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A B S T R A C T

Air pollution can lead to a wide range of hazards and can affect most organisms on Earth. Therefore, managing
and controlling air pollution has become a top priority for many countries. An effective short-term atmospheric
pollutant concentration forecasting (SAPCF) can mitigate the negative effects of atmospheric pollution. In this
paper, we propose a new hybrid forecasting model for SAPCF. Firstly, we analyse the influential factors of
pollutants to obtain the optimal combination of input variables. Secondly, we use a clustering algorithm to
enhance the regularity of our modelling data. Thirdly, we build a particle swarm optimisation (PSO)–support
vector machine (SVM) hybrid model called PSO–SVM and perform a case study in Temple of Heaven, Beijing to
test its forecasting accuracy and validate its performance against three contrastive models. The first model inputs
all possible variables in equal weight without influence factor analysis. The second model integrates the same
input variables used in the proposed model without clustering. The third model inputs these same variables with
genetic-algorithm optimised SVM parameters. The comparison amongst these models demonstrates the superior
performance of our proposed hybrid model. We further verify the forecasting results of our hybrid model by
conducting statistical tests.

1. Introduction

As one of the four elements of life, air plays a major role in main-
taining the ecosystem. However, human activities have seriously ag-
gravated the degree of air pollution, thereby prompting researchers to
conduct pollution analysis (Bollen, 2015) and predict pollutant con-
centrations (Wu et al., 2018). Given its important role in formulating
effective precautionary measures, atmospheric pollutant concentration
forecasting (APCF) has received much research attention (Bai et al.,
2018).

Previous studies have classified APCF into short-term APCF (SAPCF)
(Niu et al., 2016), medium and long term APCF. Medium and long term
APCF forecasts the concentration of pollutants over a relatively long
period, usually ranging from months to years (Nebenzal and Fishbain,
2018), and is mainly used for planning the distribution of industrial
sites or residential areas. Meanwhile, SAPCF reveals the vital status in
many basic operations and is often used in planning abatement actions
and transportation networks in advance (Li and Tao, 2018; Xie et al.,
2018; Zhai and Chen, 2018). SAPCF can also help governments save
time in responding to pollution-related problems (Y.F. Wang et al.,
2018) and help individuals prevent exposure to pollutants (Soh et al.,
2018). Therefore, an accurate SAPCF is of great significance at the

social and individual levels. Researchers have proposed numerous
methods for SAPCF in recent years as will be discussed in Section 1.1.

1.1. SAPCF models

SAPCF can be achieved by using statistical and artificial intelligence
(AI) methods. The most commonly applied statistical methods include
regression methods (Kumar and Goyal, 2011), autoregressive in-
tegrated moving average (Zhang et al., 2018), projection pursuit model
(Huber, 1985), principal component analysis (PCA) (Sun and Sun,
2017) and fuzzy time series analysis (Rahman et al., 2015). However,
these methods have their limitations. For instance, the results of re-
gression forecasting mainly rely on the proposed hypotheses. Therefore,
the desired forecasting accuracy cannot be easily achieved given the
differences amongst these hypotheses. PCA methods also greatly de-
pend on the employed dataset and the forecasting accuracy is dis-
counted when extreme and nonlinear values are involved. To address
these shortcomings, scholars have proposed some AI methods, in-
cluding artificial neural network (ANN) (Russo et al., 2015), back
propagation (BP) neural network (Bai et al., 2016), wavelet neural
network (WNN) (Wang et al., 2015b) and support vector machine
(SVM) (Wang et al., 2015a). ANN shows a promising performance in

https://doi.org/10.1016/j.techfore.2019.05.015
Received 17 September 2018; Received in revised form 10 April 2019; Accepted 8 May 2019

⁎ Corresponding author.
E-mail address: jqwang@csu.edu.cn (J.-q. Wang).

Technological Forecasting & Social Change 146 (2019) 41–54

0040-1625/ © 2019 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00401625
https://www.elsevier.com/locate/techfore
https://doi.org/10.1016/j.techfore.2019.05.015
https://doi.org/10.1016/j.techfore.2019.05.015
mailto:jqwang@csu.edu.cn
https://doi.org/10.1016/j.techfore.2019.05.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.techfore.2019.05.015&domain=pdf


fitting nonlinear variables, but the complex relationships amongst some
variables can affect its performance (Bai et al., 2018). Meanwhile,
traditional neural networks (NN) face some problems related to con-
vergence and local optimisation. To address these problems, SVM is
used for SAPCF given its excellent performance in dealing with small
samples and in addressing global optimisation and high-dimensional
feature space problems. Based on the structural risk minimisation
(SRM) principle, SVM can avoid the local minima and improve its
classification accuracy (Zendehboudi et al., 2018). These features have
motivated the extensive implementation of SVM in pollution fore-
casting (Chen et al., 2010). However, SVM also has several short-
comings. For instance, this method does not work well with large
sample data and is susceptible to missing data. The forecasting accuracy
of SVM is also highly correlated with the choice of parameters (Hong,
2010). To address these limitations, researchers have proposed some
hybrid SVM models (Wang et al., 2017) that integrate different models
to improve its forecasting accuracy as will be discussed further in
Section 1.2.

