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a b s t r a c t

Sets of finite words, as well as some infinite ones, can be described using finite
systems, e.g. automata. On the other hand, some automata may be constructed with
the use of even more compact systems, like Petri nets. We call such automata Petri net
solvable. In this paper we consider the solvability of singleton languages over a binary
alphabet (i.e. binary words). An unsolvable (i.e. not solvable) word w is called minimal
if each proper factor of w is solvable. We present a complete language-theoretical
characterisation of the set of all minimal unsolvable binary words. The characterisation
utilises morphic-based transformations which expose the combinatorial structure of
those words, and allows to introduce a pattern matching condition for unsolvability.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

To deal with infinite sets of words we need to specify them in a finite way. Finite automata which are known as a
classical model for describing regular languages, are equivalent to finite labelled transition systems [8]. Some sets may
be expressed with the use of even more compact system models.

In this paper we investigate the synthesis problem with a specification given in the form of labelled transition systems.
The sought system model is a place/transition Petri net [11], with its reachability graph as a natural bridge between
specification and implementation. Namely, we are concerned with finding a net, whose reachability graph is isomorphic
to a given labelled transition system.

To address this issue one may use the general approach for net-synthesis suggested by the theory of regions [1]. For a
given labelled transition system, the solution of a number of linear inequations systems provided by the theory of regions
exists if and only if there exists an implementation in the form of a net. Moreover, solutions of such linear inequations
systems are usually utilised during the synthesis of the resulting system (see Synet [4] and APT [12]).

Our aim is to initiate a combinatorial approach and to provide a complete characterisation of a generative nature for
a special kind of labelled transition systems — non-branching and acyclic transition systems having at most two labels
(i.e. binary words) [2]. More precisely, we characterise all minimal unsolvable binary words.

The paper is organised as follows. First we give some basic notions and notations concerning labelled transition
systems, Petri nets and theory of regions. After that we present a necessary condition for minimal unsolvability, which
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allows to formulate possible shapes of minimal unsolvable words in the form of extended regular expressions [5]. In
Section 4 we introduce the notion of (base) extendable and non-extendable binary words. In the following sections we
provide the main results of this paper: a generic characterisation of all minimal unsolvable binary words and its utilisation
for an efficient verifying procedure. We conclude the paper with a discussion of experimental results and a short section
containing some directions for further research.

This paper is an extended and revised version of [9] presented at Prague Stringology Conference 2016.

2. Basic notions

In this section we introduce notions used throughout the paper.

Words
A word over an alphabet T is a finite sequence w ∈ T ∗, and it is binary if |T | = 2. For a word w and a letter t ∈ T ,

#t (w) denotes the number of occurrences of t in w. A word w′
∈ T ∗ is called a subword (or a factor) of w ∈ T ∗ if

∃u1, u2 ∈ T ∗:w = u1w
′u2. In particular, w′ is called a prefix of w if u1 = ε, a suffix of w if u2 = ε, and an infix of w if

u1 ̸= ε and u2 ̸= ε.
For two alphabets Σ1 and Σ2, a mapping φ : Σ∗

1 → Σ∗

2 is called a morphism if we have φ(u · v) = φ(u) ·φ(v) for every
u, v ∈ Σ∗

1 . A morphism φ is uniquely determined by its values on the alphabet. Moreover, φ maps the neutral element
of Σ∗

1 into the neutral element of Σ∗

2 .

Transition systems
A finite labelled transition system (or simply lts) with initial state is a tuple TS = (S, →, T , s0) with nodes S (a finite set

of states), edge labels T (a finite set of letters), edges → ⊆ (S × T × S), and an initial state s0 ∈ S. A label t is enabled at
s ∈ S, denoted by s[t⟩, if ∃s′ ∈ S: (s, t, s′) ∈ →. A state s′ is reachable from s through the execution of σ ∈ T ∗, denoted
by s[σ ⟩s′, if there is a directed path from s to s′ whose edges are labelled consecutively by letters of σ . The set of states
reachable from s is denoted by [s⟩. A sequence σ ∈ T ∗ is allowed (or firable) from a state s, denoted by s[σ ⟩, if there is a
state s′ such that s[σ ⟩s′.3 Two labelled transition systems TS1 = (S1, →1, T , s01) and TS2 = (S2, →2, T , s02) are isomorphic
if there exists a bijection ζ : S1 → S2 with ζ (s01) = s02 and (s, t, s′) ∈ →1 ⇐⇒ (ζ (s), t, ζ (s′)) ∈ →2, for all s, s′ ∈ S1.

A word w = t1t2 . . . tn of length n ∈ N uniquely corresponds to a finite transition system

TS(w) = ({s0, . . . , sn}, {(si−1, ti, si) | 0 < i ≤ n ∧ ti ∈ T }, T , s0).

Petri nets
An initially marked Petri net is denoted as N = (P, T , F ,M0) where P is a finite set of places, T is a finite set of transitions,

F is the flow function F : ((P×T )∪(T ×P)) → N specifying the arc weights, and M0 is the initial marking (where a marking
is a mapping M: P → N, indicating the number of tokens in each place). A side-place is a place p with p•

∩
•p ̸= ∅, where

p•
= {t ∈ T | F (p, t)>0} and •p = {t ∈ T | F (t, p)>0}. N is pure or side-place free if it has no side-places. A transition t ∈ T

is enabled at a marking M , denoted by M[t⟩, if ∀p ∈ P:M(p) ≥ F (p, t). The firing of t at marking M leads to M ′, denoted
by M[t⟩M ′, if M[t⟩ and M ′(p) = M(p)− F (p, t)+ F (t, p). This can be extended, as usual, to M[σ ⟩M ′ for sequences σ ∈ T ∗,
and [M⟩ denotes the set of markings reachable from M . The reachability graph RG(N) of a bounded (such that the number
of tokens in each place does not exceed a certain finite number) Petri net N is the labelled transition system with the set
of vertices [M0⟩, initial state M0, label set T , and set of edges {(M, t,M ′) | M,M ′

∈ [M0⟩ ∧M[t⟩M ′
}. If a labelled transition

system TS is isomorphic to the reachability graph of a Petri net N , we say that N PN-solves (or simply solves) TS, and that
TS is synthesisable to N . We say that N solves a word w if it solves TS(w). A word w is then called solvable, otherwise it
is called unsolvable.

Solvability
Region theory constitutes the most common tool for proving solvability of labelled transition systems. Let (S, →, T , s0)

be an lts and N = (P, T , F ,M0) be a Petri net, which we hope to synthesise. The synthesis comprises solving systems of
linear inequalities in integer numbers. Those inequalities guaranty satisfiability of the following properties:

State separation property (ssp in short)

For every pair s, s′ ∈ S of distinct states (s ̸= s′) there exists a place p ∈ P such that M(p) ̸= M ′(p) for markings M
and M ′ corresponding to s and s′.

Event/state separation property (essp in short)

For every state–transition pair s ∈ S and t ∈ T with ¬(s[t⟩) there exists a place p ∈ P such that M(p) < F (p, t) for
the marking M corresponding to state s.

Note that if the lts is defined by a word w then the state separation property is easy to satisfy by introducing a counter
place. On the other hand, satisfiability of event/state separation property, for every state–transition pair s ∈ S and t ∈ T
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Fig. 1. A general form of a place p containing initially m tokens and preventing a transition (a or b) to satisfy essp.

Fig. 2. N1 solves TS1 . No solution of TS2 exists.

with ¬(s[t⟩), requires a place preventing t at s. In the case of binary word w ∈ {a, b}∗ such a place p ∈ P is of the form
depicted in Fig. 1.

The labelled transition systems TS1 and TS2 depicted in Fig. 2 correspond to the words aabba and abbaa, respectively.
The former is PN-solvable, since the reachability graph of N1 is isomorphic to TS1, while the latter contains an unsolvable
event/state separation problem (see [2] for detailed explanation). Note that word abbaa, isomorphic to TS2, is the shortest
binary word (modulo swapping a/b) which is not PN-solvable. However, its reverse (aabba) is solvable.

Minimal unsolvable words
If w is PN-solvable, then all of its subwords w′ are. To see this, let the Petri net solving w be executed up to the state

before w′, take this as the new initial marking, and add a pre-place with #a(w′) tokens to a and a pre-place with #b(w′)
tokens to b. Thus, the unsolvability of any proper subword of w entails the unsolvability of w. For this reason, the notion
of a minimal unsolvable word (muw in short) is well-defined, namely, as an unsolvable word all of whose proper subwords
are solvable. A complete list of minimal unsolvable words up to length 110 can be found, amongst some other lists, in [10].

3. Structural classification of minimal unsolvable words

Throughout this section we investigate possible shapes of minimal unsolvable words in detail. In [2,3] some necessary
and some sufficient properties of solvable as well as unsolvable words have already been described. In this section we
shall provide known facts about minimal unsolvable words, which are true modulo swapping a and b, only in one form
for the sake of succinctness.4 From these facts we then deduce some important restrictions for the possible shapes of
those words.

Proposition 1 ([2] Sufficient Condition for Unsolvability). If a word over {a, b} has a subword of the form (1), then it is not
PN-solvable.

