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A B S T R A C T

The development of Hybrid Renewable Energy Systems (HRES) under the Distributed Generation (DG) paradigm
is the support for substantial reduction of CO2 emissions and for greater penetration of renewable energy
sources. The performance and reliability of HRES depend on the interaction between demand, generation,
storage and the energy management strategy. In this study a comparison between two different control strategies
is presented. In particular, a Rule Based Control (RBC) strategy has been compared with a more sophisticated
Model Predictive Control (MPC) for the management of an HRES for residential applications.
Results show that a HRES operating in a connected mode has potential to support grid balancing actions

giving economic benefits for both end-users and providers. Moreover, the MPC strategy gives a potential re-
duction of the unbalanced energy exchange with the grid and a more efficient use of the HRES components. The
MPC strategy allows thus for a more effective use of renewable sources if compared with a conventional RBC for
a Microgrid of same size, thus allowing for a greater penetration of renewable sources into the energy mix, or
equivalently, toward downsizing of storage and programmable source subsystems with economic benefits.

1. Introduction

1.1. Motivation and background

According to [1], the rapid industrialization over the past three
decades due to globalization, new technologies and increased house-
hold energy consumption of the urban population has resulted in an
unprecedented increase of the energy demand, and in particular elec-
tricity. This has led to the occurrence of a supply-demand gap in the
power sector. The scarcity of non-renewable energy resources, rising of
fuel prices, harmful emissions from fossil fuel combustion and the need
for investments on infrastructure has given weak sustainability of en-
ergy production to meet the demand. As a possible solution, the De-
centralized Energy Planning (DEP) has become one of the main alter-
natives considered. The evolution of the DEP paradigm is directly
affected by five main factors, as reported by the IEA [2], and namely the
developments in distributed generation technologies, the constraints on
the construction of new transmission lines, the increased customer
demand for highly reliable electricity, the electricity market liberal-
ization and the concern about climate changes.
In this picture, micro-grids (MGs) can be considered as the “building

blocks” of smart grids. In general, these are characterized by the in-
tegration of different DERs (Distributed Energy Resources), such as
micro-turbines, photovoltaic (PV) arrays and other renewable or non-

renewable sources together with energy storage systems (batteries,
energy capacitors), as well as deferrable (e.g., electric vehicles) and
non-deferrable loads at the distribution hierarchical level [3]. In a MG
both demand-side and supply-side resources are allowed to exchange
energy with the grid. From the customer’s point of view, MGs may be a
cheap alternative to supply both thermal and electric energy. On the
other hand, from the grid’s management point of view, a MG can be
seen as a controlled unit within the power system operated as a single
load/generator. The grid operator may send emergency signals to the
MG(s) requesting an increase/decrease of the power supplies/de-
manded depending on the needs of the network, supporting the end-
users to meet the requests through incentives. The interaction with the
smart-building is key for the maximization of benefits, the bidirectional
energy flux feature and data fluxes among those, enabling the colla-
boration of consumers as a “prosumers”. The customer may thus act as a
producer by selling the surplus of the energy produced toward the grid.
The demand side actions for smart buildings in a microgrid focus are
based on Demand Response (DR) strategies allowing for an interaction
between the consumers and the utility [4,5].
Consumers can range from smaller scale such as residential apart-

ments up to industrial buildings. In fact, during the last decade build-
ings have become major energy consumers over the world as they
consume around 40% of the total end-use energy [6]. Thus, energy
efficiency measures in buildings, including smart technologies and the
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interaction with the smart-grid, are considered essential for the re-
duction of emissions and carbon footprint, supporting the RES pene-
tration as well [7]. The need for an efficient Energy Management
System (EMS) to supervise and monitor the energy fluxes in a building
arises, whenever more than one energy source is used to supply a given
load profile [8,9]. EMS and smart meters are two key components to
implement effective DR control actions [10–12].

1.2. Literature overview

Few studies have been focused on the use of DR strategies for the
optimization of given objectives under the control of EMS. In [13] an
algorithm has been developed for optimal scheduling under dynamic
thermal and electrical power profile constraints. The EMS developed
considers a suitable thermal model to optimally program power con-
sumption tasks. Özkan [14] presented a power management scheme
with a Rule-Based Control (RBC) algorithm over smart electrical ap-
pliances to reduce electricity cost and smooth the peak of demand. Xue
et al. [15] presented an interactive power demand management
strategy for the thermal load of single buildings with a smart grid in-
tegrating renewable energy. Pascual et al. in [16] tested an energy
management strategy in a full scale residential MG, by means of con-
tinuous operation under real conditions with the aim of minimizing
peak and fluctuations of power exchanged with the main grid. Results
show that the combination of electric and thermal storage systems with
controllable loads is a promising technology to maximize the penetra-
tion level of renewable energies in the electric system. Several works
have been proposed to evaluate the performance of multi-agent based
optimization systems [17–19]. Yoo et al. in [17] proposed control
schemes consisting of two layers of decision-making procedures. In the
bottom layer, smart agents decide the optimal operation strategies of
individual MG components. In the upper layer, the microgrid central
coordinator (MGCC) manages multiple agents so that the MG can meet
the load reduction requested by the grid operator. Lim et at [18] de-
veloped and tested a distributed load-shedding system for agent-based
autonomous operation of a MG. Authors in [20] explored the peculia-
rities of a Fuzzy-logic controller for the management of wind turbine
(WT) doubly fed induction generators with PV and fuel cell hybrid
power sources system along with hydrogen storage hybrid energy
system, showing the effective and robust operation of the proposed
micro-grid in providing better power quality and uninterrupted service.
Model Predictive Control (MPC) strategies have been widely con-

sidered for efficiently optimizing MG operations while satisfying a time-
varying request and operation constraints. In [21] the design of a MPC
strategy has been proposed for efficient electric energy management in
a domestic environment. They formalized the problem as a linear
programming problem controlling the HVAC system to optimize a
trade-off between user comfort and energy cost considering thermal
comfort constraints. Authors in [22] used the MPC strategy dealing
with the energy-water management in urban households to minimize
the maintenance costs of the pump. The authors compared the open
loop optimal control model and the closed-loop MPC showing the

robustness of the latter in minimizing the pumping costs while meeting
the customer demand. The method has been applied in [23] to an ex-
perimental MG located in Athens, Greece showing the feasibility and
the effectiveness of the proposed approach. Chen et al. [24] used sto-
chastic and robust optimization to evaluate the real-time price-based
DR management for household applications. In [25], the authors used a
Mixed Integer Linear Programming (MILP) framework for the devel-
opment of house EMS applying a DR strategy and to design systems
from a techno-economical perspective. In general, special focus needs
to be paid to the control of the Electric Storage System (ESS) whenever
PV, or other non-programmable renewable energy sources (RES) are
used in the MG. In their analysis, Dagdougui et al. [26] adopted MPC
for a system model integrated to a dynamic decision model to optimize
a complex hybrid system with RES. Lu et al. [27] used a mixed-integer
nonlinear programming approach to solve optimization scheduling
problems of energy management systems in a building with integrated
energy generation and thermal storage. The MPC has been successfully
used to implement DR for building heating systems in several works
[28] showing its robustness and feasibility to minimize the objective
functions proposed. One of the key aspects to fully exploiting the MGs’
potential highlighted by the abovementioned works is the feature of
taking into account the intrinsic fluctuations of the RES availability
[29] and of load demand.