1.2. Hybrid SVM models for SAPCF

A hybrid model is a combination of two or more methods (Inman
et al., 2013) and an appropriate combination of models can lead to an
improved forecasting accuracy. Shah et al. (2018) proposed an error
minimisation algorithm based on artificial bee colony by using com-
bining NN and AI for stock market prices prediction. Their experiment
results reveal that their proposed hybrid model has a higher forecasting
performance compared with conventional methods. Two hybrid SVM
methods are commonly used for SAPCF. Firstly, SVM can be combined
with other intelligent methods to address its most common problems.
For example, Ghaemi et al. (2015) proposed a distributed computing
based on the Hadoop platform to overcome the inability of SVM in
working well with massive data. However, this algorithm combination
faces some limitations. When dealing with large-scale data, the com-
monly used method for data splitting node selection is subjective.
Moreover, some hybrid models need to undergo two stages before ob-
taining the final result, thereby leading to information loss and time
waste. Secondly, other algorithms are combined with SVM to optimise
its parameters. Some of the most widely used algorithms include the
genetic algorithm (GA) (Garg, 2015), ant swarm optimisation (Zheng
et al., 2008), cuckoo search algorithm (Sun and Sun, 2017) and grav-
itational search algorithm (Garg, 2019). However, these algorithms are
unable to store the best particle information (Barman et al., 2018)
whilst other algorithms take too long to optimise, thereby limiting their
potential to be combined with SVM.

To address these problems, a new hybrid SVM model for SAPCF
needs to be proposed. Given the influence of certain parameters on
SVM, this study introduces the particle swarm optimisation (PSO) al-
gorithm (Patwal et al., 2018) into SVM to optimise its parameters and
improve its forecasting fitness. PSO can be easily implemented and only
uses two parameters, namely, the position and velocity of particles
(Garg, 2016). PSO also shows excellent performance in achieving al-
gorithm convergence and global optimisation (Xiao et al., 2017),
thereby motivating us to use this algorithm to optimise the parameters
of SVM. We build a hybrid PSO-optimised SVM parameters (PSO–SVM)
model as will be discussed in Section 1.3.

1.3. Hybrid PSO–SVM model based on clustering algorithm for SAPCF

Previous studies have reported a high correlation between the
concentration of atmospheric pollutants and some meteorological
variables (Whiteman et al., 2014), that is, considering these meteor-
ological variables would significantly improve the SAPCF accuracy.
However, various meteorological factors may generate different effects
on the concentration of atmospheric pollutants. For example, high-in-
tensity wind can send atmospheric pollutants over long distances.

Therefore, wind speed and direction are relatively more important
compared with other meteorological factors. The same meteorological
factor may also demonstrate various effects across different regions.
Therefore, the impact of meteorological variables on the concentration
of atmospheric pollutants must be investigated. Although previous
studies have considered the influence of meteorological variables
(Cortina-Januchs et al., 2015), only few have specifically examined the
effect of each meteorological variable. To address this gap, we design
an influential factor analysis in our proposed PSO–SVM model to in-
vestigate the dependency and direction of dependency between the
influential factors and the forecasting target as well as to obtain the
optimal combination of influential variables (i.e. the combination of
variables and the weight of each variable). To ensure the high accuracy
and reliability of a forecasting model, the regularity of the modelling
data must be improved. Therefore, we perform unsupervised clustering
to classify our dataset into several categories, with all the data clustered
into a single category sharing the same characteristics. As mentioned
above, SVM parameter optimisation plays a key role in SAPCF. There-
fore, we use PSO to obtain the parameters of SVM. In sum, our proposed
hybrid PSO–SVM model includes three processes, namely, influential
factor analysis, data clustering and forecasting.

Given the advantages of the aforementioned methods and the im-
portance of each process, the main objective of this paper is to propose
a new hybrid PSO–SVM model to improve the accuracy of SAPCF. This
hybrid model performs an influential factor analysis to determine the
optimal combination of influential factors for specific regions. We also
introduce the clustering method into our hybrid model to strengthen
the regularity of data. The small datasets obtained by clustering meet
the demand of SVM for a small sample data volume. Given the ability of
PSO to optimise the SVM parameters, the hybrid PSO–SVM model ad-
dresses the inherent limitations of SVM. We test the accuracy and sta-
bility of this model by performing a comparative analysis, which
highlight the advantages of our hybrid model in terms of forecasting
accuracy and runtime. We also perform additional statistical tests to
confirm this conclusion.

The rest of this study is organised as follows. Section 2 briefly dis-
cusses the data collection and pre-processing. Section 3 discusses the
influential factor analysis. Section 4 presents the architecture of the
proposed hybrid model. Section 5 performs a case study, comparison
analysis and statistical tests. Section 6 presents some discussions of the
results. Section 7 concludes the paper.

2. Data collecting and pre-processing

This section introduces the sources and pre-processing of the data
used in this study.

2.1. Data sources

Each country adopts a unique method and set of criteria for mon-
itoring and evaluating air quality. For instance, China adopts the
National Ambient Air Quality Standards (GB3095-2012) (Duan et al.,
2014) to convert its pollutant monitoring values into simple conceptual
numerical forms, such as PM2.5, PM10, SO2, NO2, O3 and CO, and uses
the air quality index (AQI) (Xie et al., 2018) as a quantitative indicator
for describing the status of air quality. Therefore, we use AQI and these
six numerical forms as influential variables for SAPCF. Meteorological
variables also play a vital role in SAPCF (Cortina-Januchs et al., 2015).
Therefore, we choose five meteorological variables, namely, tempera-
ture, relative humidity, windspeed, wind direction and air pressure, as
influential factors that may affect air pollution.

