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a b s t r a c t

Accurate state-of-charge (SoC) estimation is remarkably difficult due to nonlinear characteristics of
batteries and complex application environment in electric vehicles (EVs), particularly low temperature
and low SoC. In this paper, an improved battery model is first built using a feedforward neural network
(FFNN) by introducing newly defined inputs. Based on the FFNN model and the extended Kalman filter
algorithm, a FFNN-based SoC estimation method is designed, and its robustness is verified and discussed
using the experimental data obtained at different temperatures. Finally, a hardware-in-loop test bench is
built to further evaluate the real-time and generalization of the designed FFNN model. The results show
that the SoC estimation can converge to the reference value at erroneous settings of an initial SoC error
and an initial capacity error, and the SoC estimation errors can be stabilized within 2% after convergence,
which applies to all the cases discussed in this paper, including low temperature and low SoC. This in-
dicates that the FFNN-based method is an effective method to estimate SoC accurately in complex EV
application environment.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

With the improvement of performance requirements for electric
vehicles (EVs), such as longer driving range and faster speed, more
powerful energy sources are needed. At present, lithium ion bat-
teries are the most commonly used energy sources in EVs due to
their advantage of higher energy density and longer lifetime than
other batteries with different chemistries (Subburaj et al., 2015),
but they still cannot provide sufficient energy to drive EVs as far as
fossil fuels in traditional vehicles. Under these circumstances, it is
crucial to fully utilize the energy stored in batteries for EVs through
battery management systems (BMSs).

Battery state-of-charge (SoC) estimation is one of the main tasks
of BMSs and its accuracy influences performances of other func-
tions in BMSs, including charging control (Di Yin et al., 2016),
balancing control (Ma et al., 2018), thermal management (Zhu et al.,
2015), and safety management (Xiong et al., 2019a). Due to
ineering, School of Mechan-
South Zhongguancun Street,
nonlinear characteristics and complex operation environments of
batteries in EVs, it is very difficult to obtain accurate SoC, so a well-
designed SoC estimation method is necessary for any BMSs.

1.1. Literature review

In the past, the most common approach for SoC estimation in
BMSs was the ampere-hour method combined with initial value
correction using looking-up table because of its low computation
and stable output (Meng et al., 2018), (Zhang et al., 2014). However,
this approach relies on accurate battery capacity, which is difficult
to been obtained directly in practical applications. Although some
capacity estimation methods are proposed, they usually need a
specific and relatively stable environment which is different from
that in EVs (Richardson et al., 2018), (Xiong et al., 2019b).

With the improvement of the processing power of on-board
embedded system, model-based SoC estimation methods have
become the focus in both academia and industry because of their
sustained error correction mechanism through the closed-loop
feedback of battery terminal voltage (Nejad et al., 2016),
(Ramadan et al., 2017). This correction mechanism requires a more
accurate battery model while allowing model-based SoC estima-
tion methods to tolerate the error of battery capacity to a certain
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extent.
Common battery models can be divided into four categories:

equivalent circuit models (ECMs), fractional order models (FOMs),
electrochemical models (EMs) and black-box models. ECMs are the
most commonly used models in EVs because of their low compu-
tation and relatively satisfactory accuracy (Xiong et al., 2019c),
(Peng et al., 2017), but perform poorly at low temperature and low
SoC (Huang et al., 2018), (Xia et al., 2018). FOMs can be viewed as
the improvedmodels of ECMs by givingmodel parameters a clearer
physical significance based on electrochemical impedance spec-
troscopy (Xiong et al., 2019d); however, the improvement of model
accuracy at low temperature and low SoC is insignificant. EMs are
proposed based on battery internal reaction which usually have a
higher accuracy than ECMs; however, a lot of model parameters are
difficult to be obtained accurately (Gu et al., 2016), and inaccurate
parameters may make such a complex model lose its advantages in
describing electrochemical processes. Different from ECMs, FOMs
and EMs, black-box models can describe battery external charac-
teristic accurately through a generic network structure and a
learning algorithm without knowing complex electrochemical re-
actions inside batteries (Dang et al., 2016), (Hussein, 2018).