1.3. Contribution of the paper

In the context depicted, this work is focused at evaluating the
capabilities of a household HRES to serve also as ancillary service to-
ward the grid. The demand profile has been accurately represented
according to typical household standards, accounting for both thermal
and electric load. Detailed and quantitative comparison in terms of
unbalance energy exchanged with the grid and self-consumption index
is proposed for a simple (RBC) and a more sophisticated (MPC) con-
trolled HRES compared with a standard prosumer reference case.
Weather and load forecasting techniques are used to pre-optimize in the
EMS the energy fluxes of all the HRES sub-components to move the
deferrable loads whenever high RES availability occurs. The mini-
mization of the objective function to be targeted has thus been defined
as a multi-purpose optimization procedure toward the increase of
subsystems durability, operational costs and capabilities of providing
ancillary services. The model has further been applied to understand
the effect of system design (mainly sizing of the different subsystems)
on performance, showing the potential of the proposed strategy for
components downsizing.

2. Hybrid renewable energy system configuration

The Hybrid Renewable Energy System (HRES) considered for the
analysis (Fig. 1) includes a PV power plant of 5 KWp, connected to the
Direct Current (DC) bus via a Maximum Power Point Tracker (MPPT)
charger and DC/DC converter, coupled with a 225 Ah battery energy
storage system operating at a nominal voltage of 48 V. The Proton

Nomenclature

(PEM) FC (Proton Exchange Membrane) Fuel Cell
AC Alternative Current
BESS Battery Energy Storage System
DC Direct Current
DEP Decentralized Energy Planning
DER(s) Distributed Energy Resources
DG Distributed Generation
DR Demand Response
EMS Energy Management System

ESS Electric Storage System
HRES(s) Hybrid Renewable Energy System(s)
LCOE Levelized Cost Of Energy
MG(s) Microgrid(s)
MGCC Microgrid Central Coordinator
MILP Mixed Integer Linear Programming
MPC Model Predictive Control
MPPT Maximum Power Point Tracker
PV Photovoltaic
RBC Rule Based Control
RES Renewable Energy Sources
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Exchange Membrane Fuel Cell (PEM FC) has a power size of 1.2 kW at
full load, connected to the DC bus via a DC/DC converter. The GRID is
connected to the DC Bus via an AC/DC converter and has a peak power
of 6 kW. The DC/DC and AC/DC converters were considered ideal for
this test, i.e. losses have been neglected. The design of the HRES has
been defined in previous works [30], where the details are reported.
System sizing allows for minimizing the operational and installation
costs referring to a standard Italian household load profile met with a
Hybrid Renewable Energy System according to a RBC strategy. The
design has been then perturbed, in the second part of the proposed
work, to highlight room for further optimization.
Special focus has been given to the definition of the residential load,

with typical Italian household characteristics and an energy consump-
tion over the year of 4MWh. Due to the lack of historical data, daily
simulations of the load profile of a typical house have been carried out
for a period of 4 years to define the expected load profile. The load
profiles considered have been defined with a stochastic generator
whose schematic is reported in Fig. 2 [31]. The load profile is generated
depending on weather data and related probability to use a certain
appliance. Then, a random number generator has been used to define
the periods of operation of the different appliances according to both
historical data and probability of use. The procedure has been repeated
for each appliance in the household. Energy consumed by common
appliances have been taken into account using real consumption

profiles based on measurements carried out in [32] for lighting, electric
boiler, electric oven, refrigerator, microwave oven, PC, TV, dishwasher,
washing-machine and dryer. The residential load profile has been cal-
culated for each day of the 4 simulated years and used as expected load
in the EMS.

3. Control strategies

3.1. Rule-based control

The RBC strategy is based on a set of rules of priority use to supply
current at the load, and further rules based on the current state of single
sub-systems. More in detail, from the supply side, the PV power plant
has priority over the battery pack, the FC and the GRID; on the other
hand, from the demand side, the user load has priority over the battery
pack in case of RES availability from the load consumption side. The
subsystems are all connected in parallel to the DC-bus, and therefore
the order of priority is given through the operating voltage of each
component: the higher the value, the higher the priority. The voltage
values used for the analysis are the same defined in previous studies
[33–36].
In particular, four different set-point values have been set for the

characterization of the system:

• Vset1 – is the minimum voltage allowed for the BESS discharge. It
has been set at 46 V for the specific BESS technology used.
• Vset2 – is the nominal DC-bus voltage. Therefore it is the operative
voltage for both grid and FC. For this study it has been set at 48 V.
• Vset3 – is the reference voltage value for the PV operation. It has
been set at 49 V.
• Vset4 – is the floating voltage of the BESS that is set at 54 V.

A threshold power value to control the switch between FC and GRID
has been defined. In particular the analysis of the Levelized Cost Of
Energy (LCOE) tells that the FC system costs significantly drop at about
900 operating hours per year, slightly increasing beyond that (Fig. 3).
The FC control strategy has thus been defined to have it activated only

Fig. 1. MicroGrid (MG) layout.

Fig. 2. Load generation model flow chart [31].
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if:

<P P X PLOAD PV FC (1)

where PPV is the actual power produced by the PV panels, PLOAD is the
load instantaneous requested by the users, PFC is the nominal power of
the FC and X is a parameter chosen to ensure approximately 900 h
operation per year. Different simulations have been performed per-
turbing the FC size to evaluate X to obtain the desired FC operating
hours. Results in terms of operating hours depending on X are reported
in Fig. 4 according to different FC power sizes at equal PPV.
The overall RBC strategy is schematized in the flow-chart reported

in Fig. 5.

3.2. Model predictive control

The MPC strategy is operated through an optimization procedure
defining control commands in order to minimize – or maximize – an
objective function that is defined through modeling parameters.
The problem can be defined by a set of equations in the form:

= + + ++x Ax Bu B d B wk k k d k w k1

=y Cxk k (2)

where yk is the output of the system, xk is the current state, uk is the
control variable, dk is an external disturbance and wk represents un-
certainties. The matrixes A, B, Bd, Bw andC model the system behavior.
Based on the initial state of the system and an estimation of the

external uncertain variables (i.e. for this study the weather and the
load), the MPC algorithm evaluates a set of control variables for a time
period defined between t (current state) and t+CP (where CP is the
control period). These control actions are then used to affect the be-
havior of the system at the time k+1 as input for the next optimization
process. The control variables are:

• the power purchased/sold from/to the grid;
• the power supplied by the FC;
• the binary variables required to control the system (e.g. to avoid
frequent/repeated FC start-up/stand-by status or simultaneous en-
ergy sold/purchased to/from the grid);
• the commands to defer loads.
The effectiveness of the optimization process is highly dependent on

the definition of the constraints and the objective function. The first are
required in order to ensure physical and technical feasibility of the
optimal solution found, while the latter defines the goals to be
achieved. For this study a minimization of the operating costs, taking
into account the unbalances, replacement, operating, and investment
costs is proposed as a target of the controller system.