The data used in this paper are collected from the website of the
Beijing Municipal Environmental Monitoring Center (http://www.
bjmemc.com.cn), which collects its data through its multiple moni-
tors. The air quality automatic monitoring system of Beijing covers 35
monitoring points, including the Dongsi Subdistrict, Temple of Heaven,
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West Park officials and so on. Fig. 1 presents the location of each of
these monitoring points on a satellite map. We collected data on the six
pollutant concentrations, AQI and the five meteorological variables of
the Temple of Heaven monitoring point from January 1, 2017 to De-
cember 31, 2017. The Temple of Heaven monitoring point is located in
the Dongcheng district of Beijing (116.407° longitude and 39.886° la-
titude). To simplify our data collection procedure without losing any
important information, we collected our data at three-hour intervals
starting from 2:00 (i.e. 2:00, 5:00, 8:00, 11:00, 17:00, 20:00 and 23:00)
every day. We eventually collected 2921 pieces of data in 365 days,
with each piece of data having 14 attributes, including date, time,
pollutant concentration and so on.

2.2. Data pre-processing

We prepare the data after their collection. Data pre-processing is a
crucial step in data processing. Previous studies show that preparing the
raw data can help improve their processing accuracy (Coussement
et al., 2017; Y. Wang et al., 2018a). Our main data pre-processing
methods include data cleaning and data transformation, which will be
explained in the following subsections.

2.2.1. Data cleaning
We initially perform data cleaning to maintain the consistency of

our dataset. The raw data should be cleaned before the forecasting
given that the data obtained from monitoring instrument may be in-
complete due to power or instrument failures. These data may also
show some noise, redundancy and inconsistencies. Data cleaning in-
volves two procedures, namely, consistency checks and missing value
processing.

(1) Consistency checks

Consistency checks examine the relationship amongst the data
based on the value range and correlation of each variable. Through this
procedure, we can identify those values that exceed the normal range or
contradict one another. Consistency checks can be classified into range,
time and variable consistency checks. Range check finds those values
that exceed a specified measurement range based on the scope of
monitoring value (Schlechtingen et al., 2013). Following the standards
of HJ 653-2013 and HJ 654-2013 (Zeng et al., 2015), we obtain the
monitoring range of each variable as shown in Table 1.

The statistics of the variables included in the collected dataset are
presented in Table 2. A comparison between Tables 1 and 2 reveal that
the maximum monitoring value of PM10 is outside the specified mon-
itoring range.

The monitoring values of PM10 are presented in detail in Fig. 2. We
deleted those values that lie outside the specified scope.

The change of the variable has a certain regularity with time (Rohde

Fig. 1. Satellite image of monitoring points in Beijing.

Table 1
Monitoring range of each variable.

Variable Unit Range

PM2.5 μg/m3 0~1000μg/m3

PM10 μg/m3 0~1000μg/m3

AQI NA ≥0
SO2 μg/m3 0~1428μg/m3

NO2 μg/m3 0~1026μg/m3

O3 μg/m3 0~1071μg/m3

CO mg/m3 0~62.5mg/m3

Temperature °C −50~+80 ° C
Relative humidity NA 0~100%
Windspeed m/s 0~75m/s
Wind direction ° 0~360°
Air pressure mmHg 412.5339~795.065mmhg

Table 2
Statistics of the variables.

Variables Minimum Maximum Mean

PM2.5 2.0 734.0 59.061
PM10 0.0 88.180

AQI 2.0 507.0 88.394
SO2 1.0 111.0 6.920
NO2 0.0 336.0 45.389
O3 1.0 325.0 55.705
CO 0.0 12.7 0.977
Temperature −9.9 38.0 14.240
Relative humidity 5.0 97.0 49.878
Windspeed 0.0 8.0 2.097
Wind direction 0.0 3.0 1.862
Air pressure 739.9 776.8 758.264

The red box in the table highlights that the maximum monitoring value of
PM10 is outside the specified monitoring range.
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and Muller, 2015). Therefore, each variable must be examined at the
time scale. The time consistency checks aim to discover outliers in time
series. To determine how these variables change over time, we calculate
the absolute deviation between the adjacent variables. Fig. 3 presents
the results. The general ratios of the adjacent monitoring value devia-
tions less than 40μg/m3, less than 60μg/m3 and greater than 100μg/m3

are greater than 80%, greater than 90% and less than 1%, respectively.
Given that the magnitude of the monitoring value for CO at adjacent
times differs from that of the other monitoring values, the results for CO
are reported in a separate figure (Fig. 4). The huge gap in the deviation
of meteorological data cannot be presented in the same graph and is
therefore not reported in this paper.

We use the data for the adjacent time points as a reference in de-
termining the maximum variation range at a specified moment. We
utilise the following mathematical model:

>
+ >

y d t y d t
y d t y d t

( , ) ( , 1)
( , ) ( , 1)

,1

2 (1)

where = + +y d t( , ) y d t y d t( , 1) ( , 1)
2 represents the value of variable d at

time t whilst θ1 and θ2 denote the threshold values. We determine the
threshold of different variables according to the rule of 3σ (Yousefzadeh
et al., 2017), that is, any data located outside the specified range will be
treated as poor data. Then we adopt the average value to ensure a
smooth calculation.