Neural networks (NNs) are the most classic black-box models,
and have been used in many fields, such as image recognition (Kim
et al., 2018) and time-series prediction (Chandra, 2015). For battery
modeling and SoC estimation, the most commonly used NNs are
feedforward NNs (FFNNs) and feedback NNs (FBNNs). FFNNs can
establish a direct mapping relationship between current, SoC and
terminal voltage at a certain sampling point (Liu et al., 2015),
(Hannan et al., 2018), and the accuracy of this mapping relationship
is usually low because of battery polarization. One way to take the
polarization into account is to increase the NN inputs from the data
at a single sampling point to the data at multiple sampling points
(Wang et al., 2016), (He et al., 2014). Although this approach can
provide more battery information to train the NN model, it in-
creases the complexity of the NN model. Another way is to add
battery terminal voltage at the last sampling point as a NN input,
which can improve model accuracy, reduce model complexity and
also perform well in SoC estimation (Charkhgard and Farrokhi,
2010). However, this NN model can only be used for the data at
fixed sampling interval. Furthermore, this NN model takes battery
voltage as a NN input, which affects the stability of the NN model
and the SoC estimation algorithm when the battery voltage is
inaccurate or abnormal.

FBNNs include a feedback module that can save historical in-
formation. They are also able to describe battery polarization
directly (Chaoui and Ibe-Ekeocha, 2017), (Chemali et al., 2018).
However, FBNNs are not easy to be trained well, in particular when
training data are discontinuous. Moreover, the initial state of a
trained FBNN is usually set as constant which is difficult to adapt to
8>>>>><>>>>>:
y1 ¼ f1

 �
w1;m w1;m / w1;m

�T
x � q1

!
¼ f1ðW1x � q1Þ ¼ f1ð41Þ

y ¼ f2

 �
w2;k w2;k / w2;k

�T
y1 � q2

!
¼ f2ðW2y1 � q2Þ ¼ f2ð42Þ

(2)
different initial states of batteries in complex EV operation envi-
ronments. Due to the fact that training data obtained in different
situations, such as different temperatures, are usually fragmented,
FFNNs are easier to be trained well than FBNNs. Thus, FFNNs are
selected to model batteries in this paper.

1.2. Motivation and innovation

To ensure the accuracy of the FFNN while reducing its
complexity, this paper improves the FFNN by adding the new NN
inputs that can describe battery polarization characteristic. These
new inputs can be calculated directly based on the original sam-
pling data by the preprocessing method, which significantly re-
duces the inputs of the NN model. Then, a FFNN-based SoC
estimation method is designed and verified based on the experi-
mental data in different operating conditions. Finally, a BMS test
bench is setup to verify the real-time and robustness of the pro-
posed model and SoC estimation method.

1.3. Organization of this paper

The rest of this paper is organized as follows. The description of
FFNN structure for battery modeling is presented in Section 2.
Section 3 introduces the KF algorithm and its implementation
flowchart based on the FFNN model. In Section 4, the experimental
data are obtained and preprocessed to train and evaluate the model
and the algorithm. The performances of the model and the algo-
rithm are shown in Section 5 and Section 6, respectively, and the
conclusions are drawn in Section 7.

2. Neural network for battery modeling

In this section, the structure and the training algorithms of a NN
are first introduced as a preparation and then its application to
battery modeling will be described in detail.

2.1. Feed-forward neural network

A FFNN used in this paper is shown in Fig. 1(a) and its neuron
which is a basic computational unit is shown in Fig. 1(b).

According to Fig. 1(b), the output of the neuron is determined by

y¼ f
�Xn

i

wixi � q
� ¼ f

�
wTx � q

�
(1)

where n is the number of the input of the neuron, wi is the weight
between the input i and the neuron, q is the threshold of the
neuron, f (∙) is the activation function, y is the output of the neuron,
w is represented by a column vector [w1, w2, …, wn]T and x is
represented by a column vector [x1, x2, …, xn] T.

