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a b s t r a c t

Motivated by the question of identifying the start time τ of financial bubbles, we
propose an improved calibration approach for time series in which the inception of the
latest regime of interest is unknown. By taking into account the tendency of a given
model to overfit data, we introduce the Lagrange regularisation of the normalised sum
of the squared residuals, χ2

np(Φ), to endogenously detect the optimal fitting window
size := w∗

∈ [τ : t̄2] that should be used for calibration, assuming a fixed pseudo
present time t̄2. The Lagrange regularisation of χ2

np(Φ) defines the Lagrange regularised
sum of the squared residuals, χ2

λ (Φ). Its performance is exemplified on a simple Linear
Regression problem with a change point and compared against the performances of the
Residual Sum of Squares (RSS) := χ2(Φ) and RSS/(N-p) := χ2

np(Φ), where N is the sample
size, p is the number of degrees of freedom and Φ is the parameter vector. Applied to
synthetic models of financial bubbles with a well-defined transition regime and to a
number of financial time series (US S&P500, Brazil IBovespa and China SSEC Indices),
χ2

λ (Φ) is found to provide well-defined reasonable determinations of the starting times
for major bubbles such as the bubbles ending with the 1987 Black-Monday, the 2008
Sub-prime crisis and minor speculative bubbles on other Indexes, without any further
exogenous information. The application of the method thus allows one to endogenise
the determination of the starting time of bubbles, a problem that has yet not received
a systematic objective solution. Moreover, the technique appears as a practical solution
for comparing goodness-of-fit across unbalanced sample sizes.

© 2019 Published by Elsevier B.V.

1. Introduction

There is an inverse relationship between the tendency of a model to overfit data and the sample size under
consideration. In other words, the smaller the sample size, the larger the flexibility for the model with a fixed number of
parameters to overfit [1]. Due this characteristic feature, one cannot directly compare goodness-of-fit metrics of statistical
models arbitrarily parametrised by the vector Φ of parameters such as the Residual Sum of Squares, RSS := χ2(Φ) or its
normalised version RSS

(N−p) := χ2
np(Φ), over unequal sized samples. Here, N denotes the sample size while p is the number

of degrees of freedom of a model. This has particular relevance when one is interested in selecting the optimal sub-sample
of a data set to calibrate a model, a recurrent issue when estimating time series models in a moving window or/and when
the model is only valid in a specific time window, which is unknown a priori.
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Our motivation stems from the question of determining the beginning of a financial bubble conditional on a fixed end
point, t̄2, but the technique is more generally applicable to time series exhibiting regime shifts that one is interested in
detecting via the minimisation of a cost function or for comparing goodness-of-fit across unbalanced sample sizes.

There are solutions for proper model selection, such as Lasso [2] and Ridge regressions [3], where the cost function
penalises large values of estimated parameters. Well-known metrics such as AIC and BIC are also standard tools for
quantifying goodness-of-fit of different models [4] and for solving the trade-off between goodness-of-fit and complexity.
However, results stemming from these methodologies are only comparable within the same data set and are therefore
not informative when unequal sample sizes are considered.

The Statistical Process Control (SPC) and Change-Point Detection literature is very rich and suggest a number of
methods for detecting ‘‘break points’’ on a given time series (see for example [5,6] for good reviews on the different
existing methodologies). Most of the available techniques focus on quantifying the deviations of the statistical properties
and of the time series features before and after the candidate change point, and qualify a change point when some
score for the difference between before and after it is sufficiently large. In contrast, our method focuses on problems
in which a specified process of interest is assumed to originate from some starting point, replacing a previous unknown
process existing before that start time. The process of interest is a priori completely different in its statistical properties,
nonlinearities and structure from the pre-existing process before the start time. The start point of the new process is
the focus of our method. We thus depart from the change point detection methods based on standard assumptions on a
change of some characteristics of general processes, which target a change of some moments (mean, variance, and so on)
or some correlations, or graph structure and so on, between before and after the change point. Our approach, which falls
in the ‘‘online’’ class, is based on dynamically adjusting the degeneracy of χ2

np(Φ) as a function of the number N of data
points in the time window ending at the ‘‘present’’ time. Our method seems to fill a gap in the literature regarding the
proper procedure for comparing goodness-of-fit of the same model calibrated over different batches of a given data set.

Here, we propose a novel metric for calibrating endogenised start points t̄1, and compare nested data sets. The method
empirically computes the tendency of a model to overfit a data set via what we term the ‘‘Lagrange regulariser term’’, λ.
Once λ has been estimated empirically, the cost function can be corrected accordingly as a function of sample size, giving
the Lagrange regularisation of the normalised Residual Sum of Squares, χ2

λ (Φ). Since the resulting cost function is now
convex, its minimum gives us the optimal sample size that one should use in order to calibrate a model.