The MG has been modeled by means of the power balance equation
here reported and implemented on a Matlab/Simulink based code:

= + +dS
dt

P P P Ppv fc grid load (3)

where S represents the energy stored in the battery pack, Ppv , Pfc are
respectively the power produced by the photovoltaic plant, the output
power of the fuel cell, while Pgrid and Pload represent the power ex-
changed with the grid and the electric load requested by the house.
A Mixed Integer Linear Programming (MILP) algorithm has been

used to solve the MPC strategy with a sampling time of 20min over a
rolling horizon mode to optimize a cost objective function in the form:

= ++
=

+ +
+ +

J x V x l x u( ) min ( ) ( , )k
u u u

f k N k
i

N

i k i k k i k|
0

1

| |
k k k k k N k| 1| 1| (4)

whereli are the operating costs during the optimization phase, and Vf is
the total cost of the system including maintenance during the period of
operation. In this study all the operating (energy purchased from the
grid, hydrogen cost, etc.) and capital costs have been considered as well
as the revenue for the energy sold and the grid balancing actions (more
details about definition of costs are reported in Section 4).
Technical constraints have been also implemented into the optimi-

zation procedure to ensure a smooth and regular operation of the
system.
To increase battery durability, the state of charge has been enforced

to range between 60% and 100% of the maximum battery charge
(Smin, Smax).

Smin ST Smax (5)

The power output of the fuel cell has been also limited into a given
range; other constraints have been defined to avoid simultaneous op-
eration of standby and operating mode and to count the number of FC
start-ups to be taken into account into the cost function. The general
formulation of the constraints is here reported:

×P P 0maxFC|t on/off|t (6)

+ ×P 300 0FC|t on/off|t (7)

+ 1on/off|t standby|t (8)

+ + = 0on/off|t standby|t startup|t on/off|t 1 standby|t 1 (9)

The grid has been modeled similarly. To limit the maximum power
at 3000W in both directions and to avoid simultaneous positive and
negative power flow, the following constrains have been defined:

×P 3000 0fromgrid|t fromgrid|t (10)

×P 3000 0togrid|t togrid|t (11)

+ 1fromgrid|t togrid|t (12)

Fig. 3. Levelized Cost Of Energy as a function of Fuel Cell operating hours.

Fig. 4. Fuel Cell operating hours as a function of the parameter X in Eq. (1).
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+P P P P, , , 0fromgrid|t togrid|t unb |t unb |t (13)

+ =+P P P P Pfromgrid|t togrid|t unb |t unb |t gridref|t (14)

The last equation forces the grid exchange power profile to attend
the reference one; in case it cannot be maintained, two variables (Punb
+|t, Punb−|t) are defined to apply corresponding costs. The reference
function Pgridref|t can be defined according to an expected production
from renewables. For control purposes it may thus be assumed that a
minimization of the unbalance power needs to be pursued.
Three appliances have been implemented as controlled deferrable

loads, namely the dishwasher, the washing machine and the dryer; it is
further considered that a shift of their start-up within 24 h from the
activation signal will not affect significantly the comfort of the end-
user. Each appliance has been modeled by means of two binary vari-
ables: one that controls the appliance status and one recording the
appliance start-up. In fact, when the appliance activation is requested
by the user, its scheduling is inserted into the timeline (t) within the
forthcoming control period; its activation would depend on the fol-
lowing factors:

• Availability of RES (PV power);
• Availability of Storage (Battery);
• Grid reference profile;
• Cost of energy.
The appliance must be activated within a maximum period of 24 h

after its request. The ones with the shortest time to reach the 24 h’
period would have higher priority.
Specific constraints have been added, as follows:

• The appliance can be activated only once a day (if used);
• The dryer can only be activated after the washing machine cycle;
• The number of weekly uses of an appliance is defined on a statistic
base;
• After an appliance is turned-on, the cycle cannot be turned-off.
The description of the matrixes used for the implementation of the

method is reported in Appendix A.
The MPC concept allows to know in advance the behavior of the

system during the control horizon. The knowledge (or forecast) of en-
vironmental parameters and the load requested by the house are es-
sential information to predict production from RES and to estimate the

load profile. Data provided by CNMCA (Italian Air Force Meteorological
Service) [37] have been used for the radiation forecast in Rome/Italy; a
weather station, mounted in the building of Industrial Engineering at
the University of Rome “Tor Vergata”, has been used to measure the
actual environmental parameters to be used as input data for the HRES
model.
As far as the load is concerned, its forecast does not take into ac-

count deferrable loads and typical profiles have been built by dedicated
studies and through historical consumption data.

4. Case description

Three different test cases have been studied:

• A Standard Prosumer case where only LOAD, PV and GRID are
considered;
• A MG controlled by means of a RBC strategy;
• A MG controlled by means of a MPC strategy.
For all the different cases the same base load profile has been chosen

to have a fair comparison of results. In this way, in fact, the overall
energy consumed is same for all the configurations analyzed.
Grid costs have been evaluated according to the Italian market

prices for users in tariff D3 [38]. Electricity cost is 0.30 €/kWh when
withdrawals occur on weekdays from 8:00 am to 7:00 pm (F1 period),
otherwise it is 0.25 €/kWh (F2/F3 period1), tax included. The un-
balance value depends on several factors depending on local issues, and
thus for this study, the unbalance values have been restricted to energy
amounts expressed in kWh, assuming the value of 0.195 €/kWh as
suggested in [39]. Standard commercial battery costs have been eval-
uated for the battery pack at 1000 €/KWh with a duability of about
10,000 cycles. Fuel costs have been assumed at 0.8 €/Scm, with a
heating value of 9.6 kWh/Scm, resulting in a price of 0.0833 €/kWhe
produced by the fuel cell. A PEM FC system of 1.2 kW with a durability
of 6000 h and capital costs of about 14.000€ has been considered and
stack replacement costs of about 3000€. Moreover, the number of fuel
cell starts and stops strongly affects the fuel cell durability, and

Fig. 5. RBC strategy flow-chart.

1 F2 from 7 a.m. to 8 a.m. and from 7 p.m. to 11 p.m. weekdays – and from
7 a.m. to 11 p.m. over the weekend; while F3 from 12 p.m. to 7 a.m. and from
11 p.m. to 12 p.m. from Monday to Saturday and all over the Sunday and
Holidays.
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therefore, every FC shutdown has been assumed affecting the lifetime
by 3 steady hours operation time [31].