Substituting Eq. (1) into the structure of the FFNN shown in
Fig. 1(a) gives
where W1 is the weight matrix between the input layer and the
hidden layer, while W2 is the weight matrix between the hidden
layer and the output layer; q1 and q2 are the threshold vectors of
the hidden layer and the output layer; f1 (∙) and f2 (∙) are the
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Fig. 1. A three-layer FFNN (a) and its neuron (b).
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activation functions; y1 and y are the output vectors of the hidden
layer and the output layer, respectively.

After the structure of the FFNN is determined, its parameters,
including all of the weights and the thresholds, will be identified by
learning algorithms. In this paper, back propagation algorithm
(Hannan et al., 2018) is utilized to train the designed FFNN model.

2.2. Battery modeling and its improvement

The NN model of a battery should be designed carefully ac-
cording to battery charge and discharge characteristics. Normally,
battery terminal voltage is taken as the output and the current as
the input in a NN model. Battery temperature has strong influence
on the voltage response to current (Westerhoff et al., 2016), it will
be taken as another input of the NN model. Furthermore, battery
characteristics changes greatly in different states, including SoC,
SoH (Westerhoff et al., 2016) and polarization state that signifi-
cantly influences battery terminal voltage (Yang et al., 2018). Thus,
these states will also need to be considered in the NN model. To
ensure accurate and stable output of the NN model under different
operating conditions, the inputs of the NNmodel should provide as
much information as possible. However, toomany inputs will cause
a rapid increase in the number of model parameters, which easily
lead to excessive calculation and even over-fitting of the NNmodel.

Based on the above analysis, battery terminal voltage is chosen
as an only output of the NN model while battery current, surface
temperature, SoC, and the newly-defined polarization state of a
battery are selected as the inputs. Battery SoH is not considered in
this paper, but it will be taken into consideration in the future
research work. The polarization state of a battery can be defined in
Eq. (3).

sk ¼ expð�Dt=tÞsk�1 þ ð1� expð�Dt=tÞÞiL;k (3)

where sk is the polarization state at the sampling point k, which is
different from the polarization voltage and can be calculated using
only battery current; iL,k is the battery current; Dt is the sampling
interval; t is the time constant of the polarization state, which is a
user-defined constant greater than 0.

This polarization state is suitable for datawith variable sampling
intervals, which means that the value of this polarization state is
determined regardless of the size of sampling intervals when the
current remains unchanged. The proof procedure is as following:

According to Eq. (3), the initial polarization state of a battery can
be set as s0, and the polarization state becomes s1 after the battery
is discharged with a constant current iL,1 for a period of time Dt. The
time Dt can be divided into N parts, named Dt1 to DtN, and the
polarization state s1 also can be calculated recursively by Eq. (4).
8>>>><>>>>:
s0;Dt1 ¼ expð�Dt1=tÞs0 þ ð1� expð�Dt1=tÞÞiL;1

s0;Dt1þDt2 ¼ expð�Dt2=tÞs0;Dt1 þ ð1� expð�Dt2=tÞÞiL;1
«

s1 ¼ expð�DtN=tÞs0;Dt�DtN þ ð1� expð�DtN=tÞÞiL;1
(4)

where s0;Dt1 , s0;Dt1þDt2 and s0;Dt�DtN are the polarization state after
the battery is discharged for the time Dt1, Dt1þDt2, and Dt-DtN,
respectively.

Simplify the equations in Eq. (4), and substitute the polarization
state calculated by the previous equation into the next equation:

s1 ¼ exp
�
� 1

t

XN
i¼1

Dti

	
s0 þ

�
1� exp

�
� 1

t

XN
i¼1

Dti

		
iL;1 (5)

Obviously, s1 calculated by Eq. (3) is equal to s1 calculated by Eq.
(5), which proves the above conclusion.