We empirically test the performance of the Lagrange regularisation of the regularised Residual Sum of Squares (χ2
np(Φ)),

defined as χ2
λ (Φ), in comparison with the naive χ2(Φ) and χ2

np(Φ), using both linear and non-linear models as well as
synthetic and real-world time-series. Our Monte Carlo simulations suggest that using the window size selected by our
procedure can improve the selection of the optimal sub-sample vis-a-vis an ad-hoc choice of the window size.

Using a simple Linear Regression Monte Carlo simulation study with a time series possessing different slopes in
different time segments and decorated by white noise, we show how the technique is capable of accurately detecting
the transition points between segments. Moreover, motivated by the objective of detecting the beginning of financial
bubbles, we also employ our novel Lagrange technique on the difficult problem [7] of calibrating the non-linear Log-
Periodic Power-Law Singularity model [8–12]. Results show that we can accurately infer dates where a price exuberance
regime has started [13]. Besides being a straight forward methodology for detecting optimal window sizes and comparing
nested data sets – thus being an extremely convenient technique for practitioners – the technique correctly turns ill-
conditioned optimisation problems into convex ones for different levels of noise and across a number of different time
series.

This paper is structured as follows. Section 2 explains the motivation behind the proposed Lagrange regularising term.
Moreover, we provide details of the derivation of the Lagrange regulariser term λ as well as the analytical expression
for computing the tendency of a model to overfit data. In Section 3, we make use of a simple OLS regression to test the
empirical performance of the Lagrange regularisation of χ2

np(Φ) on the problem of optimal sub-sample selection. Section 4
shows how the regulariser can be used alongside with the LPPLS model of financial bubbles [8] in order to diagnose the
beginning of financial bubbles. Empirical findings are given in Sections 5 and 4.2 concludes.

2. Formulation of calibration with varying window sizes: How to endogenise t1 and make different window sizes
comparable

In this section, we present the motivation behind our novel technology as well as its building blocks.
Consider the time window [t1+1, t2] containing t2−t1 time points on which a measurable process is defined. Calibrating

the realisation of this process in the time window [t1, t2], one obtains the normalised mean-squared residuals, defined
as the sum of squares of the residuals divided by the number t2 − t1 of points in the sum corrected by the number of
degrees of freedom p of the model,

χ2
np(Φ) :=

1
(t2 − t1) − p

t2∑
i=t1

ri(Φ)2 , (1)

with

ri(Φ) = ydatai − ymodel
i (Φ) , (2)
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where Φ denotes the set of model parameters to fit including a priori the left end point t1 of the calibration window. The
term ymodel

i (Φ) corresponds to the theoretical model and ydatai is the empirical value of the time-series at time i.
For a fixed right end point t2 of the calibration window, we are interested in comparing the results of the fit of the

model to the empirical data for various left end points t1 of the calibration window. The standard approach assumes a
fixed calibration window [t1 + 1, t2] with N = t2 − t1 data points. In order to relate the two problems, we consider the
minimisation of χ2

np(Φ) at fixed t2 − t1 (for a fixed t2) as minimising a general problem involving t1 as a fit parameter
augmented by the condition that t2 − t1 = N is fixed. This reads

Min χ2
λ (Φ) , (3)

with

χ2
λ (Φ) :=

1
(t2 − t1) − p

t2∑
i=t1

ri(Φ)2 + λ(t2 − t1) , (4)

where we have introduced the Lagrange parameter λ, which is conjugate to the constraint t2−t1 = N . Once the parameters
Φ are determined, λ is obtained by the condition that the constraint t2 − t1 = N is verified.

Since data points are discrete, the minimisation of (4) with respect to t1 reads

0 = χ2
λ (Φ)(t1 + 1) − χ2

λ (Φ)(t1) =
1

(t2 − t1 − p − 1)

t2∑
i=t1+1

ri(Φ)2 −
1

t2 − t1 − p

t2∑
i=t1

ri(Φ)2 − λ

=
1

t2 − t1 − p

(
1 +

1
t2 − t1 − p

+ O
(

1
(t2 − t1 − p)2

)) t2∑
i=t1+1

ri(Φ)2 −
1

t2 − t1 − p

t2∑
i=t1

ri(Φ)2 − λ ,

= −
1

t2 − t1 − p
rt1 (Φ)2

(
1 + O

(
1

t2 − t1 − p

))
+

1
t2 − t1 − p

χ2(Φ)
(
1 + O

(
1

t2 − t1 − p

))
− λ . (5)

Neglecting the small terms O
(

1
t2−t1−p

)
leads to

χ2
λ (Φ) = rt1 (Φ)2 − λ(t2 − t1 − p) . (6)

Expression (6) has the following implications. Consider the case where all squared terms ri(Φ)2 in the sum (1) defining
χ2

λ (Φ) are approximately the same and independent of t1, which occurs when the residuals are thin-tailed distributed
and the model is well specified. Then, we have

ri(Φ)2 ≈ r2 , ∀i , including rt1 (Φ)2 = r2 , (7)

and thus

χ2
np(Φ) ≈ r2 . (8)

Expressing (6) with the estimation (7) yields

χ2
λ (Φ) ≈ r2 − λ(t2 − t1 − p) . (9)

Comparing with (8), this suggests that varying t1 is expected in general to introduce a linear bias of the normalised sum
χ2
np(Φ) of squares of the residuals, which is proportional to the size of the calibration window (up to the small correction

by the number p of degrees of freedom of the model). If we want to compare calibrations over different window sizes,
we need to correct for this bias.