5. Results: Comparison of Control Strategies

The amount of energy exchanged with the grid for the three dif-
ferent strategies for each time cost zone is shown in Fig. 6. The MPC
allows reducing the energy fluxes with the grid, and in particular the
energy consumed during the F1 (most expensive) period of the day. In
the case of the standard prosumer, the PV energy is hardly consumed as
testified by the almost even balance between energy sold and purchased
from the grid. The use of storage system already improves performance
with the baseline RBC strategy, and even better benefits are demon-
strated by using MPC features thanks to load scheduling and weather/
load forecasts. In detail, an overall reduction of 42% and 10.5% has
been achieved using the MPC strategy if compared with the Standard
Prosumer and the RBC strategy respectively. The reduction is mainly
obtained within the more expensive F1 period (almost 71% for both the
strategies against the Standard Prosumer).
Moreover, the HRES solutions gave a greater amount of the self-

consumed energy quota produced by local RES with a consequent re-
duction of the energy sold to the grid for both the proposed strategies.
The increase is in the order of 50% for the RBC if compared with the
Standard Prosumer, with an additional 8.5% of the MPC strategy if
compared with the RBC case.
Power profiles are provided in Figs. 7–9 for the three different cases

tested referring to one of the simulated days in order to explain the
behavior. The standard prosumer consumes energy at the expense of
the grid whenever a demand of energy arises, and thus even a small
over-production from PV cannot be self-consumed, as well as the excess
is given to the grid. As the RBC strategy does not feature any forecast of
system trajectory over time (Fig. 8), the grid reference ideally ex-
changed with the grid (GRID ref) and load profiles do not match,
showing inefficiencies in the use of the storage system that transfers
fluctuations of production from RES to the grid once it is fully charged
or fully discharged.
The use of the MPC strategy (Fig. 9) allows to reduce and smooth

the energy exchange profile with the grid, thus not overloading it and
absorbing the fluctuations over time of load and RES production pro-
files. The profiles of energy purchased/sold from/to the grid are plotted
over time in Figs. 10–12 to further clarify the mechanism. Consump-
tions are effectively moved by the MPC strategy toward night hours, or
whenever there is an excess of production from RES, in order to better
match the reference profile. Energy consumptions not attending the
GRID Reference profile are thus discouraged.

6. Results: effect of MPC control strategy on sizing

Once the benefits of the MPC have been highlighted in terms of
prosumer-grid interaction the analysis has been extended to study the
effect of the control strategy on system sizing. Different values of PV
peak power, FC peak power and Battery Energy Storage System (BESS)
capacity have been tested in order to analyze the benefits of im-
plementing a MPC strategy compared to the RBC one. In order to have
more general parameters, all the components sizes have been reduced
to a dimensionless form referring to load consumption. In particular,
three indexes have been used for the PV system, FC system and BESS
sizes, defined as:

=I E
Esize

PV

LOADy

=BESS E
Esize

BESS

LOADavg

=FC P
Psize

FC

LOADavg

where EPV is the theoretical energy that can be produced over one year
by the considered PV plant, ELOADy is the total energy consumed by the
load over one year, EBESS is the energy stored the BESS, ELOADavg is the
average daily energy consumption, PFC is the power of the installed FC
and PLOADavg is the average daily power of the load.
According to the definitions provided, greater index values corre-

spond to subsystem oversizings if compared with the energy consumed
at the load.
Figs. 13–22 show different performance parameters of the HRES as

functions of the subsystem size and control strategy. For both the
control strategies tested, for each of the four different Isize evaluated
(19.5556; 31.28896; 46.9334; 70.4), 12 monthly simulations have been
run by varying BESSsize and FCsize ranging between 0.6587–2.6348 and
2.4701–5.8184 respectively (in detail 0.6587; 1.2938; 1.9255; 2.6348
for the BESS size and 2.4701; 3.6368; 5.8184 for the FC size). A total
number of 96 cases for each month have been carried out.
Results have been summarized in the surface plots (see following

Figs. 13–22 and Tables 1–10) to show the impact of the control strategy
on system performance under different components’ sizing.
Fig. 13 shows the energy purchased from the grid for each design

combination tested for both RBC (red) and MPC/MILP (purple) strate-
gies for the month of January (Winter – left) and the month of July
(Summer – right) at the lowest Isize considered. It can be noted in the
plots that the MPC strategy offers benefits in terms of energy purchased,
especially during the winter period. In fact, with low radiation, the
capability of forecasting the weather and the load profile helps con-
trolling more effectively the storage system. On the other hand, the RBC
control strategy that is based only on instant control actions gives sa-
turation with respect to battery capacity already at the smallest BESS
sizes. Further advantages, although of lesser quantitative importance,
can be noted for the summer case where the MPC gives a reduction of
the energy purchased from the grid for all the systems considered.
However, in this case, greater BESS capacity values may be used ef-
fectively also with a RBC strategy. For both the strategies, the effect of
the FC on the energy purchased from the grid is quite negligible as the

Fig. 6. Amount of energy purchased from GRID per strategy (top), amount of
energy sold to GRID per strategy (bottom).
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Fig. 7. Power profile of LOAD demand, PV production and actual power exchanged with the grid compared against the GRID reference – Standard prosumer case.

Fig. 8. Power profile of LOAD demand, PV production, FC production and actual power exchanged with the grid compared against the GRID reference, on the right
axis the Battery State of Charge – RBC case.

Fig. 9. Power profile of LOAD demand, PV production, FC production and actual power exchanged with the grid compared against the GRID reference, on the right
axis the Battery State of Charge – MPC case.
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energy produced by the FC is more expensive than the energy pur-
chased from the grid for most of the time. The FC plays on the other
hand a key role for the stabilization of fluctuations of the energy ex-
changed with the grid and, thanks to the more effective utilization of
the BESS with the MPC strategy, it can be downsized with evident
economic advantages.
Moving towards the higher Isize values (Fig. 14), similar considera-

tions can be drawn. In general, a reduction of the energy purchased
from the grid may be obtained for both the control strategies; also in
this case, the MPC allows for a maximization of the storage effective-
ness as the energy purchased is reduced. A slight decrease of the energy
purchased can be noted also for the RBC case in winter; however, due to
the relevant uncertainties of weather conditions in such cases, the BESS
capacity cannot be exploited at the utmost with the RBC strategy.
The benefits of forecasting both weather and load for the MPC

strategy in comparison with the RBC one, can also be noted looking at
the energy stored and supplied by the BESS for the months of January

and July at same PV plant sizes shown so far (Figs. 15–18).
Fig. 15 – on the left – confirms the predictions looking at the energy

purchased by the grid on the BESS capacity utilization; increasing the
BESS size does not affect the energy stored due to failure of the RBC
strategy to compensate for the weather uncertainties. Without these
capabilities the system is not able to maintain a minimum capacitance
available at the battery whenever the radiation energy is available.
With greater availability of radiation energy (during the summer case –
on the right), BESS capacitance is exploited more effectively, although
the positive effects of the MPC strategy are still evident.
Similar considerations can be drawn for the winter case at the

highest Isize (Fig. 16 – left) values, while for the summer case at the
same PV sizing a different trend can be noted. At the smaller BESS sizes
the energy stored is greater for the RBC strategy than for the MPC one.
This can be explained by the application of the DR strategy for the MPC
to move over time specific deferrable loads in periods of time where the
power can be produced and consumed by the prosumer simultaneously.