The variable consistency checks examine whether the relations
amongst elements conform to objective laws (Wang, 2011). Certain
correlations can be observed amongst the variables used in this study.
For example, PM2.5 and PM10 are positively related to CO, NO2 and
SO2 whilst O3 is negatively correlated with the other gaseous pollutants
(Abdul-Wahab et al., 2005). The correlations amongst these variables
can be ascribed to the sources of pollutants and the weather conditions

and often demonstrate strong local and seasonal characteristics. We
adopt the robust regression method to perform the variable consistency
checks based on the positive correlation between NO2 and CO. In the
regression analysis, the residual error of the fitting value between the
dependent variable and the actual value can be used as a criterion in the
outlier test. We perform M estimation (Zou et al., 2000) to calculate the
regression parameters. However, given that these procedures are not
the focus of our study, we do not explain their principles in this paper.

(2) Missing value processing

We deal with the missing values that may be included in the col-
lected dataset in two ways. Firstly, we fill a large number of missing
values by crawling data from other monitoring sites or by collecting
data from adjacent areas at the same time. Secondly, if the time interval
of missing data is not large, then we use the following linear inter-
polation method to fill the gap:

= + < <+
+S S S S

i
j j i, 0 ,t j t

t i t
(2)

where St and St+i denote the monitoring values of time t and t+ i,
respectively.

2.2.2. Data transformation
To avoid the impacts of different dimensions, the raw dataset needs

to be normalised. We adopt the following data transformation methods
to this end:

(1) Normalise data to [0,1].

=x x x
x x

,i
i min

max min (3)

where xmax and xmin represent the maximum and minimum values of
the raw dataset. xi denotes the actual data and xi denotes the normal-
ised data. All notations presented below follow the same definition.

(2) Normalise data to [−1,1].

= +x x x x
x x

0.5( )
0.5( )

.i
i max min

max min (4)

(3) Convert the data into zero mean value and single azimuth.

=x x µ ,i
i

2 (5)

where μ and σ2 represent the mean and variance of the original data,
respectively.

Fig. 2. Monitoring values of PM10.

Fig. 3. Absolute deviation between the adjacent values of PM2.5, PM10, SO2, NO2 and O3.
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3. Influential factors analysis for SAPCF

Given the impacts of meteorological factors and historical pollutant
data, we choose the six pollutants, AQI and five meteorological factors
as influential factors. As mentioned above, the roles of various factors in
the study area must be examined in detail. We use the following simple
linear correlation coefficient for the preliminary analysis:

= = =

= =

r Cov x y
D x D y

x x y y

x x y y

( , )
( ) ( )

( )( )

( ) ( )
,i

n
i i

i

n
i

i

n

i

1

1

2

1

2

(6)

where x y, denote the mean values of x and y, respectively, and r de-
notes the correlation coefficient (Zhou et al., 2016). The correlation
coefficients between the variables are presented in Table 3.

We used AQI as an example to demonstrate the correlation analysis
process. Here, AQI is treated as a dependent variable whilst all the other
variables are treated as independent variables (i.e. input variables).
Table 3 shows a zero correlation between AQI and air pressure, thereby
indicating the absence of any correlation between these factors. If we
set the confidence coefficient to 95%, then AQI shows positive corre-
lations with PM2.5, PM10, SO2, NO2, CO and relative humidity but
shows negative correlations with O3, temperature, windspeed and wind
direction. After obtaining the correlations between each independent
and dependent variable, we attempt to establish a concrete relationship
between these variables for further analysis. Accordingly, we perform a
stepwise regression analysis on the AQI and other related variables by
using IBM SPSS Statistic. The model summary is presented in Table 4. R
denotes the goodness of fit. An R value closer to 1 indicates a better
model. In addition, the R square represents the decision coefficient and
the last column of Table 4 presents the estimated random error.

Table 4 shows that the R values of cases 5, 6 and 7 are equal and
better than those of the other cases whilst the error of case 7 is less than
those of cases 5 and 6. Therefore, the coefficient combination in case 7
serves as an excellent representation of the relationship between the
independent and dependent variables. The coefficients of case

7 are presented in Table 5, where the second and third columns
present the partial regression coefficients whilst the fourth
column presents the standard regression coefficient.
Y=0.685x1+ 0.370x2+ 0.045x3+ 0.016x4+ (−0.078)
x5+ 0.010x6+ 0.023x7 can be obtained, with xi(i=1, … ,7) re-
presenting the variables in the first column of the table (with numbers 1
to 7 denoting PM2.5, PM10, SO2, NO2, CO, relative humidity and
windspeed, respectively) and Y denoting the value of AQI. Column 6

Fig. 4. Absolute deviation between the adjacent values of CO.

Table 3
Correlation coefficients between the variables.