( a b α ) b∗ ( b a α )+ a , with α ∈ {a, b}∗ (1)

Remark. Let us notice that for a fixed α the language described by the expression (abα)b∗(baα)+a is regular. However
in our case α is an arbitrary (but the same within the word) binary word and we consider all words of the form (1) for
all possible α’s. The language obtained this way is obviously not regular (nor even context-free).

In the following, u, v ∈ {a, b}∗. Let us consider a decomposition w = u|sav. We say that b is separable at s if we
can construct a Petri net with transitions a and b and one place p such that w can be fired completely in the net and
b is not enabled at the marking corresponding to s. The lts TS in Fig. 3 corresponds to the sequence a |s ab. Letter b is
separable at state s since in the net N on the right of the figure, which allows the firing of aab, transition b is disabled at
the corresponding marking Ms. Let us also notice that N does not solve the sequence aab, since it allows more behaviour
(it allows firing of aaa, for example).

In the present paper, we rely on the main result proved in [3], which will here be used in the following form:

3 For compactness, in case of long formulas we write |r α |s β |t instead of r [α⟩ s [β⟩ t .
4 In the first part of this section we concentrate on words starting with a. Later we switch to words without infix aa, which are motivated by

the intermediate facts.
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Fig. 3. b is separable at s in aab.

Fig. 4. N1 solves ab(ab)kaa. N2 solves ab(ab)ka.

Lemma 1 ([3] Characterisation of Separable States). For a word w ∈ {a, b}∗ let w = u|sav be an arbitrary decomposition.
Then, b is separable at s iff

∀α,β,γ ,δ∈{a,b}∗ (w = αbβ|saγ bδ ⇒ #b(bβ) · #a(aγ ) > #a(bβ) · #b(aγ )).

In order to obtain a precise structural characterisation, we shall figure out properties of (un)solvable words. There are
known conditions for (un)solvability, which allow to restrict possible shapes of minimal unsolvable words being applied
step by step.

Proposition 2 ([2] Solvability of av and vb Implies Solvability of avb). If both av and vb are solvable, then avb is also solvable.

This implies that each minimal unsolvable word either starts and ends with a or starts and ends with b. Also, if a muw
w starts (and ends) with a then b is always separable in w.

Lemma 2 (Transition b is always Separable in MUW Starting with a). If w is a muw and starts with a, there are no violations
of essp for b in w.

Proof. By contraposition, assume w = a . . . |sa . . . a, and b cannot be separated from the state s. If there is no b in w before
state s, b can be separated from s with a place p having zero tokens initially, the weight of the arc from a to p is 1, and p
being a side-condition for b with both arcs having weights equal to the number of occurrences of a before the first b in w.
Hence, there is at least one b before s. If there is no b after state s, one can separate b from s with an input place p for b,
having #b(w) tokens initially, and the weight of the arc from p to b equal to 1. Thus, there is at least one b after s in w. As
b is not separable at s, for some decomposition w = aαbβ|saγ bδ, by Lemma 1, we have #b(bβ) ·#a(aγ ) ≤ #a(bβ) ·#b(aγ ).
The inequality means that the proper subword bβaγ b of w is unsolvable, contradicting the minimality of w. □

From the following fact we get that minimal unsolvable word either starts with ab or with ba.

Proposition 3 ([2] Solvable Word can be Prefixed by Starting Letter). If a word av is PN-solvable then aav is, too.

Let w be a minimal unsolvable binary word starting with a. By Proposition 2 we have two possible cases: either w

ends with a single a, or it has many (more than one) a’s at the end. So far we know w = abua. Due to the following
statement, we get bu either does not contain the infix aa or the infix bb.

Proposition 4 ([2] No aa and bb Inside a Minimal Unsolvable Word). If a minimal non-PN-solvable word is of the form w = aαa,
then either α does not contain the factor aa or α does not contain the factor bb.

Assume, bu has neither factors aa nor bb inside. The following two cases for a muw w are possible:

ab(ab)kaa or ab(ab)ka, where k ≥ 0

Petri nets N1 and N2 in Fig. 4 with the corresponding initial markings solve the first and the second of these forms,
respectively. From Proposition 4 and this observation we deduce that, in minimal unsolvable word w = aαa, α has either
the factor aa or the factor bb, but never both.

Thus, w has one of the following forms, where xi > 0 for 1 ≤ i ≤ n:

1. abx1abx2a . . . abxna : starts and ends with a, single a at the end, no aa;
2. abax1bax2b . . . baxnba : starts and ends with a, single a at the end, no bb;
3. abx1abx2a . . . abxnaa : starts and ends with a, many a’s at the end;
4. abax1bax2b . . . baxna : starts and ends with a, many a’s at the end, no bb.
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Fig. 5. N1 solves abx+1abxa. N2 solves abx−kabxa.

All those patterns can be comprised into the following three general forms of muw w:

abx1abx2a . . . abxna with xi > 0 for 1 ≤ i ≤ n, for 1; (2)

babx2abx3a . . . abxn with xi > 0 for 2 ≤ i ≤ n, for swapped 2, 4; (3)

abx1abx2a . . . abxnaa with xi > 0 for 1 ≤ i ≤ n, for 3. (4)

In the rest of this section we will try to figure out these forms more precisely.
Consider first the form (4): w = abx1abx2a . . . abxnaa with xi > 0 for 1 ≤ i ≤ n. Since w necessarily has bb as a factor,

xi ≥ 2 for some 1 ≤ i ≤ n. If n = 1 then x1 ≥ 2. We shall prove now that if n > 1 then x1 = 2, x2 = · · · = xn = 1. Let
j = max{1 ≤ i ≤ n | xi ≥ 2}. For the subword v = abxj−1  

α

|ba . . . aba  
β

a of w, where xj ≥ 2 and xj+1 = · · · = xn = 1, we

have #a(β) · #b(α) = (n − j + 1) · (xj − 1) ≥ 1 · (n − j + 1) = #a(α) · #b(β), implying v is not solvable, due to Lemma 1.
If j > 1, v is a proper subword of w, which contradicts minimal unsolvability of w. Hence, xi ≤ 1 for i > 1. Thus, there
are two possibilities for a muw w of the form (4):

abxaa, with x > 2 or abb(ab)kaa, with k ≥ 0 (4’)

To understand shapes (2) and (3), the following balancing property will be useful.

Lemma 3 ([3] Block Lengths Differ by at most 1). Let w ∈ a∗b+(ab+)∗(a|ε) be a word that contains both babxa and abbxb with
x ≥ 1 as subwords. Then, w is not solvable.

Let us now study pattern (2). It is easy to see that words corresponding to pattern (2) are solvable for n = 1.
Consider the partial instance, n = 2, of this pattern. The words of the following two classes
abx+1abxa or abx−kabxa with 0 ≤ k < x, are solvable, and Petri nets N1 and N2 in Fig. 5 are possible solutions
for words of the first and of the second of these forms, respectively. Thus, if w = abx1abx2a is minimal unsolvable, then
x1 − x2 ≥ 2.

Lemma 4 ([2] Side-Place-Free Solvability with Few Initial b’s). If u = bx1abx2a . . . abxna is solvable and x1 ≤ min{x2, . . . , xn},
then u is solvable side-place-freely.

Lemma 5 ([2] Solving au from u). Suppose u = bx1abx2a . . . abxna is solvable side-place-freely. Then au is solvable.

Consider an arbitrary minimal unsolvable word w = abx1abx2a . . . abxna of the form (2) with n ≥ 3, xi > 0 for 1 ≤ i ≤ n.
Let x = min{xi | 2 ≤ i ≤ n}. Due to Lemma 3, xi ∈ {x, x+1} for 2 ≤ i ≤ n, and then x1 ≤ x+2. If x1 < x+1, by Lemmata 4
and 5, the word w is solvable, contradicting the choice. Hence, x + 1 ≤ x1 ≤ x + 2, and min{xi | 1 ≤ i ≤ n} = x. We now
show xn = x. Two cases are possible:

Case 1: x1 = x + 2. If xn = x + 1, then xj = x for some 1 < j < n, which by Lemma 3 contradicts the minimality of w.
Hence, xn = x, and w follows the pattern abx+2a(bx+1a)+bxa.

Case 2: x1 = x + 1. By contraposition, assume xn = x + 1. Then, xj = x for some 2 ≤ j ≤ n − 1. Let j1 = max{j | xj = x}.
Assume a cannot be separated from some state sk in w (b is separable by Lemma 2). If k < j1, then, by Lemma 1, for

w = a bx1 a . . . a bxk−1  
α

|sk

β ′  
b a . . . bxj1 a . . . bxn  

β

a

we have

#a(β) · #b(α) ≥ #a(α) · #b(β) ⇐⇒
#b(α)
#a(α)

≥
#b(β)
#a(β)

,
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where #a(α) ̸= 0 by the form of w, and #a(β) ̸= 0 due to j1 ≤ n−1. From the choice of j1,#b(β)
/
#a(β) ≥ #b(β ′)

/
#a(β ′),

implying

#b(α)
#a(α)

≥
#b(β)
#a(β)

≥
#b(β ′)
#a(β ′)

H⇒ #a(β ′) · #b(α) ≥ #a(α) · #b(β ′).