Fig. 10. Standard Prosumer grid exchanged profile vs reference profile.

Fig. 11. RBC grid exchanged profile vs energy vs reference profile.

Fig. 12. MPC grid exchanged profile vs reference profile.
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Fig. 13. Energy purchased by the grid for each design combination for both RBC and MPC/MILP strategies for the Winter (left) and the Summer (right) cases at the
lowest Isize.

Fig. 14. Energy purchased by the grid for each design combination for both RBC and MPC/MILP strategies for the Winter (left) and the Summer (right) cases at the
highest Isize.

Fig. 15. Energy stored in the battery system for each design combination for both RBC and MPC/MILP strategies for the Winter (left) and the Summer (right) cases at
the lowest Isize.

Fig. 16. Energy stored in the battery system for each design combination for both RBC and MPC/MILP strategies for the Winter (left) and the Summer (right) cases at
the highest Isize.
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Fig. 17. Energy supplied by the battery storage system for each design combination for both RBC and MPC/MILP strategies for the Winter (left) and the Summer
(right) cases at the lowest Isize.

Fig. 18. Energy supplied by the battery storage system for each design combination for both RBC and MPC/MILP strategies for the Winter (left) and the Summer
(right) cases at the highest Isize.

Fig. 19. Energy sold to the main grid for each design combination for both RBC and MPC/MILP strategies for the Winter (left) and the Summer (right) cases at the
lowest Isize.

Fig. 20. Energy sold to the main grid for each design combination for both RBC and MPC/MILP strategies for the Winter (left) and the Summer (right) cases at the
highest Isize.
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Going towards greater BESS sizes, this effect is hidden by the greater
BESS capacitance. Moreover, taking into account all the operating costs
considered in the optimization process, part of the energy produced
from RES is directly sold to the grid in the cheaper periods.
All the considerations stated so far can be straightened looking at

the BESS to supply energy the load (Figs. 17 and 18). In all the cases,
the MPC allows for having a more effective use of the BESS maximizing
RES production as well.
A general trend for the reduction of the energy sold to the grid can

be noted for both the control strategies referring to the whole set of
design cases (Figs. 19 and 20). However, the occurrence of rather

different trends is evident for each case studied. Looking at the winter
case for the lower PV plant size, it can be noted that the MPC allows for
a complete self-consumption of the energy produced from RES for all
the BESS and FC sizes tested. This has two different positive effects:
from one hand it may promote RES penetration with a greater pro-
duction. From the other hand it helps minimizing the grid overload
decreasing the investment on grid infrastructures.
Similar considerations can be done for the summer case at the

lowest Isize and the winter case at the highest Isize. For both the cases the
MPC allowed for a minimization of the energy sold to the grid enhan-
cing the self-consumption index of the MG system. A threshold value is

Fig. 21. Self-consumed index for each design combination for both RBC and MPC/MILP strategies for the Winter (left) and the Summer (right) cases at the lowest
Isize.

Fig. 22. Self-consumed index for each design combination for both RBC and MPC/MILP strategies for the Winter (left) and the Summer (right) cases at the highest
Isize.

Table 1
Energy purchased by the main grid for each design combination for both RBC
(red) and MPC/MILP (purple) strategies for the Winter (top) and the Summer
(bottom) cases at the lowest Isize.

Energy from Grid [kWh] – left RBC | right MPC - Winter

I_size= 19.5556
BESS_size

0.6587 1.2938 1.9255 2.6348

FC_size
2.4701 160.4 | 96.60 159.3 | 29.35 159.0 | 0.304 153.4 | 0
3.6388 141.2 | 88.58 140.5 | 20.84 140.4 | 1.703 135.1 | 0
4.9402 134.4 | 81.77 133.9 | 20.78 133.9 | 1.290 128.5 | 0

Energy from Grid [kWh] – left RBC | right MPC - Summer

I_size= 19.5556
BESS_size

0.7758 1.3174 1.9761 2.6348

FC_size
2.9092 151.9 | 78.87 95.64 | 40.26 29.76 | 1.547 7.338 | 0
4.3638 147.9 | 67.82 95.55 | 23.02 29.76 | 0.886 7.338 | 0
5.8184 147.4 | 67.38 95.47 | 19.30 29.76 | 0.205 7.338 | 0

Table 2
Energy purchased by the main grid for each design combination for both RBC
(red) and MPC/MILP (violet) strategies for the Winter (top) and the Summer
(bottom) cases at the highest Isize.

Energy from Grid [kWh] – left RBC | right MPC - Winter

I_size= 70.4
BESS_size

0.6587 1.2938 1.9255 2.6348

FC_size
2.4701 148.8 | 57.56 99.58 | 13.53 89.54 | 0.053 60.96 | 0
3.6388 134.3 | 48.30 95.70 | 8.651 90.03 | 0.367 62.70 | 0
4.9402 130.1 | 49.01 93.40 | 8.077 89.46 | 0.000 61.33 | 0

Energy from Grid [kWh] – left RBC | right MPC - Summer

I_size= 70.4
BESS_size

0.7758 1.3174 1.9761 2.6348

FC_size
2.9092 124.9 | 65.78 44.41 | 20.72 0 | 0 0 | 0
4.3638 124.6 | 63.58 44.41 | 19.19 0 | 0 0 | 0
5.8184 124.6 | 63.91 44.41 | 18.05 0 | 0 0 | 0

L. Bartolucci et al. Electrical Power and Energy Systems 107 (2019) 282–297

292



Table 3
Energy stored in the battery storage system for each design combination for
both RBC (red) and MPC/MILP (violet) strategies for the Winter (top) and the
Summer (bottom) cases at the lowest Isize.

Energy to BESS [kWh] – left RBC | right MPC - Winter

I_size= 19.5556
BESS_size

0.6587 1.2938 1.9255 2.6348

FC_size
2.4701 37.13 | 113.0 37.04 | 183.7 36.95 | 202.7 36.89 | 206.6
3.6388 38.34 | 111.7 38.12 | 163.2 38.11 | 188.2 38.08 | 202.2
4.9402 39.05 | 108.9 38.80 | 163.8 38.60 | 221.3 38.61 | 220.3

Energy to BESS [kWh] – left RBC | right MPC - Summer

I_size= 19.5556
BESS_size

0.7758 1.3174 1.9761 2.6348

FC_size
2.9092 149.5 | 195.8 194.2 | 240.3 207.5 | 239.7 207.5 | 233.7
4.3638 148.4 | 196.4 194.2 | 241.8 207.5 | 236.9 207.5 | 232.2
5.8184 148.5 | 196.3 194.2 | 248.5 207.5 | 244.2 207.5 | 231.6

Table 4
Energy stored in the battery storage system for each design combination for
both RBC (red) and MPC/MILP (violet) strategies for the Winter (top) and the
Summer (bottom) cases at the highest Isize.