More specifically, rather than fixing the window size t2 − t1 = N , we want to determine the ‘best’ t1, thus comparing
calibrations for varying window sizes, for a fixed right end point t2. As a consequence, the Lagrange multiplier λ is no
more fixed to ensure that the constraint t2 − t1 = N holds, but now quantifies the average bias or ‘‘cost’’ associated with
changing the window sizes. This bias is appreciable for small data sample sizes. It vanishes asymptotically as N → ∞,
i.e. limN→∞ λ = 0.

In Statistical Physics, this is analogous to the change from the canonical to the grand canonical ensemble, where the
condition of a fixed number of particles (fixed number of points in a fixed window size) is relaxed to a varying number of
particles with an energy cost per particle determined by the chemical potential (the Lagrange parameter λ) [14,15]. It is
well-known that the canonical ensemble is recovered from the grand canonical ensemble by fixing the chemical potential
(Lagrange multiplier) so that the number of particles is equal to the imposed constraints. Idem here.

How to determine the crucial Lagrange parameter λ? We propose an empirical heuristic. When plotting χ2
np(Φ) as a

function of t1 for various instances, we observe that a linearly decreasing function of t1 provides a good approximation
of it, as predicted by (6) (for λ > 0). The slope can then be interpreted as quantifying the average bias of the scaled
goodness-of-fit χ2

np(Φ) due to the reduced number of data points as t1 is increased (and the number t2 − t1 of points to fit
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decreases). This average bias is clearly dependent on the data and of the model used to calibrate it. We can thus interpret
the average linear trend observed empirically as determining the effective Lagrange regulariser term λ that quantifies the
impact on the goodness-of-fit resulting from the addition of data points in the calibration, given the specific realisation
of the data and the model to calibrate. Thus, to make all the calibrations performed for different t1 comparable for the
determination of the optimal window size, we propose to correct expression (1) by subtracting the term λ(t2 − t1) from
the normalised sum of squared residuals χ2

np(Φ) given by Eq. (1), where λ is estimated empirically as the large scale
linear trend. Here, we omit the p correction since it leads to a constant translation for a given model with given number
of degrees of freedom. Such a large scale linear trend of χ2

np(Φ) as a function of t1 has been reported for a number of
financial bubble calibrations in Demos and Sornette [7]. Our proposed procedure thus amounts simply to detrend χ2

np(Φ),
which has the effect of making more pronounced the minima of χ2

np(Φ), as we shall see below for different models.
To summarise, endogenising t1 in the set of parameters to calibrate requires to minimise

χ2
λ (Φ) = χ2

np(Φ) − λ(t2 − t1) (10)

=
1

(t2 − t1) − p

t2∑
i=t1

ri(Φ)2 − λ(t2 − t1) , (11)

with

ri(Φ) = ydatai − ymodel
i (Φ) , (12)

where λ is determined empirically so that χ2
np(Φ) − λ(t2 − t1) has zero drift as a function of t1 over the set of scanned

values. The obtained empirical value of λ can be used as a diagnostic parameter quantifying the tendency of the model to
over-fit the data. We can thus also refer to λ as the ‘‘overfit measure’’. When it is large, the goodness-of-fit χ2(Φ) changes
a lot with the number of data points, indicating a poor overall ability of the model to account for the data. Demos and
Sornette [7] observed other cases where χ2(Φ) is constant as a function of t1 (corresponding to a vanishing λ), which can
be interpreted in a regime where the model fits robustly the data, ‘‘synchronising’’ on its characteristic features in a way
mostly independent of the number of data points.

In the next Section, we make use of a simulation study in order to precisely exemplify how χ2
λ (Φ) can be used to

detect a regime change in the simple Linear Regression problem, thus yielding the optimal window length one should
consider for fitting purposes.

3. Application of the Lagrange regularisation method to a simple linear-regression problem

3.1. Definitions and formal solution

Consider the following linear model

Y = βX + ε, (13)

with explanatory variable of length (N × 1) denoted by X = {x1, x2, . . . , xN}, regressand Y = {y1, y2, . . . , yN} and error
vector ε ∼ N (0, σ 2). Bold variables denote either matrices or vectors. Fitting Eq. (13) to a given data set Y data consists on
solving the quadratic minimisation problem

β̂ = arg min
β

χ2, (14)

where the Residual Sum of Squares := χ2 reads

χ2
=

N∑
i=1

(Y data
i − Yi)2. (15)

For a given data set of length N , β̂ is obtained via

β̂ = (X ′X)−1X ′Y . (16)

Let w∗
⊆ Y data and have length ≤ N. w∗

∈ [τ : t̄2] thus denotes the optimal window size one should use for fitting a
model into a data set of length N for a fixed end point := t̄2 and an optimal starting point := τ . In the next section, we
exemplify how w∗ can be obtained via the proposed Lagrange Regularisation technique through a simulation study.