PM2.5 PM10 AQI SO2 NO2 O3 CO Temperature Relative humidity Windspeed Wind direction Air pressure

PM2.5 1 0.842 0.945 0.375 0.637 −0.146 0.820 −0.158 0.356 −0.225 −0.110 0.039
PM10 0.842 1 0.911 0.359 0.515 −0.053 0.652 −0.084 0.171 −0.090 −0.086 −0.023
AQI 0.945 0.911 1 0.409 0.579 −0.076 0.732 −0.112 0.265 −0.142 −0.096 0.000
SO2 0.375 0.359 0.409 1 0.382 0.003 0.307 −0.169 −0.165 0.020 0.018 0.115
NO2 0.637 0.515 0.579 0.382 1 −0.530 0.674 −0.370 0.205 −0.383 −0.040 0.218
O3 −0.146 −0.053 −0.076 0.003 −0.530 1 −0.268 0.613 −0.275 0.388 −0.113 −0.486
CO 0.820 0.652 0.732 0.307 0.674 −0.268 1 −0.294 0.363 −0.258 −0.040 0.168
Temperature −0.158 −0.084 −0.112 −0.169 −0.370 0.613 −0.294 1 0.122 0.112 −0.094 −0.847
Relative humidity 0.356 0.171 0.265 −0.165 0.205 −0.275 0.363 0.122 1 −0.492 −0.046 −0.227
Windspeed −0.225 −0.090 −0.142 0.020 −0.383 0.388 −0.258 0.112 −0.492 1 0.186 −0.012
Wind direction −0.110 −0.086 −0.096 0.018 −0.040 −0.113 −0.040 −0.094 −0.046 0.186 1 0.115
Air pressure 0.039 −0.023 0.000 0.115 0.218 −0.486 0.168 −0.847 −0.227 −0.012 0.115 1

Table 4
Model summary of the stepwise regression analysis on AQI and the other
variables.

Case R R square Adjusted R square Error of the estimate

1 0.945a 0.894 0.894 23.635
2 0.969b 0.939 0.939 12.890
3 0.970c 0.942 0.942 17.531
4 0.971d 0.943 0.943 17.269
5 0.972e 0.944 0.944 17.187
6 0.972f 0.944 0.944 17.160
7 0.972g 0.944 0.944 17.154

Letters in the table represent the different combinations of independent vari-
ables.

Table 5
Coefficients of case 7.

Variable B Std. error Beta t Sig.

Constant 10.187 1.311 7.770 0.000
PM2.5 0.789 0.013 0.685 59.917 0.000
PM10 0.332 0.008 0.370 43.776 0.000
CO −5.608 0.574 −0.078 −9.773 0.000
SO2 0.387 0.043 0.045 8.935 0.000
Windspeed 1.225 0.282 0.023 4.337 0.000
O3 0.021 0.006 0.016 3.330 0.001
Relative humidity 0.028 0.017 0.010 1.688 0.092
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and 7 present the results for the other parameters used in the stepwise
regression analysis. The relationships between AQI and the other re-
levant variables are illustrated in Fig. 5. The detailed relationships
between each independent and dependent variable are illustrated in
Fig. 6, where attributes 1 to 8 represent the eight related variables,
including AQI.

4. Architecture of the proposed hybrid PSO–SVM model based on
K-means

After obtaining the optimal combination of input variables, we build
the architecture of the hybrid PSO–SVM model based on K-means. This
section introduces SVM, PSO, and the hybrid PSO–SVM model based on
K-means.

4.1. Support vector machine

Support vector machine (SVM) is a common discriminant method
(Cortes and Vapnik, 1995) that follows the SRM principle and presents

unique advantages in dealing with small sample and high-dimensional
feature space problems. Initially applied to address pattern recognition
problems, SVM is now being used to deal with nonlinear regression
estimation problems by introducing the insensitive loss function ε. The
SVM employed for addressing regression problems is called support
vector regression (SVR), which main idea is to map the dataset
xi(i=1, … ,n) to a higher-dimensional feature space by employing a
nonlinear function. The relationship between the values can be by ex-
pressed as

= +f x x b( ) ( ) ,T (7)

where f(x) is the output value, ω and b are the coefficients and ϕ(x) is
the nonlinear mapping function that can transform the input values into
a high-dimensional feature space. The regulated values of ω and b can
be obtained as

= + +

+ = …
+ + + = …

= …

=
Min R C

y x b i n
y x b i n

i n
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1
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, 0, 1, 2, ,

b
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n

i i

i
T

i i

i
T

i i

i i

, , , 1

(8)

where Rε() is the empirical risk (Barman et al., 2018), C is the reg-
ularisation parameter, ξi

∗ represents the errors above ε and ξi represents
the errors below −ε. The above function represents a quadratic opti-
misation problem that can be transformed into a dual problem. The
final equation for SVM is

= +
=

f x K x x b( ) ( ) ( , ) ,
i

n

i i i j
1 (9)

where βi
∗, βi are the Lagrangian coefficients and K(xi,xj) is the kernel

function of SVM that represents the inner product of two vectors. The
kernel function of vectors xi and xj is defined as

=K x x x x( , ) ( ) ( ).i j i j (10)

Several kernel functions are available, including the linear kernel
function and Gaussian kernel function. Amongst these functions, the
Gaussian kernel function is one of the most popular and is also called
the radial basis function (RBF). This function can map data to an in-
finite dimension with less computational complexity. Therefore, we use

Fig. 5. Box diagram of AQI and the other relevant variables.

Fig. 6. Relationships between AQI and each variable.
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RBF for SVM and define this function as

=K x x
x x

( , ) exp
2

,i j
i j

2

2 (11)

where γ is the Gaussian parameter. The appropriate combination of
SVM parameters (C, εand γ) plays a critical role in achieving a high
forecasting accuracy. Therefore, we use the PSO algorithm to determine
the appropriate parameters. This algorithm is discussed further in the
following subsection.