Energy to BESS [kWh] – left RBC | right MPC - Winter

I_size=70.4
BESS_size

0.6587 1.2938 1.9255 2.6348

FC_size
2.4701 134.9 | 182.7 180.7 | 213.2 190.9 | 219.7 191.1 | 228.6
3.6388 138.1 | 179.5 181.0 | 220.6 191.1 | 228.6 191.6 | 213.6
4.9402 139.0 | 182.7 181.1 | 222.9 191.2 | 230.5 191.7 | 235.0

Energy to BESS [kWh] – left RBC | right MPC - Summer

I_size=70.4
BESS_size

0.7758 1.3174 1.9761 2.6348

FC_size
2.9092 544.6 | 423.9 597.2 | 574.2 624.6 | 629.7 620.6 | 692.6
4.3638 544.6 | 429.8 597.2 | 570.1 624.6 | 653.7 620.6 | 678.0
5.8184 544.6 | 419.5 597.2 | 578.6 624.6 | 639.7 620.6 | 640.8

Table 5
Energy supplied by the battery storage system for each design combination for
both RBC (red) and MPC/MILP (violet) strategies for the Winter (top) and the
Summer (bottom) cases at the lowest Isize.

Energy from BESS [kWh] – left RBC | right MPC - Winter

I_size= 19.5556
BESS_size

0.6587 1.2938 1.9255 2.6348

FC_size
2.4701 31.91 | 109.1 36.99 | 173.4 40.35 | 190.3 52.01 | 193.9
3.6388 35.58 | 105.3 40.87 | 155.4 44.08 | 177.9 55.78 | 190.1
4.9402 37.67 | 101.2 43.40 | 155.4 46.13 | 206.8 57.66 | 206.0

Energy from BESS [kWh] – left RBC | right MPC - Summer

I_size= 19.5556
BESS_size

0.7758 1.3174 1.9761 2.6348

FC_size
2.9092 51.17 | 96.47 118.9 | 196.1 185.4 | 219.8 207.8 | 217.0
4.3638 52.90 | 94.55 118.9 | 197.5 185.4 | 218.7 207.8 | 211.4
5.8184 53.02 | 98.57 118.9 | 209.2 185.4 | 220.2 207.8 | 209.6

Table 6
Energy supplied by the battery storage system for each design combination for
both RBC (red) and MPC/MILP (purple) strategies for the Winter (top) and the
Summer (bottom) cases at the highest Isize.

Energy from BESS [kWh] – left RBC | right MPC - Winter

I_size= 70.4
BESS_size

0.6587 1.2938 1.9255 2.6348

FC_size
2.4701 53.45 | 110.4 134.3 | 183.9 157.4 | 195.9 178.6 | 201.0
3.6388 60.07 | 104.1 137.3 | 191.6 157.6 | 197.2 179.9 | 186.9
4.9402 61.71 | 104.3 138.3 | 194.2 157.8 | 201.5 180.1 | 205.8

Energy from BESS [kWh] – left RBC | right MPC - Summer

I_size= 70.4
BESS_size

0.7758 1.3174 1.9761 2.6348

FC_size
2.9092 29.77 | 95.82 111.3 | 213.3 155.7 | 289.9 155.7 | 346.5
4.3638 30.06 | 92.01 111.3 | 213.6 155.7 | 295.9 155.7 | 318.7
5.8184 30.06 | 89.45 111.3 | 213.8 155.7 | 295.8 155.7 | 313.4

Table 7
Energy sold to the main grid for each design combination for both RBC (red)
and MPC/MILP (purple) strategies for the Winter (top) and the Summer
(bottom) cases at the lowest Isize.

Energy to Grid [kWh] – left RBC | right MPC - Winter

I_size= 19.5556
BESS_size

0.6587 1.2938 1.9255 2.6348

FC_size
2.4701 0.821 | 0 0.833 | 0 0.856 | 0 0.803 | 0
3.6388 0.332 | 0 0.327 | 0 0.323 | 0 0.325 | 0
4.9402 0.271 | 0 0.276 | 0 0.268 0 0.268 | 0

Energy to Grid [kWh] – left RBC | right MPC - Summer

I_size= 19.5556
BESS_size

0.7758 1.3174 1.9761 2.6348

FC_size
2.9092 58.75 | 35.88 13.34 | 2.167 0 | 6.811 0 | 0
4.3638 60.12 | 30.24 13.36 | 6.128 0 | 7.784 0 | 0
5.8184 59.92 | 33.93 13.36 | 8.252 0 | 6.110 0 | 0

Table 8
Energy sold to the main grid for each design combination for both RBC (red)
and MPC/MILP (purple) strategies for the Winter (top) and the Summer
(bottom) cases at the highest Isize.

Energy to Grid [kWh] – left RBC | right MPC - Winter

I_size= 70.4
BESS_size

0.6587 1.2938 1.9255 2.6348

FC_size
2.4701 57.67 | 28.38 10.96 | 1.750 0.006 | 0 0.140 | 0
3.6388 54.98 | 27.11 10.84 | 0.000 0.009 | 0 0.028 | 0
4.9402 54.57 | 29.82 10.99 | 0.000 0.019 | 0 0.067 | 0

Energy to Grid [kWh] – left RBC | right MPC - Summer

I_size= 70.4
BESS_size

0.7758 1.3174 1.9761 2.6348

FC_size
2.9092 493.1 | 663.7 440.4 | 549.3 412.9 | 542.1 416.9 | 535.6
4.3638 493.1 | 655.0 440.4 | 546.8 412.9 | 524.0 416.9 | 522.5
5.8184 493.1 | 663.2 440.4 | 537.3 412.9 | 537.9 416.9 | 554.4
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evident, above which, further increasing the BESS capacity, the energy
sold to the grid would be null. This design value is almost coincident for
both the control strategies.
An inversion of the trends commented can be noted for the summer

case at the higher Isize. In this scenario the minimization of the cost
function gives an inversion of the behavior of the system increasing the
energy flux to the grid during the cheaper periods. This leads to a
general greater value for the energy sold to the grid for the MPC
strategy if compared to the RBC one.
Complementary considerations can be drawn looking at the self-

consumption index for the cases studied where the previous explana-
tions are confirmed by the reported trends (Figs. 21 and 22).