3.2. Assessing the performance of the Lagrange regularisation method via a simulation study

In order to show how the goodness-of-fit metric χ2(Φ) fails to flag the optimal τ -portion of the data set where the
regime of interest exists and how delicate is χ2

np(Φ) for diagnosing the true value of the transition time τ , 20000 synthetic
realisations of the process (13) were generated, with X := t ∈ [−200, +1], in such a way that Y data displays a sudden
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Fig. 1. Different goodness-of-fit measures applied to a shrinking-window linear regression problem (Eq. (13)) in order to diagnose the optimal
calibration window length: We simulated synthetic time-series with length N = 200 (white circles) using expression (13) with a sudden change of
regime at t = −100. We then fitted the same model (13) within shrinking windows (from left to right), i.e. for a fixed t2 = 1, we shrink t1 from
t1 = −200 to t1 = −3 and show the values of χ2(Φ) (blue), χ2

np(Φ) (green) and χ2
λ (Φ) (red) metrics as a function of this shrinking estimation

window. For each pair [t2 : t1] (i.e. for each N), the process of generating synthetic data and fitting the model was repeated 20000 times (resulting
on confidence bounds for each metric). For t = [−200:−100], Yt was simulated with β = 0.3 while from t = [−100:1], β = 0.6 was used. Without
loss of generality, both the data and the cost functions had their values divided by their respectively maximum value in order to be bounded within
the interval [0, 1]. A Python script for generating the figure and performing all calculations can be found in the Appendix.

change of regime at τ = −100. In the first half of the data set [−200, −100], the data points are generated with β = 0.3.
In the second half of the data set [−101, 0], the data points are generated with β = 0.6. As a consequence, the change
includes both a jump and a doubling of slope, as shown in Fig. 1. After the addition of random noise ϵ ∼ N (0, 1),
each single resulting time-series was fitted for a fixed end time t̄2 = 1 while shrinking the left-most portion of the
data (t1) towards t2, starting at t1 = −200, −199, . . . , t2 − 3. For the largest window with t1 = −200, there are
t2 − t1 + 1 = 1− (−200)+ 1 = 202 data points to fit. For the smallest window with t1 = t2 − 3, there are t2 − t1 + 1 = 4
data points to fit. For each window size w, the process of generating synthetic data and fitting the model was repeated
20000 times, allowing us to obtain confidence intervals.

As depicted by Fig. 1, the proposed methodology is able to correctly diagnose the optimal starting point := τ associated
with the change of slope. While the χ2(Φ) metric monotonously decreases and the χ2

np(Φ) metric plateaus from t = −100
onwards, χ2

np −λ(t2 − t1) monotonously increases over the same interval, thus marking a clear minimum. The variance of
the metric χ2

λ (Φ) also increases over this interval. Specifically, the metric χ2(Φ) tends to favour the smallest windows
and therefore overfitting is prone to develop and remain undetected. The metric χ2

np(Φ) suggests τ ≈ −90 after 20000
simulations, which is 10% away from the true value τ = 100. Moreover, the dependence of χ2

np(Φ) as a function of t1 is
so flat for t1 ∈ [−100 : −40] that any given value of τ within this period is statistically significant. For this simulation
study, χ2

np(Φ) ranges for 0.134 to 0.135 for t1 ∈ [−100 : −60], so as to be almost undistinguishable over this interval of
possible τ values. As we shall see later on, the performance of χ2

np(Φ) degrades further to resemble that of the χ2(Φ)
metric when dealing with more complex nonlinear models such as the LPPLS model. On the other hand, our proposed
correction via the Lagrange regulariser λ provides a simple and effective method to identify the change of regime and the
largest window size compatible with the second regime. The minimum is very pronounced and clear, which is not the
case for χ2

np(Φ).

4. Using the Lagrange regularisation method for detecting the beginning of financial bubbles

In the previous section, we have tested the proposed novel goodness-of-fit metric for inferring the optimal beginning
point or change point τ (for a fixed end point t̄2) in the calibration of a simple linear model. The application of the Lagrange
regulariser λ allowed us to find the optimal window length w∗

= [τ : t2] for fitting the model by enabling the comparison
of the goodness-of-fits across different w values. We now extend the application of the methodology to a more complex
non-linear model, which requires to compare fits across different window sizes in order to diagnose bubble periods on
financial instruments such as equity prices and price indexes.