4.2. Particle swarm optimisation

Particle swarm optimisation (PSO) is a swarm computing tech-
nology developed on the basis of iterative optimisation. This algorithm
initialises a set of particles and then updates the velocity and position of
these particles in the next iteration by tracking two extremum values,
namely, the individual extreme value Pibest and the global extreme
value Pgbest. After discovering these two extremities, PSO identifies the
speed and distance of each particle.

Suppose that there is a population of m particles in a d− dimen-
sional search space. The i− th particle is represented as
xi=(xi1,xi2, … ,xid), i=1, 2,… , m. In other words, the position of the
i− th particle is xi. The velocity of the i− th particle is also a vector
denoted by vi =(vi1,vi2, … ,vid). The optimal position of this particle is
pi =(pi1,pi2, … ,pid) whilst that of the whole population is
pg =(pg1,pg2, … ,pgd). The standard PSO algorithm updates vi and xi as
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where is the weight coefficient of inertia, c1, c2 are two non-negative
constants called acceleration constants and r1, r2 are random numbers
that are uniformly distributed within [0,1].

The main problem of PSO lies in the premature convergence in
optimisation (Jordehi, 2015). We use an improved PSO algorithm to
control the characteristics of the population. To prevent falling into the
local optimum, we introduce the following average grain spacing in
choosing the initial population:

=
= =
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i
d d

1 1

2

(13)

where L is the maximum length of the search space diagonal, n denotes
the dimension of the solution space, Pi

d represents the d− dimensional
coordinate value and Pd represents the mean value of Pi

d. The average

particle spacing represents the distribution dispersion degree of each
particle. A smaller D(t) corresponds to a higher population concentra-
tion, and vice versa.

Judging premature convergence is critical in dealing with pre-
mature convergence problems. Given that the fitness of a particle is
largely determined by its position, the current status of the population
can be determined according to the overall change in the fitness of all
particles. We denote the current fitness by fi and the current average
fitness by f and then define the fitness variance of the population as

=
=

f f
f

,
i

m
i2

1

2

(14)

where f represents the normalisation scaling factor that is employed to
limit the size of λ2. We compute f as

= >f f f f f
else

max | |, max | | 1
1,

,i i

(15)

where λ2 represents the aggregation degree of particles. A smaller λ2

corresponds to a greater aggregation degree, and vice versa. As the
number of iterations increases, the fitness becomes closer and smaller,
that is, the value of λ2 gradually decreases. Meanwhile, when λ2 ≺ β
(where β is a given threshold value), the algorithm enters the later
search stage.

4.3. Hybrid PSO–SVM model based on K-means

To enhance the regularity of the data and shorten the forecasting
time, we employ the K-means algorithm (Hartigan and Wong, 1979) to
incorporate the similar meteorological variables. As a classic distance-
based clustering algorithm, K-means has been widely used in various
fields of forecasting (Benmouiza and Cheknane, 2013). The process of
this algorithm is described as follows. Firstly, k points are randomly
selected as the centre of the initial cluster. Secondly, other points are
allocated to their nearest centre to form the initial cluster. Thirdly, the
mean value of all points in each cluster is calculated. This mean value is
taken as the new centre point and the other points are redistributed to
the nearest centre point. This procedure is repeated until the centre of
each cluster no longer changes. The key step in K-means is determining
the cluster number k. We identify k when the Euclidean distance be-
tween each point and its clustering centre stops showing significant
changes. Take the AQI as an example. This index is related to two
meteorological variables, namely, relative humidity and windspeed.
The Euclidean distance between each point and its centre obtained by
K-means clustering is presented in Fig. 7. This distance is significantly

Fig. 7. Euclidean distance between points and their centres.
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reduced until reaching k=4. After reaching this point, the distance no
longer shows significant changes as k increases. Therefore, we choose
k=4 as our cluster number. The clustering results of k=4 are illu-
strated in Fig. 8, where each colour denotes different clusters and the
bold circles in each class denotes the centre of the cluster. To highlight
the differences amongst various clusters, we choose the first two col-
umns of data as the x and y axes in this figure. The forecasting values
for the meteorological data used in this paper are obtained from the
weather forecast provider.

In the above analysis, we obtain the optimal combination of input
variables and new classes of training data. We then develop a new
hybrid PSO–SVM model to obtain the forecasting results. We use PSO to
obtain the optimal parameters of SVM. Fig. 9 illustrates the process of
the proposed PSO–SVM model in detail. The particle population is in-
itialised before setting the population size m, the initial and final in-
ertial weight values ,max min , the acceleration constants c1 and c2, the
maximum evolutionary algebra Tmax or iterative termination threshold.
We set m=20, use [0.4,0.9] as the value range for and set the
maximum evolutionary algebra Tmax= 200. To balance the impacts of
random factors, we set the initial value of c1 and c2 to 2. The values of
SVM parameters C, ε and γ can be obtained through an automatic op-
timisation.

5. Case study and forecasting result analysis

Many performance indexes can be used to evaluate the SAPCF
performance of the proposed hybrid model. We select mean absolute
percentage error (MAPE) to test the forecasting accuracy of our pro-
posed hybrid model. MAPE represents the average of N absolute per-
centage error and can be computed as

= ×
=

MAPE
N

A F
A

1 100%,
i

N
i i

i1 (16)

where N represents the number of time instances, and Ai, Fi represent
the actual and forecasting data, respectively.