7. Conclusions

In this paper the behavior of Hybrid Renewable Energy Systems
(HRESs) has been discussed, with special regard to the features of

integrating the production from Renewable Energy Sources (RES) with
storage systems and Fuel Cells (FCs) and to the final aim of enabling a
greater penetration of the Distributed Generation concept over the grid.
In particular, the energy management strategy to control the power

splitting among the different subsystems is key to get the most out of
HRES. Thus, the behavior of different system designs (in terms of power
sizes of the subsystems) has been studied referring to two control
strategies, namely RBC (Rule Based Control) and MPC (Model
Predictive Control) ones.
The results obtained allow to support the following conclusions:

• The simple integration of power systems to produce energy from
RES (typically PV systems) with battery systems and Fuel Cells, not
featuring any advanced control strategies, does not allow to max-
imize the HRES performance giving a reduction of the overall en-
ergy stored in the BESS up to 160 kWh per week in winter or an
increase of the energy purchased up to 150 kWh and 100 kWh per
week respectively in winter and summer at low Isize with respect to
the MPC strategy case.
• The Demand Side Management (DSM) feature, along with the im-
plementation of the MPC, is essential to improve system effective-
ness as the overall energy exchanged with the grid is, in fact, re-
duced of 42% and 10.5% for the energy purchased with respect to
the Standard Prosumer and the RBC solution, and of the 54% and
8.5% for the energy sold if compared with the Standard Prosumer
and the RBC cases respectively.
• HRESs featuring battery systems along with MPC strategy help re-
ducing the fluctuations at the end-user providing further benefits for
the grid operator.
• HRESs further featuring a FC system help mitigating grid unbalan-
cing issues especially if operated with advanced control strategies.
• The use of rather simple control strategies based on rules (RBC),
require oversizing of the different subsystems to have enough pro-
duction from RES, and give in general an overuse of the FC thus
increasing costs at equal level of performance. In the most favorable
case, the energy stored in the BESS has been increased by 460%
thanks to the use of the MPC strategy, with a consequent increase of
the self-consumed quota of production and getting the energy pur-
chased from the grid down to zero.

Table 9
Self-consumed index for each design combination for both RBC (red) and MPC/
MILP (violet) strategies for the Winter (top) and the Summer (bottom) cases at
the lowest Isize.

I selfconsumed [–] – left RBC | right MPC - Winter

I_size=19.5556
BESS_size

0.6587 1.2938 1.9255 2.6348

FC_size
2.4701 0.9898 | 1.0 0.9896 | 1.0 0.9893 | 1.0 0.9900 | 1.0
3.6388 0.9959 | 1.0 0.9959 | 1.0 0.9960 | 1.0 0.9959 | 1.0
4.9402 0.9966 | 1.0 0.9966 | 1.0 0.9967 | 1.0 0.9967 | 1.0

I selfconsumed [–] – left RBC | right MPC - Summer

I_size=19.5556
BESS_size

0.7758 1.3174 1.9761 2.6348

FC_size
2.9092 0.8283 | 0.8951 0.9610 | 0.9937 1.0 | 0.9801 1.0 | 1.0
4.3638 0.8243 | 0.9116 0.9609 | 0.9821 1.0 | 0.9772 1.0 | 1.0
5.8184 0.8248 | 0.9008 0.9610 | 0.9759 1.0 | 0.9821 1.0 | 1.0

Table 10
Self-consumed index for each design combination for both RBC (red) and MPC/MILP (violet) strategies for the Winter (top) and the Summer (bottom) cases at the
highest Isize.

I selfconsumed [–] – left RBC | right MPC - Winter

I_size=19.5556
BESS_size

0.6587 1.2938 1.9255 2.6348

FC_size
2.4701 0.8001 | 0.9017 0.9620 | 1.00 1.00 | 1.00 0.99 | 1.00
3.6388 0.8095 | 1.000 0.9624 | 1.00 1.00 | 1.00 0.99 | 1.00
4.9402 0.8109 | 1.000 0.9619 | 1.00 0.99 | 1.00 0.99 | 1.00

I selfconsumed [–] – left RBC | right MPC - Summer

I_size=19.5556
BESS_size

0.7758 1.3174 1.9761 2.6348

FC_size
2.9092 0.5996 | 0.4611 0.6424 | 0.5539 0.6647 | 0.5599 0.6615 | 0.5651
4.3638 0.5996 | 0.4681 0.6424 | 0.5560 0.6647 | 0.5745 0.6615 | 0.5757
5.8184 0.5996 | 0.4615 0.6424 | 0.5638 0.6647 | 0.5632 0.6615 | 0.5498
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Appendix A

The objective function (4) is solved using the following canonical form
min f XT

subjected to

=
AX b

A X b
L X U

eq eq

b b

where the vector X contains the control variables associated with the appliances, the grid, the battery and the fuel cell; the vector f T is composed
of the cost related to each control variable; Lb and Ub define the upper and lower limits for the values of the elements of X.
The linear equality constraint (3) can be represented by =A X beq eq1, 1, where

= + + +A A A A A A A A A A A A A[ 0 0]eq wm dw d wm dw wm n dw n ch dch fc Nx a b c n N1, ,1 ,1 ,1 ,2 ,2 , , fromgrid togrid (( ) 18 )

=b E[ ]eq disp Nx1, 1

where

• N is the number of time steps a day
• Abuy, Asell, Ach, Adch, Afc are NxN identity matrices
• Awm, Adw, Ad are the shifting matrices of the n appliances with dimensions Nxa, Nxb, Nxc respectively. They are defined according to their power
profile
• Edisp is defined as the difference between the energy production and the load.

The single activation a day of the appliances can be expressed by =A X beq eq2, 2, :

=

+ + +

A

A
A

A

A
A

A

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0

0 0 0 0 0 0 0 0

eq

wm

dw

d

wm n

dw n

d n

2,

1,1

1,1

1,1

1,

1,

1, nx((a b c)n 18N)

=b eq

pr

pr

nx

2,

,1

,2

1pr n,

where

• pr is the binary variable representing the activation request of the user
• Awm1, Adw1, Ad1 are ones’ vectors of dimension a, b, c respectively

The energy balance of the battery can be expressed in the form =A X beq eq3, 3, :

=
+ + +

A SOC0 0 0 0eq
A
E

A
E Nx a b c n N

3,
(( ) 18 )

ch
c

dch
c

=SOC

1 0 0 0 0
1 1 0 0 0

0 1 1 0 0

0 0 0 0 1 1 NxN

=b
SOC

0

0

eq

Nx

3,

0

1

The equality constraints (9) can be represented as =A X beq eq4, 4,

= + + +A A A AA [0 0 0 0]fc on off fc standby fc startup fc shutdown NX4,eq , / , , , ((a b c)n 18N)

=b
0

0
eq

Nx

4,

1
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= =A A

1 0 0 0 0
1 1 0 0 0

0 1 1 0 0

0 0 0 0 1 1

1 0 0 0 0
1 1 0 0 0

0 1 1 0 0

0 0 0 0 1 1

fc on off

NxN

fc standby

NxN

, ,

where A A,fc startup fc shutdown, , are NxN identity matrices.
The definition of the power unbalance (14) is expressed by =A X beq eq5, 5,

= + + +
+A A A A A[0 0 0 0 ]eq fromgrid togrid unb unb Nx5, ((a b c)n 18N)

=b E[ ]eq grid ref Nx5, _ 1

where +A A,unb unb are NxN identity matrices.
Then, the canonical linear equality constraint =A X beq eq becomes

=

+ + + + +

X

b
b
b
b
b
b

A
A
A
A
A
A

x a b c n N

eq

eq

eq

eq

eq

eq

1,eq

2,eq

3,eq

4,eq

5,eq

6,eq (n 5N) (( ) 18 )