The value of the time constant significantly affects the training
process and the accuracy of the NN model. Small time constant
makes polarization state change dramatically after sudden change
in current, which is beneficial for a NN model to describe the po-
larization characteristic of a battery in a short time. However, when
battery current becomes stable or zero, polarization state calculated
with small time constant rapidly changes to a certain value and then
remains unchanged. In this case, polarization state cannot describe
the change of polarization voltage. On the contrary, large time
constant is more suitable for describing the polarization charac-
teristic of a battery after being left for a long time than a short time
after sudden change in current. Since different time constants have
their own advantages and disadvantages in different battery
charging and discharging stages, more than one polarization states
calculatedwith different time constants can be used as the inputs of
the NNmodel to provide more information on battery polarization.
But overmuch polarization states will make the model too compli-
cated. Thus, the optimal combination of time constants should be
determined.

The theoretical value range of time constant is (0, þ∞). Ac-
cording to battery characteristics, the actual possible value range is
usually (0, 1000]. For any combination of time constants, the
training process is uncertain and time-consuming, which makes it
almost impossible to find the optimal combination in the range of
(0,1000]. In the following, a selectionmethod is proposed to reduce
the value range of time constant.

Due to the fact that the polarization states calculated with the
adjacent time constants are similar, the value of the time constant
can be taken as the integer in the range (0, 1000]. To further reduce
the number of polarization states, the correlation coefficient shown
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in Eq. (6) is used to evaluate the degree of similarity between
different polarization states, and the threshold of the correlation
coefficient is set in advance. If two polarization states whose cor-
relation coefficients are greater than the set value, these two states
are considered to be similar. In this way, the number of time con-
stants will be greatly reduced. The specific selection process is
introduced based on the experimental data in Section 4.2.

rðx; yÞ ¼ Covðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½x�Var½y�p (6)

where x and y are the time series of different polarization states;
r(x,y) is the correlation coefficient of x and y; Cov(x,y) is the
covariance of x and y; Var[x] and Var[y] are the variances of x and y,
respectively.

After the above process, several time constants are selected, and
then any combination of these time constants will be used for
modeling and model training based on test data in Section 5.1.
Based on the training results, the final combination of time con-
stants can be determined.

3. Extended Kalman filtering algorithm for SoC estimation

This section will introduce the basic procedure of the extended
Kalman filter (EKF) and its application based on the NN model of a
battery.

3.1. Extended Kalman filter

The classical EKF usually is divided into two steps, namely time
update and measurement update, and its calculation procedure is
shown in Table 1.

Table 1 Basic procedure of EKF

Nonlinear system:

8<: xk ¼ Fðxk�1;uk�1Þ þwk�1
yk ¼ Gðxk;ukÞ þ vk

(7)

Definition: Ak�1 ¼
dFðxk�1;uk�1Þ

dxk�1

����
xk¼bxþ

k�1

; Ck ¼
dGðxk;ukÞ

dxk

����
xk¼bx�

k

(8)

Initialization: bx0 ¼Eðx0Þ; P0 ¼ E
h
ðx0 � bx0Þðx0 � bx0ÞT

i
(9)

For k2f1;2;…;∞g; calculation: (10)
Step 1: Time-update equations

bx�
k ¼ F

�bxþ
k�1;uk�1

�
; P�

k ¼ Ak�1P
þ
k�1A

T
k�1 þ Q k�1 (11)
Step 2: Measurement-update equations8>>>>><>>>>>:
Kk ¼ P�

k

�
Iþ CTkR

�1
k CkP

�
k

��1
CTkR

�1
kbxþ

k ¼ bx�
k�1 þ Kk

�
yk � G

�bx�
k ;uk

��
Pþ
k ¼ P�

k

�
Iþ CTkR

�1
k CkP

�
k

��1

(12)

where xk is the system state at the sampling point k and bxk is its
guess value; Pk is the covariance matrix of state error; x0 is the
initial system state and bx0 is its guess value;wk is the process noise
vector and Qk-1 is its covariance matrix; vk is the measurement
noise vector and Rk-1 is its covariance matrix.
3.2. State estimation algorithm

The state equation and the observation equation of a battery
need to be determined. Normally, the recursive equation based on
the ampere-hour method is considered as a state equation as
shown below

zk ¼ zk�1 �
hkiL;kDt

Ca
(13)

where zk is the SoC, hk is the coulomb efficiency, which is set to 1 in
this paper and Ca is the battery capacity.

