Also, the applications of CV techniques together with the multiple executions of

each experiment, together with the adjustment of the parameters in both RBF and MLP, all contribute to make these results

possible. 

5. Conclusions and future work 

The present study has attempted to forecast the energy generated within a solar thermal system by performing a regres-

sion on the objective feature. 

The dataset (six inputs and an output) has been tested with 2 multiple regression (linear and non-linear) techniques and

2 neural models (RBFN and MLP trained with different algorithms) have been compared and validated through a 10-fold

cross-validation. All these techniques have been applied to the 12-month datasets and to the 36-gouped datasets (generated

by applying the k -means clustering technique with the Cityblock distance). 
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Some conclusions can be drawn from the results shown in Section 4 : 

1. For the 12-Month datasets, without clustering ( Section 4.1 ), very low and constant values of mean NMSE were ob-

tained for the twelve months. The best results were obtained when applying the MLP trained with the BR and the

LM training algorithms ( Table 6 ). The MLR and MN-LR regression techniques obtained the worst results ( Table 4 ). 

2. The results for the 36-Grouped datasets, Section 4.2 , were in general terms slightly better than those described in

Section 4.1 , The ANNs (RBFN and MLP) obtained better results than the regression techniques (MLR and MN-LR in

Table 8 ). As happened for the previous datasets, the best results were obtained by MLP trained with the BR and LM

algorithms ( Table 10 ). 

3. The data split in the clusters led to better results in terms of the mean NMSE for most of the data, but not in all cases

(with respect to the results on the ungrouped data). The data clustering by k -means greatly improved the results when

compared to the SOM that was applied in the original HIS. 

Future work will focus on predicting the energy generated by some other renewable sources as well as applying more

advanced regression models to reduce prediction error. 
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