According to Lemma 1, this implies the unsolvability of the proper subword αβ ′a of w, which contradicts minimality of
w. Assume now k ≥ j1. Then in

w = a bx1 a . . . a bxj1 a . . . bxk−1  
α

|sk b a . . . bxn  
β

a,

by Lemma 1, we have

#a(β) · #b(α) ≥ #a(α) · #b(β) ⇐⇒
#b(α)
#a(α)

≥
#b(β)
#a(β)

,

where #a(α) ̸= 0 by the form of w, and #a(β) ̸= 0 because a can be separated ‘‘inside’’ the last group of b’s with a place
p having #b(w) · n tokens on it initially, the weight of the arc from p to a is #b(w), and the weight of the arc from b to p
is 1. On the other hand, thanks to the choice of xj1 , we have x + 1 > #b(α)

/
#a(α) and #b(β)

/
#a(β) > x + 1, which is a

contradiction. Hence, xn = x.
From the consideration above we can deduce that all minimal unsolvable words of the form (2) match one of the

following three refined patterns

abx+kabxa, with x > 0, k > 2 or

abx+2(abx+1)∗abxa, with x > 0 or
abx1abx2a . . . abxna, with x1 = x + 1, xn = x, xi ∈ {x, x + 1} for x > 0, n ≥ 3

(2’)

The last pattern to be studied in detail is (3). Binary words of the form (3) are obviously solvable for n = 2. We now
consider arbitrary minimal unsolvable word w = babx2abx3a . . . abxn with n ≥ 3 and xi > 0 for 2 ≤ i ≤ n of the form (3).
Let x = min{xi | 2 ≤ i ≤ n− 1}. Due to Lemma 3, xi ∈ {x, x+ 1} for all 2 ≤ i ≤ n− 1, and then xn ≤ x+ 2. Assume xn ≤ x.
Consider state s in

w = b a bx2 a . . . a bxk  
α

|s

β ′  
a . . . bxn−1−1 b a bxn−1  

β

b,

from which b cannot be separated (a can always be separated by Lemma 2). Transition b can be separated from the state
right after the first b with a place p having an arc from a to p with weight equal to max{xi | 2 ≤ i ≤ n}, an arc from p to
b with weight equal to 1, and initially 1 token on it. Hence, k ̸= 1. Transition b can easily be separated at the very end of
w by an input place p of b, having #b(w) tokens on p initially. Hence, k ̸= n. If k = n − 1, we have

#a(α) · #b(β) = (n − 2) · (xn − 1) < 1 · (1 + x2 + · · · + xn−1) = #a(β) · #b(α),

which, due to the minimal unsolvability of w, contradicts Lemma 1. Hence, k < n−1. From Lemma 1, because of minimal
unsolvability of w, we have

#a(α) · #b(β) ≥ #a(β) · #b(α) ⇐⇒
#b(β)
#a(β)

≥
#b(α)
#a(α)

,

where #a(β) ̸= 0 because of k < n − 1, and #a(α) ̸= 0 due to k > 1. Since we assumed xn ≤ x,

#b(β ′)
#a(β ′)

≥
#b(β)
#a(β)

⇐⇒ #a(α) · #b(β ′) ≥ #a(β ′) · #b(α).

Due to Lemma 1, αβ ′b is not solvable. Since it is a proper subword of w, we get a contradiction to the minimality of w.
Thus x + 1 ≤ xn ≤ x + 2. We now demonstrate x2 = x. Consider two possible cases:

Case 1: xn = x + 2. Take j = max{i | xi = x}. Then for the subword u

u = b a bxj (a bx+1)k  
α

|s a bxn−1  
β

b.

of w with k ≥ 0, the following inequality is satisfied

#b(β) · #a(α) = (x + 1) · (k + 1) ≥ (1 + x + (x + 1) · k) · 1 = #b(α) · #a(β).



Please cite this article as: E. Erofeev, K. Barylska, Łu. Mikulski et al., Generating all minimal petri net unsolvable binary words, Discrete Applied Mathe-
matics (2019), https://doi.org/10.1016/j.dam.2019.04.023.

E. Erofeev, K. Barylska, Łu. Mikulski et al. / Discrete Applied Mathematics xxx (xxxx) xxx 7

By Lemma 1, u is unsolvable. If j > 2, u is a proper subword of w, contradicting the minimality of w. Hence, in this case
x2 = x and xi = x + 1 for 2 < i < n.

Case 2: xn = x + 1. Let j1 = min{i | xi = x}. By the definition of x, j1 ̸= n. By contraposition, assume x2 = x + 1. Consider
state sk in w after the group of bxk , such that b cannot be separated at sk (a is always separated by Lemma 2).

If k > j1, then, by Lemma 1, for

w = b a bx2 a bx3−1

α′  
b a . . . bxj1 a . . . bxk  

α

|sk a . . . bxn−1  
β

b

the following inequality holds

#b(β) · #a(α) ≥ #a(β) · #b(α) ⇐⇒
#b(β)
#a(β)

≥
#b(α)
#a(α)

,

where #a(β) ̸= 0 by the choice of sk, #a(α) ̸= 0 due to the fact that b can be separated from the state after the first b. As
x2 = x + 1 and xj1 = x, we have #b(α)

/
#a(α) ≥ #b(α′)

/
#a(α′). From

#b(β)
#a(β)

≥
#b(α′)
#a(α′)

H⇒ #b(β) · #a(α′) ≥ #a(β) · #b(α′),

according to Lemma 1, it follows that the proper subword α′βb of w is unsolvable, contradicting minimality of w. Suppose
k ≤ j1. Then, by Lemma 1, for

w = b a bx2 a . . . bxk  
α

|sk a . . . bxj1−1 b a . . . bxn−1  
β

b

the following inequality is satisfied

#b(β) · #a(α) ≥ #a(α) · #b(β) ⇐⇒
#b(β)
#a(β)

≥
#b(α)
#a(α)

,

with #a(β) ̸= 0, by the special form of the word, and #a(α) ̸= 0, due to k < n. On the other hand, due to xn = x + 1 and
by the choice of j1, we have x + 1 > #b(β)

/
#a(β), and #b(α)

/
#a(α) ≥ x + 1, which is a contradiction. Thus, x2 = x, and

we deduce the following refinement of pattern (3)

babx(abx+1)∗abx+2, with x > 0 or
babx2abx3a . . . abxn , with x2 = x, xn = x + 1, xi ∈ {x, x + 1} for x > 0, n ≥ 3

(3’)

Notice that sets of words generated by all patterns (2’), (3’) and (4’) are mutually disjoint. In the following section we
divide them into classes of extendable and non-extendable words.

4. Generative nature of minimal unsolvable binary words

In this section we provide a complete characterisation for the class of minimal unsolvable binary words. The general
idea is to split the whole set into two classes: extendable (which turn out to serve as origins for more complex minimal
unsolvable words) and non-extendable (which might be also regarded as origins for more complex unsolvable, but not
minimal, binary words). In the former class we distinguish the simplest extendable muw’s, i.e. the words in which the
factor α from (1) is of the form ai or bi. Such words are called base extendable. After introducing the class of base
extendable words, we provide an extension operation based on simple morphisms, which are prefix codes. The code
nature is used in subsequent section, where we define the converse procedure, called compression.

4.1. Base extendable and non-extendable words

The following definitions must be understood modulo swapping a/b (as in the second part of the previous section, we
focus on words not containing the infix aa).

Definition 1 (Base Extendable Words). A word u ∈ {a, b}∗ is called base extendable if it is of the form

abw(baw)ka with w = bj, j > 0, k ≥ 1, or

baw(abw)kb with w = bj, j ≥ 0, k ≥ 1.
(5)

The class of base extendable words is denoted by BE . □
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Fig. 6. N1 solves the prefix abbj(babj)k . N2 solves the suffix bbj(babj)ka.

Definition 2 (Non-Extendable Words). A word u ∈ {a, b}∗ is called non-extendable if it is of the form

abbjbkbabja with j ≥ 0, k ≥ 1.

The class of all non-extendable words is denoted by NE . □

We now establish that all words from classes BE and NE are minimal unsolvable.

Lemma 6 (Minimal Unsolvability of base Extendable and Non-Extendable Words).
If w belongs to class BE or NE , then it is unsolvable and minimal with that property.

Proof. Let us notice that a word w is a muw if and only if w is unsolvable and both every proper prefix and every proper
suffix of w are solvable. Every word w from BE ∪ NE is of the form 1, hence unsolvable. We shall prove the minimality
of such w by indicating Petri nets solving its maximal proper prefix and suffix.

Case 1 (base extendable words):
(a) w = abbj(babj)ka

Consider first an arbitrary base extendable word of the form w = abbj(babj)ka with j ≥ 0 and k ≥ 1. This form satisfies
(1) with α = bj, the star ∗ being repeated zero times, and the plus + being repeated k times. Due to Proposition 1, all
binary words of this form are unsolvable.