As for the observation equation, it can be described by the
model built in Section 2 as follows

ut;k ¼ f
�
zk; iL;k; sk; Tk

� ¼ f2
�
W2 f1

�
W1
�
zk; iL;k; sk; Tk

T � q1

�
� q2

�
(14)

where ut,k is the battery voltage, f (∙) is the NN model and Tk is the
battery temperature.

The matrix Ak-1 and Ck in Eq. (8) can be deduced as8>>><>>>:
Ak�1 ¼ 1

Ck ¼
df
�
zk; iL;k; sk; Tk

�
dz

¼ vy
v42

W2
vy1
v41

W1½1;0;0;…;0�T
(15)

According to the values of matrix Ak-1 and Ck, it is easy to prove
that this system is observable. Fig. 2 shows the implementation
flowchart of the EKF in Table 1 based on the NN model.

As long as the battery model is accurate enough, the algorithm
in Fig. 2 can accurately estimate SoC even if the battery capacity has
a certain error. Then the accuracy SoC obtained can be used to es-
timate the capacity accurately based on the inverse process of the
ampere-hour method (Xiong et al., 2018) as

Ca ¼DQ
Dz

¼

Pk
i¼0

�
hiiL;iDt

�
zk � z0

(16)

where DQ is the accumulation of current and Dz is the variation of
SoC. To ensure the stability of the algorithm, Ca should not be
updated when Dz is too small.
4. Experiments and data preprocessing

4.1. Experiments

As shown in Fig. 3, the test bench, which is composed of a
battery testing system, a thermal chamber and a computer, is built
to obtain experimental data. The battery tested in this paper is the
Li(NiCoAl)O2 battery, whose cut-off voltage is 2.5V/4.2V and rated
capacity is 2.7Ah.

To obtain enough data to train the NN model, we design and
perform a series of tests under different operating conditions and
temperatures. Unlike the traditional testing procedure (Wang et al.,
2016), (Zhu et al., 2017), the testing procedure used in this paper, as
shown in Fig. 4, does not require capacity test, hybrid pulse test and
OCV test, which simplifies the test procedure and shorten test
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period.
The loading current in multiple dynamic condition tests are

determined by standard vehicle driving cycles (Hu et al., 2019),
including EUDC, HL07, HWFET, LA92, NEDC, MANHATTAN, NYCC,
REP05, SC03, and UNIF01. To ensure battery safety, battery will not
be charged when battery temperature is not higher than 0 �C.

4.2. Data preprocessing

After the experimental data are obtained, the reference SoC and
the polarization states can be calculated. The former can be calcu-
lated by Eq. (13) while the latter can be calculated with different
time constants when the current and the corresponding sampling
interval are determined. The partial experimental data and its
preprocessing results are shown in Fig. 5. The polarization state is
similar to battery current when time constant is equal to 1 while
the polarization state changes slowly with battery current when
time constant is equal to 1000.
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As mentioned in Section 2, the value range of time constant
should be further reduced based on the correlation coefficient
shown in Eq. (6). As shown in Fig. 6, a selection method of time
constant is designed.

The selection process is implemented in four steps. Step 1: set
the threshold of the correlation coefficient and the initial time
constant to 0.95 and 1, respectively, and due to the fact that po-
larization state will tend to be battery current when time constant
tends to zero, set the initial reference series to battery current se-
ries. Step 2: input the polarization state series calculated by current
time constant, and calculate the correlation coefficient between
this polarization state series and the reference series. Step 3: if this
correlation coefficient is lower than the limit of 0.95, consider the
current time constant as the new reference to find the next time
constant and the output of this selection process; otherwise, keep
the previous reference series unchanged. Step 4: if the current time
constant is equal to 1000, end the selection process; otherwise,
increase the value of the time constant by 1 and return to Step 2.

Finally, eight time constants shown in Eq. (17) are selected to
calculate the corresponding eight polarization state series that will
be used for the following discussion. Note that these time constants
are obtained in the above process based on only loading current,
which means they can be used to other batteries with different
chemistries.

t2f2;6;14;32;71;155;336;688g (17)

5. Verification and discussion

Based on the test data, the performances of the NNmodels using
different combinations of polarization states as the inputs and their
applications to state estimation under different conditions are
discussed in this section.