We take AQI as an example to demonstrate the forecasting process.
The values of AQI from January 1, 2017 to December 31, 2017 are
presented in Fig. 10. We input the following variables into the hybrid
model: (I) AQI at the same hour in a similar cluster, (II) relative hu-
midity at the same hour in a similar cluster, (III) windspeed at the same
hour in a similar cluster, (IV) PM2.5 at the same hour in a similar
cluster, (V) PM10 at the same hour in a similar cluster, (VI) SO2 at the
same hour in a similar cluster, (VII) O3 at the same hour in a similar
cluster and (VIII) CO at the same hour in a similar cluster.

We perform three tests to highlight the performance of our proposed
hybrid model. Firstly, we input all possible variables in equal weight
into the proposed model without analysing the influential factors.
Secondly, we input the data analysed by the influential factors into the
PSO–SVMmodel without performing the clustering process. Thirdly, we
input the same data used in the proposed model into the GA-optimised
SVM parameters (GA–SVM) model. The proposed model and the three

Fig. 8. Clustering results of k=4.
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Fig. 9. Optimisation process of the PSO–SVM model.

Fig. 10. AQI values from January 1, 2017 to December 31, 2017.
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other models used in these tests are referred to as Model1, Model2,
Model3 and Model4 in the following subsections, respectively.

The forecasting results of Model1 are presented in Fig. 11. All data
including the following contrastive models are granulated before fore-
casting, which results in the scale of abscissa. This figure roughly il-
lustrates the fitness of the forecasted and actual values in each class. A
detailed analysis and performance comparison with the other models
are presented in the following subsections.

5.1. Forecasting results of contrastive models

The forecasting results of the contrastive models are presented in
this subsection. To highlight the effects of each step in the proposed
model, we control one part of the model in each comparative analysis.
Without analysing the influential factors, Model2 shows the influence
of the related variables on forecasting performance. We input all
monitored variables into this model without analysing the correlations
and weight distribution. The forecasting results of Model2 are pre-
sented in Fig. 12. The performance of Model1 and Model2 cannot be
easily evaluated by merely comparing Figs. 11 and 12. Therefore,
specific forecasting effects are compared in the following subsection. To
justify the validity of the clustering process, Model3 is implemented in
an environment without clustering analysis. The forecasting results of
this model are illustrated in Fig. 13. A comparison of Model1 and
Model3 reveals that the forecasting value of the latter is not consistent
with the actual value. Based on the fitting degree shown in the above
figures, we can roughly conclude that the forecasting performance of
Model3 is worse than that of Model1.

After discussing the effects of influencing factors analysis and
clustering, we analyse the impact of the parameter optimisation algo-
rithm on forecasting accuracy. In Model4, we input the same variables

and data used in Model1 into the GA–SVM model. The forecasting re-
sults of Model4 are illustrated in Fig. 14. We adopt different ways to
display the results of Model4 due to the differences in the properties of
the algorithms. The ordinate of Fig. 14 represents the class label whilst
its abscissa represents the number of training sets. Similar to Model2,
we cannot directly compare the forecasting performance of Model4 and
Model1. In the following subsection, we use forecasting error and
training time to illustrate the forecasting accuracy of each model.

5.2. Comparison of the proposed model and contrastive models

This section compares the proposed model with the contrastive
models. Although the forecasting performance of these models has been
discussed in the previous subsection, their similarities and differences
remain unclear. We discuss in this subsection the forecasting errors and
training time of these models.

Table 6 presents the forecasting errors of all models. Each value in
columns 2 to 5 of Table 6 represents the MAPE in the corresponding
cluster of models. The value in the MAPE column is calculated from the
arithmetic mean of MAPE in the previous clusters. No MAPE value is
found under each cluster in Model3 due to the absence of a clustering
process. The difference in MAPE value is calculated by subtracting the
MAPE value of Model1 from those of the other models. A comparison of
the results presented in columns 2 to 5 reveals that the MAPEs of
Model1 are always significantly better than those of Model4. Moreover,
although the gap between Model2 and Model1 is small, Model1 clearly
outperforms Model2. The positive value of MAPE difference also con-
firms that Model1 outperforms all the other models.

The granular window forecasting error of each model is illustrated
in Fig. 15. The error range of Model1 is [−0.7%,0.7%]. If we set a
benchmark [−0.7%,0.7%] of errors, the most consistent performers

Fig. 11. Forecasting results of Model1.
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can be displayed intuitively amongst the employed models. All granular
windows in Model1 are within the range [−0.7%,0.7%] whilst only
93%, 81% and 90% of the granular windows in Model2, Model3 and
Model4 fall within this range, respectively. Some forecasting errors in
the contrastive models even exceed 1.5% and far exceeds the range of
0.7% in Model1. In other words, the error range of the proposed model
is minimal amongst all compared methods. Therefore, our proposed
model is relatively accurate and stable.

Some differences can also be observed in the training time of these

four models (25, 53, 106 and 36 s for Model1, Model2, Model3 and
Model4, respectively). The time spent on training data shows that the
proposed model outperforms all the other models. Model2 spends more
time than Model1 as it considers all variables. Meanwhile, Model3 has a
longer forecasting process compared with the other models as it needs
to read all information given its lack of a clustering process. Such long
forecasting time may also affect the forecasting accuracy due to some
extreme data. The time spent by Model4 does not greatly differ from
that of Model1, but this model shows a low forecasting accuracy.

Fig. 12. Forecasting results of Model2.