4.1. The LPPLS model and its calibration

The LPPLS (log-periodic power law singularity) model [8,16] provides a flexible set-up for diagnosing periods of price
exuberance [17] on financial instruments. It highlights the role of herding behaviour, translating into positive feedbacks
in the price dynamics during the formation of bubbles. This is reflected in faster-than-exponential growth of the price of
financial instruments. Such explosive behaviour is completely unsustainable and the bubbles usually ends with a crash
or a progressive correction. Here, we use the LPPLS model combined with the Lagrange regulariser λ in order to detect
the beginning of financial bubbles.
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In the LPPLS model, the expectation of the logarithm of the price of an asset is written under the form

fLPPL(φ, t) = A + B(f ) + C1(g) + C2(h), (17)

where φ = {A, B, C1, C2,m, ω, tc} is a (1 × 7) vector of parameters we want to determine and

f ≡ (tc − t)m, (18)

g ≡ (tc − t)m cos(ω ln(tc − t)), (19)

h ≡ (tc − t)m sin(ω ln(tc − t)). (20)

Note that the power law singularity (tc − t)m embodies the faster-than-exponential growth. Log-periodic oscillations
represented by the cosine and sine of ln(tc − t) model the long-term volatility dynamics decorating the accelerating price.
Expression (17) uses the formulation of Filimonov and Sornette [18] in terms of 4 linear parameters A, B, C1, C2 and 3
nonlinear parameter m, ω, tc .

Fitting Eq. (17) to the log-price time-series amounts to search for the parameter set φ∗ that yields the smallest N-
dimensional distance between realisation and theory. Mathematically, using the L2 norm, we form the following sum of
squares of residuals

F (tc,m, ω, A, B, C1, C2) =

N∑
i=1

[
ln[P(ti)] − A − B(fi) − C1(gi) − C2(hi)

]2
, (21)

for i = 1, . . . ,N . We proceed in two steps. First, enslaving the linear parameters {A, B, C1, C2} to the remaining nonlinear
parameters φ = {tc,m, ω}, yields the cost function χ2(φ)

χ2(φ) := F1(tc,m, ω) (22)

= min
{A,B,C1,C2}

F (tc,m, ω, A, B, C1, C2) (23)

= F (tc,m, ω, Â, B̂, Ĉ1, Ĉ2) , (24)

where the hat symbol ˆ indicates estimated parameters. This is obtained by solving the optimisation problem

{̂A, B̂, Ĉ1, Ĉ2} = arg min
{A,B,C1,C2}

F (tc,m, ω.A, B, C1, C2), (25)

for fixed tc,m and ω, which can be obtained analytically by solving the following system of equations,⎡⎢⎢⎣
N

∑
fi

∑
gi

∑
hi∑

fi
∑

f 2i
∑

figi
∑

fihi∑
gi

∑
figi

∑
g2
i

∑
gihi∑

hi
∑

fihi
∑

gihi
∑

h2
i

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

Â
B̂
Ĉ1

Ĉ2

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎣
∑

yi∑
yifi∑
yigi∑
yihi

⎤⎥⎥⎦ . (26)

Second, we solve the nonlinear optimisation problem involving the remaining nonlinear parameters m, ω, tc :

{̂tc, m̂, ω̂} = arg min
{tc ,m,ω}

F1(tc,m, ω). (27)

The model is calibrated on the data using the Ordinary Least Squares method, providing estimations of all parameters tc ,
ω, m, A, B, C1, C2 in a given time window of analysis.

For each fixed data point t2 (corresponding to a fictitious ‘‘present’’ up to which the data is recorded), we fit the price
time series in shrinking windows (t1, t2) of length dt := t2 − t1 decreasing from 1600 trading days to 30 trading days. We
shift the start date t1 in steps of 3 trading days, thus giving us 514 windows to analyse for each t2. In order to minimise
calibration problems and address the sloppiness of the model with respect to some of its parameters (and in particular
tc), we use a number of filters to select the solutions. For further information about the sloppiness of the LPPLS model,
we refer to [7,12,19,20]. The filters used here are {(0.1 < m < 0.9), (6 < ω < 13), (t2 − [t2 − t1] < tc < t2 + [t2 − t1])},
so that only those calibrations that meet these conditions are considered valid and the others are discarded. These filters
derive from the empirical evidence gathered in investigations of previous bubbles [20–22].

Previous calibrations of the JLS model have further shown the value of additional constraints imposed on the nonlinear
parameters in order to remove spurious calibrations (false positive identification of bubbles) [7,23,24]. For our purposes,
we do not consider them here.

4.2. Empirical analysis

We apply our novel goodness-of-fit metric to the problem of finding the beginning times of financial bubbles, defined
as the optimal starting time t1 obtained by endogenising t1 and calibrating it. We first illustrate and test the method
on synthetic time series and then apply it to real-world financial bubbles. A Python implementation of the algorithm is
provided in the Appendix.
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4.2.1. Construction of synthetic LPPLS bubbles and results
To gain insight about the application of our proposed calibration methodology on a controlled framework and thus

establish a solid background to our empirical analysis, we generate synthetic price time series that mimic the salient
properties of financial bubbles, namely, a power law-like acceleration decorated by oscillations. The synthetic price
time series are obtained by using formula (17) with parameters given by the best LPPLS fit within the window w ∈

[t1 = 1 Jan. 1981: t2 = 30 Aug. 1987] of the bubble that ended with the Black Monday 19 Oct. 1987 crash. These
parameters are m = 0.44, ω=6.5, C1 = −0.0001, C2 = 0.0005, A = 1.8259, B = −0.0094, tc = 1194 (corresponding to
1987/11/14), where days are counted since an origin put at t1 = Jan. 1981. To the deterministic component describing
the expected log-price given by expression (17) and denoted by fLPPLS(φ, t), we add a stochastic element to obtain the
synthetic price time series

ln[P(t)] = fLPPLS(φ, t) + σϵ(t), (28)

where ϵ(t) ∼ N (0, σ 2) noise, σ 2
= 0.03 and t = [1, . . . ,N = 1100].