5.1. Evaluation of the NN models

The available inputs of the NN model include current, temper-
ature, SoC, and the polarization states with different time con-
stants. The first three inputs will remain the same and the number
of polarization states as the inputs is varied.

5.1.1. Evaluation of the NN model based on the sectional
experimental data

The roles of the polarization states calculated with different
time constants in describing the polarization characteristic of a
battery are analyzed qualitatively in Section 2.2. In the following,
they will be discussed based on the sectional experimental data
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Fig. 7. Section experimental data at low S
after the battery is discharged to the cutoff voltage, and three
different stages of the data are carefully selected for an intuitive
display, as shown in Fig. 7. The sampling interval of the data in the
first 10 s is about 100ms, and the sampling interval of the data after
10 s is 1s.

Three stages of the data are used for model training step by step,
and the training results are shown in Fig. 8, where the t¼ [2,688]
represents the training results of the model using two polarization
states as inputs.

Fig. 8(a) and (b) show the training results using the stage 1 data,
which reflects the ability to describe the polarization characteristic
of a battery in a short time after sudden change in current. The
training error increases with the rise of time constant and reaches
maximal when the time constant is equal to 688. Fig. 8(c) and (d)
show the training results using the stage 2 data, which reflects the
ability to describe the polarization characteristic after a battery is
left for a long time. The training effect deteriorates as time constant
decreases, and the effect is worst when the time constant is equal to
2. Obviously, these results are consistent with the qualitative
analysis in Section 2.2, namely, small time constant is suitable for
describing the polarization characteristic in a short time after
sudden change in current while large time constant is suitable for
describing the polarization characteristic after being left for a long
time.

The stage 3 data, including the stage 1 and the stage 2, are used
to evaluate the ability of the models using more than one time
constants to describe the polarization characteristic during the
entire rest stage. As shown in Fig. 8(e) and (f), the training result
when two polarization states are added to the inputs of the NN
model is more accurate than that when only one polarization state
is added.
5.1.2. Evaluation of the NN model based on the complete
experimental data

After selecting the time constants in Section 4.2, we can rela-
tively easily determine the final combination of time constants by
model training results based on the whole experimental data. The
experimental data used here are obtained at �10 �C, 0 �C, 10 �C and
25 �C, and the data at any temperature are divided into two parts
roughly in a ratio of four to one, about 80% of them used for model
training and about 20% of them used for model validation.

The NNmodels whose inputs include only one polarization state
are discussed first, and the statistical validation results of the fully
trained models are shown in Fig. 9(a). The root mean square error
(RMSE) of the models decreases first and then increases with the
increase of time constant. The RMSE reaches minimum value when
t is equal to 14, which is viewed as the final RMSE of the NNmodels
with one polarization state. The number of NN model inputs is
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gradually increased, and the statistical results of the NN models
using different number of inputs are shown in Fig. 9(b). The RMSE
curve first drops rapidly and then remains essentially constant with
increasing number of time constants. Considering the balance be-
tween accuracy and complexity of model, this paper recommends
using four time constants, namely 2, 6, 32 and 155, as the final
combination.

Actually, it is still not easy to obtain the optimal combination of
eight time constants in Eq. (17), and after several attempts, we get
the above results. Note that the four time constants are selected
based on the experimental data including battery voltage, which
means that the time constants for other batteries with different
chemistries need to be reelected, but the above results also can give
a reference for other batteries.

5.2. Evaluation of applications of NN models for state estimation

Based on the trained NN model, the EKF shown in Section 3 is
used to estimate SoC. Considering that the stability of the algorithm
is important for practical applications, we discuss the performances
of the designed SoC estimation algorithm in different operating
conditions. The experimental data used in this Section, namely
Section 5.2, are not used for the model training in Section 5.1, but
only used for the model validation.