The maximal proper prefix abbj(babj)k of this word can be solved by Petri net N1 in Fig. 6. Place q in this net enables
the initial a, and then disables it unless b has been fired j+2 times. After the execution of block bbjb, on place q there are
k − 1 tokens more than a needs to fire. These surplus tokens allow a to be fired after each sequence bjb, but not earlier.
Place p has initially 1 token on it, which is necessary to execute block bbjb after the first a, and this place has only j + 1
tokens after each next a, preventing b at states where a must occur. Place d prevents premature occurrence of b at the
very beginning of the prefix, and places ca and cb restrict the total number of firings of a and b, respectively.

For the general form of maximal proper suffix bbj(babj)ka of w, one can consider Petri net N2 on the right-hand side
of Fig. 6 as a possible solution. Indeed, place q prevents premature occurrences of a in the first block bbjb, and enables a
only after this and each next block bjb. Doing so, it collects one additional token after each bjb, which allows this place
to enable the very last a after sequence bj. The initial marking allows to execute the sequence bbjb at the beginning, and
at most j + 1 b’s in a row after that, thanks to place p. Place cb restricts the total number of b’s allowing only block bj at
the end. Thus we deduce that any word of the form abbj(babj)ka with j > 0 and k ≥ 1 is a muw.
(b) w = babj(abbj)kb

We can similarly examine arbitrary base extendable word of another form w = babj(abbj)kb with j ≥ 0 and k ≥ 1. The
word w satisfies (1) with swapped a and b, α = bj, the star ∗ being repeated zero times, and the plus + being repeated
k times. Due to Proposition 1, all binary words of this form are unsolvable. Petri nets N1 and N2 in Fig. 7 are possible
solutions for maximal proper prefix and for maximal proper suffix of w, respectively.

Remark (On Special Structure of Petri Nets which Solve Prefixes and Suffixes). Petri net N1 in Fig. 6, which solves maximal
proper prefix abbj(babj)k of word w = abbj(babj)ka from class BE , has a special structure. Place d serves for preventing
undesirable b in the very beginning of w, and places ca and cb restrict the total number of a and b, correspondingly. So, the
internal structure of the word, being executed by N1, is completely determined by two places p and q, which prevent b
and a, respectively, when and only there is a necessity. In what follows, we will call the part of N1 consisting of these two
places (and transitions) a core part. So, Petri net N2 in Fig. 6 has a core part made of places p and q. Similarly, such parts
are formed by places p and q for both nets in Fig. 7. In future consideration we shall sometimes concentrate only on such
core parts, as the other necessary places of the net may be added in an uncomplicated way and does not influence the
main behaviour of the net.
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Fig. 7. N1 solves the prefix babj(abbj)k . N2 solves the suffix abj(abbj)kb.

Fig. 8. N1 solves the prefix abbjbkbabj . N2 solves the suffix bbjbkbabja.

Fig. 9. N1 solves the prefix abbbab. N2 solves the suffix bbbaba.

Case 2 (non-extendable words): We now demonstrate that any (modulo swapping a/b) binary word of the form
w = abbjbkbabja with j ≥ 0 and k ≥ 1 from class NE is minimal unsolvable. w satisfies (1) with α = bj, the star ∗ being
repeated k times, and the plus + being repeated only once. Due to Proposition 1, w is unsolvable. To show minimality of w,
we provide Petri nets N1 and N2 (see Fig. 8) solving its maximal proper prefix and maximal proper suffix, respectively. □

Example 1. Let us consider a word w = abbbaba, which is of the form (1), with α = b, the star ∗ being repeated zero
times, and the plus + being repeated just once. By Definition 1, w is a base extendable word with j = 1 and k = 1. The
word w is unsolvable (by Proposition 1) and minimal with that property. We show the minimality by introducing Petri
nets solving a proper prefix abbbab and a proper suffix bbbaba of w. Those Petri nets, constructed on the basis of the proof
of Lemma 6, are depicted in Fig. 9.

Notice that both Petri nets contain core parts consisting of places p and q, which are responsible for the required
behaviour of the nets, as well as auxiliary places — a delay place d and counter places ca and cb.

4.2. Extension operation and extendable words

Let us now explain how some minimal unsolvable words can be obtained from other minimal unsolvable words. For
this purpose we use the following notion of extension operation:

Definition 3 (Extension Operation). For a word v = xwx (w ∈ {a, b}∗, x ∈ {a, b}) an extension operation E is defined as
follows:

E(awa) =

∞⋃
i=1

{
abMa,i(w)ai+1, aMb,i(wa)

}
,

E(bwb) =

∞⋃
i=1

{
baMb,i(w)bi+1, bMa,i(wb)

}
,
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Fig. 10. Core parts of Petri nets: Ñ1 for a net solving prefix, Ñ2 for a net solving suffix.

where Ma,i and Mb,i are morphisms defined as follows

Ma,i =

{
a ↦→ ai+1b
b ↦→ aib and Mb,i =

{
a ↦→ bia
b ↦→ bi+1a . □

In what follows, for a given w ∈ {a, b}∗, we shall call u ∈ E(w) an extension of w (when E(w) is defined).
We are now ready to define the class of extendable minimal unsolvable words.

Definition 4 (Extendable Words). For a word w ∈ {a, b}∗

1. if w ∈ E(v) for a base extendable v, then w is extendable,
2. if w ∈ E(v) for an extendable v, then w is extendable,
3. there are no other extendable words.

The class of all extendable words is denoted by E . □

Lemma 7 (Unsolvability of Extendable Words). Let u ∈ {a, b}∗ be of the form abv(bav)ka or bav(abv)kb (k > 0). Then E(u) is
a set of PN-unsolvable words.

Proof. Let u = abv(bav)ka (k > 0). Then

E(u) =

⋃
i∈N

{
abaibMa,i(v)

(
aibai+1bMa,i(v)

)k
ai+1,

abi+1aMb,i(v)
(
bi+1abiaMb,i(v)

)k
bia

}
=

=

⋃
i∈N

{
ab(aibMa,i(v)ai)

(
ba(aibMa,i(v)ai)

)k
a,

ab(biaMb,i(v)bi)
(
ba(biaMb,i(v)bi)

)k
a
}

=

=

⋃
i∈N

{
abva

(
bava

)k
a, abvb

(
bavb

)k
a
}
.

Therefore, by Proposition 1, E(u) is a set of PN-unsolvable words. The case u = bav(abv)kb can be proved similarly. □

Transformations of core part w.r.t. morphisms
As it has been demonstrated above, for every base extendable word w there are Petri nets N1 and N2, which solve

maximal proper prefix w1 and maximal proper suffix w2 of w, respectively. These nets N1 and N2 have a special structure:
so called ‘‘core’’ parts Ñ1 and Ñ2 (general patterns of Ñ1 and Ñ2 are depicted in Fig. 10) determine internal order of
firings of a’s and b’s during execution of w1 and w2, while the remaining parts of N1 and N2 take responsibility of
correct implementation of the beginnings and the ends of w1 and w2. Applying operation E to w, one can easily obtain a
new minimal unsolvable word w′. Moreover, applying appropriate transformation (which is determined by the particular
morphism that has been used to gain w′ from w) to Ñ1 or to Ñ2, one derives new core part Ñ ′

1 or Ñ ′

2, which correctly
implements the internal structure of the maximal proper prefix w′

1 or the maximal proper suffix w′

2 of w′, respectively.
In Table 1 the correspondence between morphisms from Definition 3 and such transformations of nets is provided for
general forms of Ñ1 and Ñ2. This fact is confirmed throughout the proof of the following lemma

Lemma 8 (Minimality of Extendable Words). If w ∈ E , then w is minimal unsolvable.

Proof (Sketch5). By Lemma 7, any extendable word is unsolvable. According to Definition 4, for every w ∈ E there is a
sequence w0, w1, . . . , wr such that w0 ∈ BE , wj ∈ E and wj ∈ E(wj−1) for 1 ≤ j ≤ r , and wr = w. We proceed by induction

5 For the sake of readability the complete, technical proof is given in Appendix.
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Table 1
The correspondence between morphisms and transformations.