To illustrate how we create a price time series with a well-defined transition point corresponding to the beginning of
a bubble, we take the first 500 points generated with expression (28) and mirror them via a t → t1 − t reflection across
the time period: {1 Jan. 1910 : 1 jun. 1911}. In turn , we concatenate this reflected sequence of 500 prices to the 1100
prices obtained with (28) for t ≥ t1, so that the true transition point corresponding to the start of the bubble described by
the LPPLS pattern is t1 = 1 jun. 1911. The black stochastic line on the top of Fig. 2 represent this union of the two time-
series. This union constitutes the whole synthetic time series on which we are going to apply our Lagrange regularisation
of χ2

λ (Φ) in order to attempt recovering the true start time, denoted by the hypothetical time t1 = 1 jun. 1911. The same
procedure is applied to the other real financial time series.

For the synthetic bubble price time series shown in the top panel of Fig. 2, we thus calibrated it with Eq. (17) by
minimising expression (1) in windows w = [t1, t2], varying t2 from 1912/07/01 to t2 = 1913/01/01, with t1 scanned
from t1 = Jan. 1910 up to 30 business days before t2, i.e. up to t1,max = t2 − 30 for each fixed t2. The goal is to determine
whether the transition point τ we determine is close (or even equal to) the true hypothetical value t1 = 01 jun. 1911 for
different maturation times t2 of the bubble. The number of degrees of freedom used for this exercise as well as for the
real-world time series is p = 8, which includes the 7 parameters of the LPPLS model augmented by the extra parameter
t1.

The results of the determination of the beginning times of the synthetic time-series with end time
t2 = {1912.07.01; 1912.10.01; 1912.11.15; 1913.01.01} are shown in Fig. 3. For the earliest t2 = 1912/07/01, our
proposed goodness-of-fit scheme is already capable of roughly diagnosing correctly the bubble beginning time, finding
the optimal τ to be ≈ May 1911. In contrast, the competing metric (χ2

np(Φ)) is degenerate as t1 → t2 and is thus blind
to the beginning of the bubble. For t2 closer to the end of the bubble, χ2

np(Φ) continues to deliver very small optimal
windows, proposing the incorrect conclusion that the bubble has started very recently (i.e. close to the pseudo present
time t2). This is a signature of strong overfitting, which is quantified via λ and depicted in the title of the figure alongside
with the bubble beginning time and t2. The Lagrange regularisation of the χ2

np(Φ) locks into the true value of τ ≈ jul.1911
as t2 → tc , i.e., as t2 moves closer and closer to January 1913 and the LPPLS signal becomes stronger. In summary, Fig. 3
shows that the optimal starting time τ of the bubble determined by using χ2

np(Φ) is very close to its t2. In contrast, the
optimal τ for χ2

λ (Φ) is close to the true beginning of the LPPLS regime. This confirms the excellent performance of our
proposed method.

4.2.2. Real-world data: set-up of the analysis of bubble periods of different financial indices
The real-world data sets analysed here consist in bubble periods that have occurred on the following major Indexes:

S&P-500 with the list of t2’s given here,1 IBovespa with the list of t2’s given here2 and SSEC with the list of t2’s given
here.3 For each data set and for each fixed pseudo present time t2 depicted by red vertical dashed lines in Fig. 2, our
search for the bubble beginning time τ consists in fitting the LPPLS model using a shrinking estimation window w with
t1 = [t2 − 30 : t2 − 1600] with incremental step-size of 3 business days. This yields a total of 514 fits per t2.

4.2.3. Results of the determination of the beginning times of real-world bubbles
For the S&P-500 Index, the results shown in Fig. 4 are even more pronounced than for the synthetic time series. While

again χ2
np(Φ) is unable to diagnose the optimal starting date of a faster than exponential log-price growth τ ≡ t1, the

Lagrange regularisation of the χ2
np(Φ) depicted by blank triangles in the lower box of the figure is capable of overcoming

the tendency of the model to overfit data as t1 → t2. Specifically, the method diagnoses the start of the Black-Monday
bubble at t1 ≈ March 1984 and the beginning of the Sub-Prime bubble at ≈ Aug. 2003 in accordance with [25].

We also picked two pseudo present times t ′2s at random in order to check how consistent are the results. To our delight,
the method is found capable of capturing the different time-scales present in the bubble formation in an endogenous

1 t2 ’s = {1987.07.15; 1997.06.01; 2000.01.01; 2007.06.01}.
2 t2 ’s = {2000.01.01; 2004.01.01; 2006.01.01; 2007.12.01}.
3 t2 ’s = {2000.08.01; 2007.05.01; 2009.07.01; 2015.05.01}.