Fig. 13. Forecasting results of Model3.
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Therefore, our proposed hybrid model is superior to the other models in
terms of both forecasting accuracy and running time.

5.3. Statistical testing

We perform a non-parametric test (NPT) to test the statistical sig-
nificance of the proposed model. Although NPT is not as powerful as a
parametric test, this approach demonstrates its superiority when
making assumptions about the population distribution is impossible.
We perform NPT by comparing the proposed model with some con-
ventional methods, such as BP, SVM, ANN and WNN.

Firstly, we test the normal distribution of the results obtained by
each model. By performing the Shapiro–Wilk test, we find that the
obtained results do not follow a normal distribution. The Q–Q plots in
Fig. 16 also confirm this conclusion. We then perform the

Kruskal–Wallis test (KWT) to test the null hypothesis that none of the
groups is dominant over the others. The KWT results are presented in
Fig. 17, where the bold line represents the median, the height re-
presents the quartile distance and the highlighted circles represent the
outliers. Multiple comparisons of models are presented in Table 7, in
which columns 3 to 5 represent the minimum, group mean and max-
imum values of the models whilst the last column represents the p-value
obtained via KWT. The null hypothesis is rejected when α=0.05. In
other words, some differences can be observed between the proposed
model and the conventional methods, thereby verifying the statistical
significance of our proposed model.

6. Discussions

We perform several experiments to test the forecasting performance
of our proposed hybrid model and the results demonstrate that this
model outperforms the other models in terms of accuracy and running
time. Table 6 shows that the forecasting accuracy of Model1 is better
than that of Model2, but the differences in their accuracy are not ob-
vious, especially in cluster 1. This finding indicates that by inputting all
variables, the corresponding forecasting effect can be achieved after a
certain period. However, in terms of runtime, Model1 shows the
greatest advantage over the other models. The input variables analysed
by the influential factors can also help trace the source of pollution

Fig. 14. Forecasting results of Model4.

Table 6
Forecasting errors of models.

No. Cluster 1 Cluster 2 Cluster 3 Cluster 4 MAPE MAPE difference

Model1 0.1568 0.0611 0.1391 0.1449 0.1255 0
Model2 0.1568 0.0628 0.1601 0.1451 0.1312 0.0057
Model3 / / / / 0.7799 0.6544
Model4 0.1859 0.2447 0.2742 0.2642 0.2423 0.1168

Fig. 15. Granular window forecasting errors of the models.
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based on various information (e.g. weight), thereby helping us effec-
tively control air pollution. We verify the effectiveness of the clustering
algorithm by comparing Model1 with Model3. Fig. 13 and Table 6 show
that Model1 has a better forecasting performance compared with
Model3 due to the combination of the clustering algorithm in the
proposed model. The results obtained by K-means algorithm can
achieve higher similarity between data. The consistency between the
forecasting data and actual data can therefore be improved. At the same
time, the small datasets obtained by clustering meet the demand of SVM
for a small sample data volume. The reduction in the sample data vo-
lume will also inevitably shorten the runtime.

We also compare the performance of our proposed hybrid model
with another widely used model called GA-SVM. Table 6 and Fig. 15
highlight a forecasting performance gap between Model1 and Model4.

The MAPE values in each cluster of the proposed model are smaller
than those of Model4 because the GA algorithm has many parameters,
including crossover and mutation rates. The choice of these parameters
seriously affects the quality of the solution. Model1 also has a shorter
runtime compared with the GA–SVM model, thereby highlighting the
good convergence of the proposed hybrid model.

7. Conclusion

SAPCF has received much research attention due to its effectiveness
in controlling air pollution. This paper develops a hybrid model for
SAPCF based on influential factors analysis, K-means clustering, SVM
and PSO and then tests its performance by conducting a case study in
Temple of Heaven, Beijing. The forecasting process conducted in this

Fig. 16. Q–Q plots of the test models.
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study is summarised as follows. The data are initially pre-processed, the
influencing factors are analysed and the optimal combination of vari-
ables is inputted into the hybrid PSO–SVMmodel based on K-means. All
these processes sue the AQI as an example. We also perform a com-
parative analysis to verify the performance of our proposed hybrid
model. The comparison results highlight the advantages of our pro-
posed model in terms of forecasting accuracy and runtime. Meanwhile,
our statistical tests verify the statistical significance of our proposed
hybrid method. The major contributions of our work can be sum-
marised as follows:

(1) We introduce influential factors analysis into our proposed model to
obtain the optimal combinations of input variables and to help us
reduce the forecasting time and trace the sources of pollution.

(2) We introduce an unsupervised clustering algorithm into our model
to enhance the regularity of our modelling data. We then obtain a
high similarity dataset and reduce the amount of running data to
improve the forecasting accuracy of our proposed hybrid model and
shorten its running time.

(3) We develop a new PSO algorithm to obtain the optimal parameters
of SVM. Our proposed PSO–SVM model can realise automatic
parameter selection and overcome the premature convergence
problem of SVM.

The findings presented above reveal that our proposed APCF
strategy is novel and effective. However, there are still some short-
comings of this work. For example, temporary emergencies, such as
major holidays, can be used as influential factors and some seasonal
factors may also need to be considered. Future studies may investigate
how these factors can be considered comprehensively. Furthermore,
short-term forecasting models include but are not limited to the ones we
have mentioned. How to combine other effective methods and make
full use of their advantages also require further discussion.
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