Ma,i Mb,i

a+
↦−→ a+

+ b− a+
↦−→ a+

+ i · (a+
+ b−)

b−
↦−→ b−

+ i · (a+
+ b−) b−

↦−→ a+
+ b−

b+
↦−→ b+

+ i · (a−
+ b+) b+

↦−→ a−
+ b+

Ñ1 a−
↦−→ a−

+ b+ a−
↦−→ a−

+ i · (a−
+ b+)

M(p) ↦−→ b−
+ i · (a+

+ b−) M(p) ↦−→ a+
+ b−

M(q) ↦−→ a−
+ b+ M(q) ↦−→ a−

+ i · (a−
+ b+)

a+
↦−→ a+

+ b− a+
↦−→ a+

+ i · (a+
+ b−)

b−
↦−→ b−

+ i · (a+
+ b−) b−

↦−→ a+
+ b−

b+
↦−→ b+

+ i · (a−

0 + b+
− a+

0 ) b+
↦−→ b+

+ a−

0 − a+

0
Ñ2 a−

0 ↦−→ a−

0 + b+ a−

0 ↦−→ a−

0 + i · (b+
+ a−

0 − a+

0 )
a+

0 ↦−→ a+

0 a+

0 ↦−→ a+

0
M(p) ↦−→ b−

+ (i + 1) · (a+
+ b−) M(p) ↦−→ a+

+ (i + 1) · (a+
+ b−)

M(q) ↦−→ 0 M(q) ↦−→ 0

Fig. 11. N1 solves the prefix ababababaababa and N2 solves the suffix babababaababaa of wa,1 = ababababaababaa.

on r , and check the existence of Petri nets, solving maximal proper prefix and suffix of w. Every base extendable word w0

is minimal unsolvable, and there are Petri nets N0
1 and N0

2 with core parts and additional parts, which solve the maximal
proper prefix and suffix of w0. Suppose, for 1 ≤ j ≤ r − 1, there are Petri nets N j

1 and N j
2 doing similar job for wj,

and which have been obtained from N j−1
1 and N j−1

2 , respectively, with the appropriate transformation of core part. The
particular morphism Mx,i with x ∈ {a, b}, that has been used to derive wj from wj−1, determines this transformation
uniquely. Inductive step consists of proving that N r

1 and N r
2 obtained from N r−1

1 and N r−1
2 , respectively, solve maximal

proper prefix and suffix of wr . Having morphism Mx,i, the transformation and the two core parts (new and old), it can be
directly checked that place p disables/enables transition b in prefix of wr−1 as a place of (core part of) N r−1

1 if and only if p
does the same as a place of (core part of) N r

1 at the corresponding state in prefix of wr . Similarly, for place q and transition
a, and also for suffixes of wr−1 and wr with nets N r−1

2 and N r
2 . Additional parts of nets N r

1 and N r
2 can be implemented

with a place ‘‘from initial to non-initial’’ transition, having zero tokens initially and ‘‘enough many’’ tokens after, and a
place which is a simple counter for the (total) number of firings. □

Let us note that the extension operation being applied to an extendable word, produces another extendable word
which is unsolvable and minimal. On the other hand, from a non-extendable word this operation derives unsolvable but
not minimal words.

Example 2. Observe again the word w = abbbaba. From the previous considerations (see Example 1) we know that
this word is base extendable, and therefore is a muw. By the application of the extension operation, using the morphism

Ma,1 =

{
a ↦→ aab
b ↦→ ab , we obtain a word wa,1 = ab ababa ba ababa a, which is of the form (1) with α = ababa, the star ∗

being repeated zero times, and the plus + being repeated just once, hence – by Proposition 1 – unsolvable. On the basis of
the Petri nets of Fig. 9, and according to Table 1 we construct Petri nets (depicted in Fig. 11) solving the maximal proper
prefix ababababaababa and the maximal proper suffix babababaababaa of wa,1. Thus, wa,1 is a minimal unsolvable word.

Lemma 9 (Unsolvability of Extensions of Non-Extendable Words). If w ∈ NE , then extension u ∈ E(w) is unsolvable but not
minimal unsolvable.

Proof. Consider arbitrary w ∈ NE , where w = abbjbkbabja with j ≥ 0, k ≥ 1. Depending on a particular morphism Mx,i

with x = a or x = b for some i ≥ 1, extension ux ∈ E(w) of w = aw1a can be

ua = abMa,i(w1)ai+1
= ab aib (aib)j (aib)k aib ai+1b (aib)j ai+1

=

= ab (aib)k−1 ai−1 ab aib (aib)j ai  
αa

| ba aib (aib)j ai  
αa

a,
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or
ub = aMb,i(w1a) = a bi+1a (bi+1a)j (bi+1a)k bi+1a bia (bi+1a)j bia =

= (abi+1)k ab bia (bi+1a)j bi  
αb

| ba bia (bi+1a)j bi  
αb

a

respectively. By Proposition 1, word abαbbaαba is unsolvable, which means unsolvability of ub. Due to k ≥ 1, abαbbaαba is
a proper subword of ub. Hence, ub is not minimal unsolvable. Analogously, unsolvability of abαabaαaa implies non-minimal
unsolvability of ua. □

5. Generation-based classification of minimal unsolvable words

Consider minimal unsolvable words w.r.t. the classification obtained earlier. All possible patterns from (2), (3’), (4),
and more precisely their refined variants from , can be distinguished into base extendable (BE)

ab(ba)k+1a, with k ≥ 0, for the second pattern from (4’),

abbx(babx)ka, with x > 0, k > 0, for the second pattern from (2’),

babx(abbx)kb, with x > 0, k > 0, for the first pattern from (3’),

non-extendable (NE)

abbx−1ba, with x ≥ 2 for the first pattern from (4’),

abbxbk−1babxa, with x > 0, k > 2 for the first pattern from (2’),

and the remaining ones, which we will call compressible (C)

abx1abx2a . . . abxna, with x1 = x + 1, xn = x, xi ∈ {x, x + 1}, x > 0, n ≥ 3,
for the third pattern from (2’),
babx2abx3a . . . abxn , with x2 = x, xn = x + 1, xi ∈ {x, x + 1}, x > 0, n ≥ 3,
for the second pattern from (3’).

From this classification we derive that the class of all minimal unsolvable words MUW = BE ∪NE ∪C, where BE , NE
and C are mutually disjoint classes. Note, that since all words from class E are unsolvable and minimal with that property,
and E is disjoint with BE and NE , we have E ⊆ C.

5.1. Morphic compression and reducibility

In the previous section we showed how to construct new minimal unsolvable words on the basis of extendable words.
The purpose of this section is to introduce an inverse transformation, which allows to compress longer minimal unsolvable
words into shorter ones.

Definition 5 (Compression Function). For a word v ∈ {a, b}∗ starting and ending with the same letter x ∈ {a, b} a
compression function C is defined as follows:

C(v) = C(abuai+1) = aM−1
a,i (u)a, C(v) = C(baubi+1) = bM−1

b,i (u)b,

C(v) = C(auba) = aM−1
b,i (uba), C(v) = C(buab) = bM−1

a,i (uab),
(6)

where i ≥ 1, u ∈ {a, b} and Ma,i, Mb,i are morphisms defined as follows:

M−1
a,i :

{
ai+1b ↦→ a
aib ↦→ b

and M−1
b,i :

{
bia ↦→ a
bi+1a ↦→ b.

□

It is easy to see that among all possible forms from the classification of minimal unsolvable words, function C is defined
exactly for patterns from class C. Moreover, the form of the word explicitly defines the particular morphism M−1

x,i which
is used when applying C to the word. Let us also notice that since E ⊆ C, all words from class E are compressible with
function C .

From Definitions 3 and 5 it is clear that Mx,i is reciprocal to M−1
x,i for x ∈ {a, b}, i ≥ 1. The following lemma establishes

that the extension operation E and the application of compression function C are complement to each other in the
following sense

Lemma 10 (Compression and Extension Functions).

1. If v ∈ BE ∪ E and u ∈ E(v), then C(u) = v;
2. If u ∈ C and v = C(u), then u ∈ E(v).
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Proof. 1. Let v = xv1x, where x ∈ {a, b}. Hence, for distinct x, y ∈ {a, b} and i ≥ 1, we have two possible cases:

• u = xyMx,i(v1)xi+1. By compression function definition,

C(u) = C(xyMx,i(v1)xi+1) = xM−1
x,i (Mx,i(v1))x = xv1x = v.

• u = xMy,i(v1x). By compression function definition,

C(u) = C(xMy,i(v1x)) = C(xMy,i(v1)yix) = xM−1
y,i (My,i(v1)yix) = xv1x = v.

2. Without the loss of generality, u starts and ends with x ∈ {a, b}. Due to Definition 5 of function C and class C, u uniquely
determines which compression morphism can be applied to it. Two cases are possible:

• v = C(u) = xM−1
x,i (u1)x for u = xyu1xi+1, x ̸= y ∈ {a, b}. Then,

E(v) =

∞⋃
j=1

{xyMx,j(M−1
x,i (u1))xi+1, xMy,j(M−1

x,i (u1)x)}.

As u = xyMx,j(M−1
x,i (u1))xi+1 for j = i, hence u ∈ E(v).

• v = C(u) = xM−1
y,i (u1xyix) for u = xu1xyix, x ̸= y ∈ {a, b}. Then,

E(v) =

∞⋃
j=1

{xyMx,j(M−1
y,i (u1x))xi+1, xMy,j(M−1

y,i (u1xyix))}.

As u = xMy,j(M−1
y,i (u1xyix)) for j = i, hence u ∈ E(v). □

5.2. Compression of a muw is an unsolvable word

Throughout this section we will demonstrate that applying the compression functions to muws (when defined) is an
automorphism within the class MUW , i.e. the results are also minimal unsolvable words. The following technical lemmata
will be helpful in the further considerations.

Lemma 11. Suppose w = α|sbm−1
|s̃baβ , with m ≥ 1. If a is not separable at state s, then it is not separable at state s̃, as well.