668 G. Demos and D. Sornette / Physica A 524 (2019) 661–675

Fig. 2. Synthetic and real-world Time-series used in this study for measuring the performance of different goodness-of-fit metrics at
different t2 ’s (red lines): Synthetic time-series and Indexes S&P-500, IBovespa and SSEC with the values of t2 ’s used in the subsequent
figures given by t ′2s = {1912.07.01; 1912.10.01; 1912.11.15; 1913.01.01}, t ′2s = {1987.07.15; 1997.06.01; 2000.01.01; 2007.06.01}, t ′2s =

{2000.01.01; 2004.01.01; 2006.01.01; 2007.12.01} and t ′2s = {2000.08.01; 2007.05.01; 2009.07.01; 2015.05.01} respectively (red dashed vertical
lines).

manner. For t2 = 1997.06.01, the method suggests the presence of a bubble that nucleated more than five years earlier.
This recovers the bubble and change of regime in September 1992, documented in Chapter 9 of Sornette [26] as a genuine
change of regime since the market stopped its ascent and plateaued for the three following months. For t2 = 2000.01.01,
χ2

λ (Φ) diagnoses a bubble with a shorter duration, which started in November 1998. The starting time is coherent with
the recovery after the so-called Russian crisis of August–September 1998 when the US stock markets dropped by about
20%. And this bubble is nothing but the echo in the S&P500 of the huge dotcom bubble that crashed in March–April 2000.
More generally, scanning t2 and different intervals for t1, the Lagrange regularisation of the χ2

np(Φ) can endogenously
identify a hierarchy of bubbles of different time-scales, reflecting their multi-scale structure [12,26].

For the IBovespa and the SSEC Index (Figs. 5 and 6 respectively), the huge superiority of the Lagrange regularisation
of the χ2

np(Φ) vs. the χ2
np(Φ) metric is again obvious. For each of the four chosen t2’s in each figure, χ2

λ (Φ) exhibits a
well-marked minimum corresponding to a well-defined starting time for the corresponding bubble. These objectively
identified t1 correspond pleasantly to what the eye would have chosen. They pass the ‘‘smell test’’ [27]. In contrast, the
χ2
np(Φ) metric provides essentially no guidance on the determination of t1.
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Fig. 3. Diagnosing the beginning of financial bubbles by comparing two goodness-of-fit metrics χ2
np(Φ) vs. χ2

λ (Φ) using the LPPLS model on Synthetic
Time-Series: in the lower plot of each t2 value, χ2

np(Φ) is depicted as empty circles while χ2
np(Φ) is shown as empty triangles. The dashed thick

black vertical lines (resp. thin hashed vertical lines) show the position of the minimum of each goodness-of-fit metric and therefore represents the
optimal τ ≡ t1 for χ2

λ (Φ) and χ2
np(Φ) respectively. Note that the optimal τ for χ2

np(Φ) is very close to its t2 . In contrast, the optimal τ for χ2
λ (Φ)

is close to the true beginning of the LPPLS regime. For a fixed t2 , the log-price time-series of the Index was fitted using a shrinking window from
t1 = [t2 − 30 : t2 − 1600] sampled every 3 days. For a fixed t2 and t1 , we display the resulting fit of the LPPLS model (red line) obtained with the
parameters solving Eq. (27).
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Fig. 4. Same as Fig. 3 for the US S&P-500 Index.

5. Conclusion

We have presented a novel goodness-of-fit metric, aimed at comparing goodnesses-of-fit across a nested hierarchy of
data sets of shrinking sizes. This is motivated by the question of identifying the start time of financial bubbles, but applies
more generally to any calibration of time series in which the start time of the latest regime of interest is unknown. We
have introduced a simple and physically motivated way to correct for the overfitting bias associated with shrinking data
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Fig. 5. Same as Fig. 3 for the Brazilian IBovespa index.

sets, which we refer to at the Lagrange regularisation of the χ2
np(Φ) :=

1
N−pSSR. We have suggested that the bias can be

captured by a Lagrange regularisation parameter λ. In addition to helping remove or alleviate the bias, this parameter can

be used as a diagnostic parameter, or ‘‘overfit measure’’, quantifying the tendency of the model to overfit the data. It is a

function of both the specific realisation of the data and of how the model matches the generating process of the data.
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Fig. 6. Same as Fig. 3 for the Chinese SSEC index.

Applying the Lagrange regularisation of the χ2
np(Φ) to simple linear regressions with a change point, synthetic models

of financial bubbles with a well-defined transition regime and to a number of financial time series (US S&P500, Brazil

IBovespa and China SSEC Indices), we document its impressive superiority compared with the χ2
np(Φ) metric. In absolute

sense, the Lagrange regularisation of the χ2
np(Φ) is found to provide very reasonable and well-defined determinations of
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the starting times for major bubbles such as the bubbles ending with the 1987 Black-Monday, the 2008 Sub-prime crisis
and minor speculative bubbles on other Indexes, without any further exogenous information.