To show the advantages of the proposed method, two common
estimation methods are taken as a reference. The first one is the
equivalent circuit model (ECM)-based method, and the second is
the data-driven method based on FFNN named FFNN method.
Similar to the FFNN model in Section 2, the FFNN method also es-
tablishes the relationship between battery voltage, current, tem-
perature, SoC, and polarization state; however, this method views
SoC as output.

5.2.1. Evaluation results at an inaccurate initial SoC value
Based on the experimental data of SC06 at 10 �C, the FFNN-

based method, the ECM-based method and the FFNN method are
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used to estimate SoC when the initial SoC value is erroneous. The
initial SoC value of test data used here is about 80%, while the initial
SoC value of SoC estimation method is set to 100%. The capacity of
SoC estimation method is set accurately. To test the robustness of
SoC estimation method at low SoC, a disturbance of 20% SoC is
added when the reference SoC reaches about 5%. The terminal
voltage and SoC estimation results are plotted in Fig. 10, where the
Reference represents the measured voltage or reference SoC. Note
that the only output of the FFNN method is the estimated SoC, and
so Fig. 10(a) and (b) only show the voltage results of the ECM-based
method and the FFNN-based method.

Fig. 10(a) and (b) show that the voltage estimation errors of the
FFNN-based method are within 0.05V except the initial period and
the disturbance period. Fig. 10(c) and (d) show that the SoC esti-
mation results of the FFNN-based method can converges to refer-
ence value quickly, and its errors are maintained within 2% after
convergence. Compared with the ECM-based method, the FFNN-
based method has the more accurate estimation results of termi-
nal voltage and a better robustness for the disturbance at low SoC
because of the high accuracy of the FFNN model. For the FFNN
method, although it have a faster convergence speed for the
disturbance of SoC than the FFNN-based method, its estimation
results fluctuate dramatically, while the results of the FFNN-based
method are more stable and accurate owing to the EKF.

The run times of the three SoC estimation methods in MATLAB
are recorded to evaluate their computation preliminarily. Note that
these methods run continuously under the same conditions to
ensure the validity of their comparison; the CPU used is Intel Core
i5-4200H (2.80 GHz), the RAM used is 8.00 GB, and the version of
MATLAB is 2014a. After repeated tests, the mean computational
times of the FFNN-based method, the ECM-based method and the
FFNN method are 1.2228s, 1.3443s, and 0.2265, respectively. The
comparison results show that the run times of the FFNN-based
method and the ECM-based method is similar although the FFNN
model is much more complicated than the ECM. This is because
that the FFNN-based method has only one state, meanwhile, the
parallel operation of MATLAB is also beneficial for the FFNN-based
method to save the run time. Considering that the existing uni-
versal chip for BMS does not have the function of parallel operation,
the real-time of the FFNN-based method in BMS should be further
verified.
5.2.2. Evaluation results at an inaccurate initial capacity value
Based on the experimental data of UNIF01 at 25 �C, the above

three methods are used to estimate SoC when the initial value of
SoC and capacity are erroneous. The initial SoC value of test data is
about 90%, while the initial SoC value of SoC estimation method is
set to 70%. The discharge capacity of test data is about 2.565Ah,
while the initial capacity value of SoC estimation method is set to
2.309Ah. Similarly, a disturbance of �10% SoC is added when the
reference SoC reaches about 10%. The terminal voltage, SoC and
capacity estimation results are plotted in Fig. 11.

Fig. 11 shows that the FFNN-based method can estimate battery
voltage, SoC and capacity accurately even when its initial capacity
errors are set as 10%, and its estimation errors of voltage, SoC and
capacity remain within 0.05V, 2% and 3%, respectively, after
convergence. For the case that the battery capacity is erroneous, the
model-based methods have to be setting to rely more on battery
models to correct SoC; this approach is feasible for an accurate
model, such as the above FFNN model, while it may lead to
abnormal results of SoC estimation when the model error is large,
such as the SoC estimation results of the ECM-based method after
the disturbance of SoC is added at low SoC, as shown in Fig. 11(c)
and (d).
5.2.3. Evaluation results at low temperature
The performances of SoC estimation methods at low tempera-

ture are discussed based on the test data of MANHATTAN at�10 �C.
This discussion also considers effects of inaccurate initial SoC value,
inaccurate initial capacity value and disturbance at low SoC.
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Considering that the ECM-based method is difficult to accurately
estimate SoC at low temperature (�10 �C) and large current (3C)
because the accuracy of the ECM deteriorates sharply in this case,
we only discuss the performances of the FFNN-based method and
the FFNN method here. The terminal voltage, SoC and capacity
estimation results are plotted in Fig. 12.