Proof. By contraposition, assume there is a Petri net N = (P, T , F ,M0) with a place p ∈ P such that w can be fired
completely, and Ms̃(p) < F (p, a). Since a is enabled at the state right after s̃, b effectively increases the number of tokens
on p. Hence, Ms(p) ≤ Ms̃(p) < F (p, a), i.e. a is separable at state s with place p, contradiction. □

Lemma 12. If w = abx1abx2a . . . abxna, with x1 = x + 1, xn = x, xi ∈ {x, x + 1}, x > 0, n ≥ 3, is a minimal unsolvable word,
and a separation failure occurs in group bxk , then xk = x + 1.

Proof. By Lemma 11, a is not separable at some state s in

w =

α′  
a bx1 a . . . a bxk−1−1

|

β ′  
b a bxk−1  

α

|s b a . . . a bxn−1 a bxn  
β

a,

which implies, according to Lemma 1, that

(x1 + · · · + xk − 1) · (n − k) ≥ (1 + xk+1 + · · · + xn) · k ⇐⇒

x1 + · · · + xk − 1
k

=
#b(α)
#a(α)

≥
#b(β)
#a(β)

=
1 + xk+1 + · · · + xn

n − k
,

where #a(α) ̸= 0 and #a(β) ̸= 0. Assume now, by contraposition, that xk = k. Since for every 1 ≤ i ≤ n we have
x ≤ xi ≤ x + 1, then #b(α′)

/
#a(α′) ≥ #b(α)

/
#a(α), where #a(α′) ̸= 0 because w starts with a. From x1 = x + 1, it

follows that k > 1. Due to xn = x = xk, we have #b(β ′)
/
#a(β ′) = #b(β)

/
#a(β), where #a(β ′) ̸= 0 since k > 1. Thus,

#b(α′)
/
#b(α′) ≥ #b(β ′)

/
#a(β ′), which implies, by Lemma 1, unsolvability of α′β ′a, contradicting the minimality of w. □

Lemma 13. If w = babx2abx3a . . . abxn , with x2 = x, xn = x + 1, xi ∈ {x, x + 1}, x > 0, n ≥ 3, is a minimal unsolvable word,
and separation failure occurs after group bxk , then xk = x.
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Proof. For state s in w, from which b is not separable,

w =

α′  
b a bx2−1 b a . . . a bxk−1 |

β ′  
a bxk  

α

|s a . . . a bxn−1−1 b a bxn−1  
β

b

according to Lemma 1, we have

(k − 1) · (xk+1 + · · · + xn − 1) ≥ (1 + x2 + · · · + xk) · (n − k) ⇐⇒

xk+1 + · · · + xn − 1
n − k

=
#b(β)
#a(β)

≥
#b(α)
#a(α)

=
1 + x2 + · · · + xk

k − 1
,

where #a(β) ̸= 0 since β starts with a, and #a(α) ̸= 0 because k > 1. By contraposition, assume xk = k + 1. Since
for all 2 ≤ i ≤ n we have x ≤ xi ≤ x + 1, then #b(α′)

/
#a(α′) ≤ #b(α)

/
#a(α), where #a(α′) ̸= 0 because of k > 2.

From xn = x + 1 = xk it follows that #b(β)
/
#a(β) = #b(β ′)

/
#a(β ′), where #a(β ′) ̸= 0 due to β ′ starts with a. Hence,

#b(β ′)
/
#a(β ′) ≥ #b(α′)

/
#a(α′). Due to Lemma 1, this implies unsolvability of α′β ′b, contradicting the minimality of

w. □

Consider an arbitrary minimal unsolvable word w = aw1 = abx1abx2a . . . abxna from class C, with x1 = x + 1, xn = x,
xi ∈ {x, x + 1}, x > 0, n ≥ 3. According to the special form of w, compression function C can merely be applied to w in
the form C(w = aw1) = aM−1

b,x (w1). Note that u = C(w) is also unsolvable. Due to Lemma 12, for state s in

w = a bx1 a . . . a bxk−1  
α

|s b a . . . a bxn  
β

a,

from which a is not separable, we have xk = x + 1. By Lemma 1,

(n − k) · (x1 + x2 + · · · + xk − 1) ≥ k · (xk+1 + · · · + xn + 1)

Assume, there are l groups of bx in α (except the part of bxk ), and m groups of bx in β . Due to the form of w, we have
0 ≤ l < k − 1 and 0 < m ≤ n − k. Hence,

#a(β) · #b(α) ≥ #a(α) · #b(β) ⇐⇒

⇐⇒ (n − k) · (k · (x + 1) − l − 1) ≥ k · ((n − k) · (x + 1) − m + 1) ⇐⇒

⇐⇒ k · l + k · m − n · l − n ≥ 0.

After applying the compression function to w, due to the definition of C and M−1
b,x , for every sequence bxa and for every

sequence bx+1a in w, we obtain a and b in u, respectively. Hence, u has n + 1 letters at all, starts with ab and ends with
a thanks to the definition of C and the shape of w, and, by Lemma 12, has b on (k + 1)th position:

u = a b . . .  
α′

|s′ b . . .
β ′

a,

where |α′
| = k, |β ′

| = n−k. Moreover, #a(α′) = l+1 and #a(β ′) = m−1. Thus, we have #a(β ′)·#b(α′) = (m−1)·(k− l−1)
and #a(α′) · #b(β ′) = (l + 1) · (n − k − m + 1). Then,

#a(β ′) · #b(α′) − #a(α′) · #b(β ′) = k · l + k · m − n · l − n ≥ 0,

where the last inequality is because of #a(β)·#b(α) ≥ #a(α)·#b(β) (see above). Due to Lemma 1, this implies unsolvability
of u.

Let us now consider an arbitrary minimal unsolvable word w = babx2abx3a . . . abxn from class C, with x2 = x, xn = x+1,
xi ∈ {x, x + 1}, x > 0, n ≥ 3, and check that u = C(w) is unsolvable as well. The form of w explicitly determines that
C(w = bw1bx+1) = bM−1

b,x (w1)b. By Lemma 13, for state s from which b is not separable in

w = b a bx2 a . . . bxk  
α

|s a bxk+1 a . . . a bxn−1  
β

b,

we have xk = x. From Lemma 1,

(k − 1) · (xk+1 + · · · + xn − 1) ≥ (1 + x2 + · · · + xk) · (n − k).

Assume, there are l groups of bx+1 in α and m groups of bx+1 in β . Due to the form of w, we have 0 ≤ l < k and
0 ≤ m ≤ n − k, and

(k − 1) · (x · (n − k) + m) ≥ (1 + x · (k − 1) + l) · (n − k) ⇐⇒

⇐⇒ k · m − m − n + k − l · n + l · k ≥ 0.
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After applying the function C to w, according to the definition of M−1
b,x , for every sequence bx+1a and every sequence bxa

in w, we obtain a and b in u, respectively. Hence, u has n letters at all, starts with ba and ends with b, by definition of
the function C and the special shape of w, and, by Lemma 13, has a on kth position:

u = ba . . .  
α′

|s′ a . . .
β ′

b,

where |α′
| = k − 1, |β ′

| = n − k. Moreover, #b(α′) = l and #b(β ′) = m. Thus, #a(α′) · #b(β ′) = (k − 1 − l) · m and
#b(α′) · #a(β ′) = l · (n − k − m). Then,

#a(α′) · #b(β ′) − #b(α′) · #a(β ′) = k · m − m − l · n + l · k ≥

≥ k · m − m − l · n + l · k + k − n ≥ 0.

By Lemma 1, we deduce that u is unsolvable.
So far, we have shown that the compression-image of any word from C is unsolvable. Suppose that C \ E ̸= ∅. Take u,

one of the shortest words from C \ E and let w = C(u). Since w is unsolvable, two cases are possible:

Case 1: w is a minimal unsolvable word. Due to the choice of u as shortest in C \ E , and the fact that w is shorter than
u, we have w /∈ C \ E . Hence, w belongs to one of disjoint classes BE , NE , E . If w ∈ BE or w ∈ E , then, by Definition 4
and Lemma 10, u ∈ E(w) ⊆ E , which contradicts the choice of u ∈ C \ E . If w ∈ NE , then, by Lemma 9, u ∈ E(w) is not a
minimal unsolvable word, contradicting the minimality of u.

Case 2: w is not a minimal unsolvable word. We shall prove that u is also not a minimal unsolvable word. Assume now
w = w1vw2, where v is a minimal unsolvable word and w1w2 ̸= ϵ, and that w has been obtained from u using the
compression morphism M−1

x,i , where x ∈ {a, b}. Since v is a proper subword of w, and w is shorter than u, then v /∈ C \ E .
From the minimal unsolvability of v we have v ∈ BE ∪ E ∪ NE . Hence, any extension v′ of v is unsolvable (possibly not
minimal in case v ∈ NE). For x ̸= y, where x, y ∈ {a, b}, we have either v = xv1x, or v = yv1y. Consider these two
possibilities.