Overall, the usage of the proposed technique for correcting the overfitting tendency of a model χ2
λ (Φ), alongside

with the LPPLS model allows one to answer in real-time an extremely important question in finance, namely, the
question of when a period of price exuberance (i.e. financial bubble) started. The elegant solution proposed here can be
straightforwardly implemented such that, conditional on a pseudo-current time, the beginning time of a bubble (t∗1 ) can be
endogenously obtained without any further exogenous information requirements. Moreover, the usage of the technique
goes beyond the specific scope of finance, being essentially implementable on any statistical problem whose cost function
is degenerate as the sample size shrinks as a function of time. Examples of such problems consists on: defining the optimal
window length for computing a moving average, comparing goodness-of-fit across unbalanced sample sizes for a given
model, automatic change point detection, among others.

Appendix

- Python script for computing the Lambda regulariser metric: OLS example.
- Copyright: G.Demos @ ETH-Zurich.
- Jun.2018

#-----------------------------
def simulateOLS():

""" Generate synthetic OLS as presented in the paper """
nobs = 200
X = np.arange(0,nobs,1)
e = np.random.normal(0, 10, nobs)
beta = 0.5
Y = [beta*X[i] + e[i] for i in range(len(X))]
Y = np.array(Y)
X = np.array(X)
Y[:100] = Y[:100] + 4*e[:100]
Y[100:200] = Y[100:200]*8
return X, Y

#-----------------------------
def fitDataViaOlsGetBetaAndLine(X,Y):

""" Fit synthetic OLS """
beta_hat = np.dot(X.T,X)**-1. * np.dot(X.T,Y) # get beta
Y = [beta_hat*X[i] for i in range(len(X))] # generate fit
return Y

#-----------------------------
def getSSE(Y, Yhat, p=1, normed=False):

"""
Obtain SSE (chi^2)
p -> No. of parameters
Y -> Data
Yhat -> Model
"""
error = (Y-Yhat)**2.
obj = np.sum(error)
if normed == False:

obj = np.sum(error)
else:

obj = 1/np.float(len(Y) - p) * np.sum(error)
return obj

#-----------------------------
def getSSE_and_SSEN_as_a_func_of_dt(normed=False, plot=False):

""" Obtain SSE and SSE/N for a given shrinking fitting window w """
# Simulate Initial Data
X, Y = simulateOLS()
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# Get a piece of it: Shrinking Window
_sse = []
_ssen = []
for i in range(len(X)-10): # loop t1 until: t1 = (t2 - 10):

xBatch = X[i:-1]
yBatch = Y[i:-1]
YhatBatch = fitDataViaOlsGetBetaAndLine(xBatch, yBatch)
sse = getSSE(yBatch, YhatBatch, normed=False)
sseN = getSSE(yBatch, YhatBatch, normed=True)
_sse.append(sse)
_ssen.append(sseN)

if plot == False:
pass

else:
f, ax = plt.subplots(1,1,figsize=(6,3))
ax.plot(_sse, color=’k’)
a = ax.twinx()
a.plot(_ssen, color=’b’)
plt.tight_layout()

if normed==False:
return _sse, _ssen, X, Y # returns results + data

else:
return _sse/max(_sse), _ssen/max(_ssen), X, Y # returns results + data

#-----------------------------
def LagrangeMethod(sse):

""" Obtain the Lagrange regulariser for a given SSE/N"""
# Fit the decreasing trend of the cost function
slope = calculate_slope_of_normed_cost(sse)

return slope[0]

#-----------------------------
def calculate_slope_of_normed_cost(sse):

#Create linear regression object using statsmodels package
regr = linear_model.LinearRegression()

# create x range for the sse_ds
x_sse = np.arange(len(sse))
x_sse = x_sse.reshape(len(sse),1)

# Train the model using the training sets
res = regr.fit(x_sse, sse)
return res.coef_

#-----------------------------
def obtainLagrangeRegularizedNormedCost(X, Y, slope):

""" Obtain the Lagrange regulariser for a given SSE/N Pt. III"""
Yhat = fitDataViaOlsGetBetaAndLine(X,Y) # Get Model fit
ssrn_reg = getSSE(Y, Yhat, normed=True) # Classical SSE
ssrn_lgrn = ssrn_reg - slope*len(Y) # SSE lagrange
return ssrn_lgrn

#-----------------------------
def GetSSEREGvectorForLagrangeMethod(X, Y, slope):

"""
X and Y used for calculating the original SSEN
slope is the beta of fitting OLS to the SSEN
"""
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# Estimate the cost function pondered by lambda using a Shrinking Window.
_ssenReg = []
for i in range(len(X)-10):

xBatch = X[i:-1]
yBatch = Y[i:-1]
regLag = obtainLagrangeRegularizedNormedCost(xBatch,

yBatch,
slope)

_ssenReg.append(regLag)
return _ssenReg
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