It shows that the FFNN-based method also has good estimation
performances at �10 �C, and after convergence, its estimation er-
rors of voltage, SoC and capacity remain within 0.06V, 2% and 3%,
respectively. For the FFNN method, the fluctuation of SoC estima-
tion results at �10 �C is more significant than 10 �C and 25 �C
because of the dramatically fluctuating voltage in Fig. 12(a);
although its SoC errors can be kept within 5%, the fluctuation of SoC
greatly increases the capacity estimation error. As for the FFNN-
based method, the errors of the FFNN model at �10 �C also in-
crease slightly; however, after filtering, the influence of the voltage
fluctuation can be weakened, and then the relatively stable and
accurate estimation results of SoC and capacity can be obtained.

6. Hardware-in-Loop verification

In order to further verify the proposed FFNN-based method in
real-time, a hardware-in-loop (HiL) test bench, including a real
battery, is designed to closely simulate EV operation conditions.
6.1. Hardware-in-loop test bench

The hardware-in-loop test bench is shown in Fig. 13. It is setup
on the basis of the test bench in Fig. 3 by adding some BMS mod-
ules, including a battery monitoring unit (BMU), a battery control
unit (BCU), a current senor, a DC source, a download device and a
CAN analyzer.

The BCU is used to calculate the battery voltage and battery SoC
from the NN model. The BMU and the current sensor collect
measured battery voltages and currents, respectively, which are
sent to the BCU through the CAN bus. The computer is used to
design the NN models and generate the executable codes, which
are downloaded to the BCU for real-time operations through the
download device. The DC source is used to power the current
sensor, the BCU and the BMU.

6.2. Results of the FFNN-based method

A mixed operating condition consisting of the above conditions
are used, and the ambient temperature during battery testing is set
as about �5 �C, which are not used in the previous training and
verification process. The battery capacity is not updated in the HiL
test, namely it is inaccurate in the whole test process if its initial
setting value has an error. The capacity setting is 2.5 Ah.
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Fig. 13. Physical map of hardware-in-loop test bench.
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In the preparation stage of the HiL test, a fully-charged battery is
discharged by a constant current until its SoC is equal to approxi-
mately 90%. Then, the HiL test starts with the setting of initial SoC
value of 100%, which is 10% different from the true value and
loading the mixing operating conditions. The test results are shown
in Fig. 14.
It shows that the SoC estimation can converge to the reference
value gradually and the absolute value of the SoC estimation error is
less than 2%. The real capacity value of battery at �5 �C can be
calculated by the accumulation of current and is 2.087Ah, which
means the setting capacity error of the algorithm in this HiL test is
about 19.7% away from the true capacity of the battery. The above
results demonstrate that the designed FFNN-based SoC estimation
method meets the basic needs of EV applications.

7. Conclusions

This paper proposes an improved battery model based on the
FFNN to accurately describe battery characteristics, in particular at
low temperature and low SoC, and the model are further deter-
mined and improved based on the experimental data at �10 �C,
0 �C, 10 �C and 25 �C. Then, a FFNN-based SoC estimation method is
designed, which is fully verified in the cases of the inaccurate initial
SoC value, the inaccurate initial capacity value and low tempera-
ture. The results show that the SoC estimation can always converge
to the true value quickly while keeping the low error within 2%,
even under an inaccurate setting of capacity, which indicates that
this FFNN based SoC estimation algorithm is more dependent on
the battery model. For the capacity estimation, it can also be
updated accurately if the capacity update requirement is met.
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Finally, the real-time test of the designed NN model for battery SoC
estimation are further verified by the hardware-in-the-loop
approach using a new mixing operating conditions and a new
ambient temperature.
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