1. v = xv1x. In this case, according to Definition 3, we consider extension v′
= xyMx,i(v1)xi+1

∈ E(v). Suppose both
w1 and w2 are non-empty words. Hence, Mx,i(v) = xi+1yMx,i(v1)xi+1y is a proper subword of u. As v′ is a subword
of Mx,i(v), we get a contradiction to the minimal unsolvability of u. Assume, w1 = ϵ. Then, being a proper prefix of
w, after extension v will be morphed to xyMx,i(v1)xi+1y, which again has v′ as a subword, implying contradiction
to the minimality of u. If w2 = ϵ, extension u of w with morphism Mx,i has a proper subword xi+1yMx,i(v1)xi+1, and
hence, contains v′ as well. This contradicts the minimal unsolvability of u.

2. v = yv1y. Let now v′
= yMx,i(v1y) ∈ E(v). In case w1 is non-empty word, Mx,i(v) = xiyMx,i(v1y) is a proper subword

of u, and contains v′ as a factor. This contradicts the minimality of u. If w1 = ϵ, u has v′ as a proper prefix, which
again contradicts the minimal unsolvability of u.

Thus, C = E , which establishes the first of main results of the paper

Theorem 1 (Generative Nature of Minimal Unsolvable Binary Words). Let w be a minimal Petri net unsolvable binary word.
Then we have the following exclusive alternatives:

• w is a non-extendable word (w ∈ NE),
• w is a base extendable word (w ∈ BE),
• w is an extendable word (w ∈ E).

Basing on Theorem 1 and proofs of Lemmata 6 and 7 we can formulate the following

Corollary 1 (The Necessary Condition for Unsolvability). If a word over {a, b} is not PN-solvable, it has a subword of the form (1).

Generation of maximal partial solutions of minimal unsolvable words
In the last case of the alternatives from Theorem 1 (case w ∈ E), applying function C to w consecutively, we can

recover the (unique) sequence of minimal unsolvable words w0, w1, . . . , wr , such that w0 ∈ BE , wr = w, wi ∈ E and
wi−1 = C(wi) for 1 ≤ i ≤ r . Moreover, starting from a word w0, its maximal proper prefix and maximal proper suffix,
and Petri nets solving them (in special forms, that have been provided in the paper), using appropriate transformations,
we can derive Petri nets solving maximal proper prefix and maximal proper suffix of wi for all 1 ≤ i ≤ r .

Example 3. Let us consider word v = ba aabaaabaa ab aabaaabaa b. It is unsolvable by Proposition 1, because it is of
the form baα a∗ (abα)+ b (which is exactly the form (1) — modulo swapping a/b) with α = aabaaabaa, the star ∗ being
repeated zero times, and the plus + being repeated just once. We now aim to compress v with function C . It can be easily
seen that the word could be written in the form

v = b(aaab)(aaab)(aaab)(aab)(aaab)(aab), hence we need to consider the morphism M−1
a,2 :

{
aaab ↦→ a
aab ↦→ b

, and by the

compression we obtain a word v−1
a,2 = baaabab. Let us notice that v−1

a,2 is dual to the word w = abbbaba (see Example 1),
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Fig. 12. N1 solves the prefix baaabaaabaaabaabaaabaa and N2 solves the suffix aaabaaabaaabaabaaabaab of the word v = baaabaaabaaabaabaaabaab.

Table 2
Comparison of the time (in nanoseconds) of different algorithms.
Word length ABSolve Pattern-matching algorithm Java regular expressions

4 595.673 608.748 1 082.901
5 1 710.846 1 646.190 5 107.418
6 4 941.525 3 802.029 17 019.323
7 21 642.105 9 966.394 48 985.080
8 70 047.347 39 403.468 125 728.414
9 177 239.541 105 482.837 292 125.735
10 437 897.525 227 730.285 660 942.248
15 23 218 586.823 6 009 431.249 28 453 021.721
20 1 198 560 013.750 145 795 309.046 1 205 013 146.250

modulo swapping a/b, hence it is a minimal unsolvable word. Function C cannot be applied to w = C(v), which is
consistent with the fact that w ∈ BE .

Moreover, starting with the word w = abbbaba, together with Petri nets solving its proper prefix and suffix (see Fig. 9)

and applying the morphism Mb,2 :

{
a ↦→ bba
b ↦→ bbba

we obtain the word wb,2 = ab bbabbbabb ba bbabbbabb a which is dual

to v modulo swapping a/b. By the previous considerations we can easily construct Petri nets solving the maximal proper
prefix and the maximal proper suffix of wb,2, hence, by swapping letters we can obtain Petri nets for a proper prefix and
a proper suffix of v. Such nets are depicted in Fig. 12. Now we can state that the word v is not only unsolvable, but also
minimal with that property.

5.3. Algorithm for checking unsolvability

The classification of minimal unsolvable words presented in Sections 3 and 4 leads to an efficient algorithm for
verifying solvability/unsolvability of a binary word. By Definition 2 all non-extendable words are of the form (Ia) abxabya
or (Ib) baxbayb, where x > y+ 2, y ≥ 0, and by Definitions 1 and 3 all extendable words (including base extendable ones)
are of the form (IIa) abw(baw)ka or (IIb) baw(abw)kb, where k ≥ 1 and w ∈ {a, b}∗.

Recall that a word v ∈ {a, b}∗ containing a minimal unsolvable word as a factor is also unsolvable. Moreover, due
to Theorem 1, v is unsolvable if it contains at least one of the patterns (Ia) (Ib), (IIa) or (IIb). Therefore, checking the
solvability of a binary word can be reduced to a pattern-matching problem.

The algorithm described below takes a binary word v as an input; it returns true if v is solvable and false otherwise
(i.e. any of the above mentioned patterns was found inside v).

As the first step we search for the patterns (Ia) and (Ib). We scan the input word from left to right comparing the sizes
of the two blocks of consecutive b’s between any three consecutive occurrences of a and the sizes of the two blocks of
consecutive a’s between any three consecutive occurrences of b. This can be done in O(n) time and O(1) space.

The second step is to search for the patterns (IIa) and (IIb). It utilises the Knuth–Morris–Pratt failure function called
also the border table (see [6]). For any position i in v it contains the length of the longest factor u, which is at the same
time a proper prefix and a proper suffix of v[1..i]. Such a factor is called a border of v[1..i]. For the relation between
borders and periods of a word see for instance [7].

The search for the patterns (IIa) and (IIb) is performed as follows. For any possible pair of letters v[i..i + 1] = ab
(v[i..i + 1] = ba respectively) we temporarily swap v[i] with v[i + 1] and then build the border table for the suffix of v

starting at position i. After discovering a repetition v[i..j] (i.e. difference between j and the length of the border divides
j − i) we check whether it is followed by a (b respectively) and report the occurrence of the pattern if needed.

The border table for a single suffix of the input word v can be constructed in O(n) time and O(n) space (see [6]). We
have to process at most O(n) suffixes of v, therefore the second step and the whole algorithm run in O(n2) time and O(n)
space, the implementation in C++ is available at [10].

6. Experimental results

In Table 2 we can see some experimental results of checking binary words for PN-solvability with different algorithms.
Here we compare the algorithm ABSolve [3], which is based on other characterisation of solvability, with the algorithms
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Fig. 13. Time per word of a given length to check its unsolvability.

that look for a pattern (1) as a subsequence of the word under consideration. We use the results of this search for a
subsequence with the Pattern-matching algorithm described in the previous section, and with an inbuilt algorithm for
regular expressions in Java. The score given in a corresponding cell of the table means time (in nanoseconds) for checking
of all possible binary sequences of a fixed length for solvability. These data are normalised in Fig. 13, where one can see an
average time (in nanoseconds) to check PN-solvability of a binary sequence of a fixed length. We can see that, while being
pretty close in time for short sequences, the Pattern-matching algorithm essentially overtakes the ABSolve algorithm for
longer sequences. Both specialised methods perform better than using inbuilt regular expressions. However, the results
for longer words are almost equal for ABSolve and Java regular expressions. All the implementations are done in Java 8,
and we let them run on the same machine. The data in Table 2, respectively in Fig. 13, are mean values after 10 runs of
each single experiment.

7. Conclusion

In this paper we study the class of binary words which cannot be generated by any injectively-labelled Petri net,
and which are minimal with that property. We examine in detail all possible shapes of such words, obtaining extended
regular expressions for them. The presented classification of minimal unsolvable words results in the construction of
a pattern-matching based algorithm for checking the solvability/unsolvability of binary words. Moreover, we introduce
the extension and compression functions, which can be the foundation of a fixed-point procedure for the generation of
the set of all minimal unsolvable binary words. The non-extendable and base extendable words are defined by simple
parametrised formulas (see Definitions 1 and 2). Choosing all possible values of the parameters j and k we can generate
all non-extendable and base extendable words of a given length. Then by using recursive calls of extension operation and
compression function we can generate all extendable words of a given length.
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Appendix

Lemma 8 (Minimality of Extendable Words). If w ∈ E , then w is minimal unsolvable.

Proof (Complete). Let w ∈ E be an arbitrary extendable word. By Lemma 7, w is unsolvable. Let us now check its
minimality. According to Definition 4, there is a sequence w0, w1, . . . , wr such that w0 ∈ BE , wj ∈ E and wj ∈ E(wj−1)
for 1 ≤ j ≤ r , and wr = w. We will argue by induction on the length r of this sequence. From the previous consideration
we know that the base extendable word w0 is minimal unsolvable, and there are Petri nets N0

1 and N0
2 with core part and

additional part, which are solutions for the maximal proper prefix and the maximal proper suffix of w0. Assume now, that
for every 1 ≤ j ≤ r −1, there are Petri nets N j

1 and N j
2 which are solutions for the maximal proper prefix and the maximal

proper suffix of wj, and which have been obtained from N j−1
1 and N j−1

2 , respectively, with the appropriate transformation
from Table 1 (this transformation is uniquely defined by the particular morphism Mx,i with x ∈ {a, b}, that has been used
to derive wj from wj−1). We now prove, that knowing morphism Mx,i with x ∈ {a, b}, which is used for producing wr
from wr−1, and using the corresponding transformation, Petri nets N r

1 and N r
2 , which are derivatives of N r−1

1 and N r−1
2 , are

indeed solutions for the maximal proper prefix and the maximal proper suffix of wr .
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Fig. 14. Core part of Petri net N r−1
1 solving maximal proper prefix of wr−1 .

Let us consider the case of producing N r
1 from N r−1

1 , when wr−1 = aw′a and wr = aMb,i(w′a), for some i ≥ 1. Having
the core part Ñ r−1

1 (see Fig. 14) of the solution N r−1
1 for aw′, with the transformations of the arc weights and the new

initial marking

a+
↦−→ a+

+ i · (a+
+ b−) b−

↦−→ a+
+ b−

a−
↦−→ a−

+ i · (a−
+ b+) b+

↦−→ a−
+ b+

M0

(
p
q

)
=

(
a+

+ b−

a−
+ i · (a−

+ b+)

) (7)

for morphismMb,i we can construct the new core part Ñ r
1 for aw′′, where aw′′a = wr . Let us now check that the constructed

core part implements the internal part of aw′′. We shall show that place p prevents all undesirable b’s inside aw′′ and
enables all b’s that are to occur, and the similar for place q and transition a. Since we have used morphism Mb,i for the
extension operation, we have a special form of extension wr = abx1abx2a . . . abxna ∈ E(wr−1), with xj ∈ {i, i + 1}. By
contraposition, assume p disables a transition b that must occur at state s in aw′′

= abx1a . . . abxk−m
|s bma . . ., where s is

the leftmost state in aw′′ with this property, and k ≥ 1. By (7), each firing of a brings a+
+ i · (a+

+ b−) tokens on place
p, and b consumes a+

+ b− tokens on its every occurrence. Hence p can only disable the last but one b in a group bi+1,
i.e. xk = i + 1 and m = 1. Assume, there are l groups of bi+1 in abx1a . . . abxk−1

|s. By the initial assumption, marking of p
at state s is less than the weight of the arc from p to b, i.e.

Ms(p) = (a+
+ b−) + k · (a+

+ i · (a+
+ b−))−

− k · i · (a+
+ b−) − l · (a+

+ b−) < a+
+ b−

⇐⇒

⇐⇒ (k − l) · a+
+(1 − l) · b− < b−

On the other hand, every sequence bi+1a in wr corresponds to b in wr−1, and every sequence bia corresponds to a
in wr−1. Hence, the marking of the place p in the net Ñ r−1

1 , before applying transformation (7), at the state s1 of
wr−1 = a . . . |s1b . . . a, where the b right after s1 corresponds to the block bxka in wr , is Ms1 (p) = b−

+ (k − l) · a+
− l · b−.

Therefore, Ms1 (p) < b−, which contradicts the assumption that the net Ñ r−1
1 solves the word aw′. Thus, place p after

transformation (7), allows all necessary occurrences of b. Notice here that place p allows b to fire initially also.
We now have to show that p disables b at all states where a has to occur, except the initial one. Suppose a contrary,

i.e. there is a state s in aw′′
= abx1a . . . abxk |s a . . . abxn , with k ≥ 1, such that Ms(p) ≥ a+

+ b−. Without the loss
of generality, let s be the leftmost (except the initial) state with that property. Assume xk = i + 1. Consider state s′ in
abx1a . . . |s′ abxk |s a . . . abxna. Then

Ms(p) = Ms′ (p) + a+
+ i · (a+

+ b−) − (i + 1) · (a+
+ b−) ≥ a+

+ b−
⇐⇒

⇐⇒ Ms′ (p) ≥ b−
+ (a+

+ b−).

The last inequality means that b is not separated at state s′. If k = 1, then, by (7), Ms′ (p) = M(p) = a+
+ b−, which

contradicts the last inequality. If k > 1, then we get a contradiction to the choice of s. Hence, xk = i. Let l be the number
of blocks bi+1 in abx1a . . . abxk |s. Then

Ms(p) = (a+
+ b−) + k · (a+

+ i · (a+
+ b−))−

− k · i · (a+
+ b−) − l · (a+

+ b−) ≥ a+
+ b−

⇐⇒

⇐⇒ (k − l) · a+
+ (1 − l) · b−

≥ b−.

Since wr has been obtained using morphism Mb,i, sequence bxka corresponds to letter a in wr−1. Therefore, in wr−1 =

a . . . |s1a . . ., where s1 fits the state right before bxka in wr , we have b is not separated at state s1, which contradicts the
assumption that Ñ r−1

1 solves aw′. Thus, in the net Ñ r
1 that was derived from Ñ r−1

1 by (7), p disables b whenever and only
if it is necessary inside aw′′.
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For the separation of b at the initial marking, one can construct additional place p1, having 0 tokens on it initially, and
being a pure input place for transition b and pure output place for transition a with unit arc weights. For restricting the
total number of occurrences of b, it is enough to construct place p2 with #b(wr ) tokens on it initially, which is a pure
input place for b with the arc weight equal to 1.

Let us now consider place q and transition a. First we will show that q allows a to fire at each state where this is nec-
essary. It is clear that initially q enables a. By contraposition, assume there is a state s in aw′′

= abx1abx2a . . . abxk |s abxk+1

a . . ., with k ≥ 1, such that q disables a at s. Due to (7), each firing of b brings a−
+ b+ tokens on q. Hence xk = i. Suppose

there are l blocks bi+1 in abx1a . . . abxk |s. Then, we have

Ms(q) = a−
+ i · (a−

+ b+) − k · (a−
+ i · (a−

+ b+))+
+ k · i · (a−

+ b+) + l · (a−
+ b+) < a−

+ i · (a−
+ b+) ⇐⇒

⇐⇒ a−
+ l · b+

− (k − l) · a− < a−

Due to the fact that aw′′a has been obtained from aw′a using morphism Mb,i, block bxka corresponds to a right after
the state s′ in wr−1 = a . . . |s1a . . .. The last inequality means Ms1 (q) < a− which contradicts the assumption that Ñ r−1

1
solves the word aw′. Thus, place q after the transformation (7) allows each mandatory firing of a.

We now demonstrate that q disables a at every place, where b has to occur. By contraposition, suppose there is a state
s in aw′′

= abx1a . . . abxk−m
|s bma . . ., with k,m > 0, at which a is enabled by place q. Without the loss of generality, let

s be the leftmost state in aw′′ with that property. Due to the initial marking of q provided in (7), k > 1.
Hence, for state s and place q we have

Ms(q) = a−
+ i · (a−

+ b+) − k · (a−
+ i · (a−

+ b+))
+ (x1 + · · · + xk − m) · (a−

+ b+) ≥ a−
+ i · (a−

+ b+)

If xk−1 = i, then

Ms1 (q) = a−
+ i · (a−

+ b+) − (k − 1) · (a−
+ i · (a−

+ b+))
+ (x1 + · · · + xk−1 − m) · (a−

+ b+) ≥ a−
+ i · (a−

+ b+) + a−

implying that a is enabled by q at state s1 in aw′′
= abx1a . . . abxk−1−m

|s1 bma . . ., which contradicts the choice of s. Then,
xk−1 = i + 1. This means, the block bxka corresponds to letter b in aw′a, and state s in aw′′ corresponds to the state s0 in
aw′

= a . . . |s0 b . . .. On the other hand,

Ms(q) = a−
+ i · (a−

+ b+) − k · (a−
+ i · (a−

+ b+))
+ (x1 + · · · + xk − m) · (a−

+ b+) ≥ a−
+ i · (a−

+ b+) ⇐⇒

⇐⇒ a−
− (k − l) · a−

+ l · b+
≥ a−

+ (m − 1) · (a−
+ b+)

Since m ≥ 1, we have Ms0 (q) ≥ a− in the net Ñ r−1
1 , implying that a is enabled at state s0. This contradicts the fact that

Ñ r−1
1 solves aw′. Thus, q disables a at every state in aw′′ where b has to occur.
Redundant occurrence of b at the very beginning of aw′′, that is not handled by p, can be easily restricted by place

p1, having zero tokens initially, the arc weight from a to p1 is i + 1 and the arc weight from p1 to b is 1. The length of
execution performed by Ñ r

1 can be simply restricted with letter-counting place, having no inputs and a single output for
each transition, and the initial number of tokens equal to the length of aw′′. As a result, we have Petri net N r

1 , solving
exactly aw′′, with a core and additional part.

The other cases from Table 1 can be checked analogously. □
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