1,

2,

3,

4,

5,

6, (n 5N)x1

In a similar way, the linear inequality constraints (6) and (7) can be represented byA X b1 1

=
+ + +

A
A E
A E

0 0 0 0
0 0 0 0

fc fc max

fc fc min Nx a b c n N
1

,

, 2 (( ) 18 )

=b [0 0] Nx1 2 1

whereEfc max, , Efc min, are NxN identity matrices.
Again, (10) and (11) can be expressed as A X b2 2

=
+ + +

A
A E

A E
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

fromgrid A max

togrid togrid max Nx a b c n N
2

,

, 2 (( ) 18 )

fromgrid

=b [0 0] Nx2 2 1

where Efromgrid max, , Etogrid max, are NxN identity matrices.
Mutual exclusive conditions (8) and (12) can be defined as A X b3 3 and A X b4 4 respectively

= + + +A A A[0 0 0 0]fc on off fc standby Nx a b c n N3 , , (( ) 18 )

= + + +A A A[0 0 0 0]buy sell Nx a b c n N4 (( ) 18 )

= =b b [1 1]Nx3 4 1

Then, the canonical linear inequality constraint AX b assumes the form

=

+ + +

X
b
b
b
b

A
A
A
A Nx a b c n N

1

2

3

4 6 (( ) 18 )

1
2
3
4 6Nx1

References

[1] Bajpai P, Dash V. Hybrid renewable energy systems for power generation in stand-
alone applications: a review. Renew Sustain Energy Rev 2012;16(5):2926–39.

[2] IEA 2012 World Energy Outlook.
[3] Hatziargyriou N. Microgrid: architectures and control. Wiley; 2013.
[4] Thomas D, Deblecker O, Ioakimidis C. Optimal operation of an energy management

system for a grid-connected smart building considering photovoltaics’ uncertainty
and stochastic electric vehicles’ driving schedule. Appl Energy 2017. https://doi.
org/10.1016/j.apenergy.2017.07.035.

[5] Liang H, Zhuang W. Stochastic modeling and optimization in a microgrid: a survey.
Energies 2014;7:2027–50.

[6] Kolokotsa D, Rovas D, Kosmatopoulos E, Kalaitzakis K. A roadmap towards in-
telligent net zero- and positive-energy buildings. Sol Energy 2011;85(12):3067–84.

[7] Thomas D, Deblecker O, Bagheri A, Ioakimidis CS. A scheduling optimization model
for minimizing the energy demand of a building using electric vehicles and a micro-
turbine. 2016 IEEE international smart cities conference (ISC2). IEEE; 2016. p. 1–6.

[8] Zhou B, et al. Smart home energy management systems: concept, configurations,
and scheduling strategies. Renew Sustain Energy Rev 2016;61:30–40.

[9] Han Y, Chen W, Li Q. Energy management strategy based on multiple operating

states for a photovoltaic/fuel cell/energy storage DC microgrid. Energies
2017;10:136.

[10] Khatibzadeh A, Besmi M, Mahabadi A, Reza Haghifam M. Multi-agent-based con-
troller for voltage enhancement in AC/DC hybrid microgrid using energy storages.
Energies 2017;10:169.

[11] Wang H, Wang T, Xie X, Ling Z, Gao G, Dong X. Optimal capacity configuration of a
hybrid energy storage system for an isolated microgrid using quantum-behaved
particle swarm optimization. Energies 2018;11:454.

[12] Moradi H, Esfahanian M, Abtahi A, Zilouchian A. Modeling a hybrid microgrid
using probabilistic reconfiguration under system uncertainties. Energies
2017;10:1430.

[13] De Angelis F, et al. Optimal home energy management under dynamic electrical and
thermal constraints. IEEE Trans Ind Inf 2013;9(3):1518–27.

[14] Özkan HA. A new real time home power management system. Energy Build
2015;97:56–64.

[15] Xue X, Wang S, Sun Y, Xiao F. An interactive building power demand management
strategy for facilitating smart grid optimization. Appl Energy 2014;116:297–310.

[16] Pascual J, Sanchis P, Marroyo L. Implementation and control of a residential
electrothermal microgrid based on renewable energies, a hybrid storage system and
demand side management. Energies 2014;7:210–37.

[17] Yoo C-H, Chung I-Y, Lee H-J, Hong S-S. Intelligent control of battery energy storage

L. Bartolucci et al. Electrical Power and Energy Systems 107 (2019) 282–297

296

http://refhub.elsevier.com/S0142-0615(18)32433-5/h0005
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0005
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0015
https://doi.org/10.1016/j.apenergy.2017.07.035
https://doi.org/10.1016/j.apenergy.2017.07.035
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0025
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0025
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0030
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0030
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0035
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0035
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0035
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0040
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0040
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0045
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0045
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0045
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0050
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0050
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0050
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0055
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0055
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0055
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0060
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0060
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0060
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0065
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0065
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0070
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0070
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0075
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0075
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0080
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0080
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0080
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0085


for multi-agent based microgrid energy management. Energies 2013;6:4956–79.
[18] Lim Y, Kim H-M, Kinoshita T. Distributed load-shedding system for agent-based

autonomous microgrid operations. Energies 2014;7:385–401.
[19] Kim H-M, Lim Y, Kinoshita T. An intelligent multiagent system for autonomous

microgrid operation. Energies 2012;5:3347–62.
[20] Tamalouzt S, Benyahia N, Rekioua T, Rekioua D, Abdessemed R. Performances

analysis of WT-DFIG with PV and fuel cell hybrid power sources system associated
with hydrogen storage hybrid energy system. Int J Hydrogen Energy
2016;41(45):21006–21.

[21] Bruni G, Cordiner S, Mulone V, Rocco V, Spagnolo F. A study on the energy man-
agement in domestic micro-grids based on Model Predictive Control strategies.
Energy Convers Manage 2015;102:50–8. https://doi.org/10.1016/j.enconman.
2015.01.067. ISSN 0196-8904.

[22] Wanjiru EM, Zhang L, Xia X. Model predictive control strategy of energy-water
management in urban households. Appl Energy 179, 2016,:821–31. https://doi.
org/10.1016/j.apenergy.2016.07.050. ISSN 0306-2619.

[23] Parisio A, Rikos E, Tzamalis G, Glielmo L. Use of model predictive control for ex-
perimental microgrid optimization. Appl Energy 2014;115:37–46. https://doi.org/
10.1016/j.apenergy.2013.10.027. ISSN 0306-2619.

[24] Chen Z, Wu L, Fu Y. Real-time price-based demand response management for re-
sidential appliances via stochastic optimization and robust optimization. IEEE Trans
Smart Grid 2012;3(4):1822–31.

[25] Erdinc O, Paterakis NG, Pappi IN, Bakirtzis AG, Catalão JP. A new perspective for
sizing of distributed generation and energy storage for smart households under
demand response. Appl Energy 2015;143:26–37.

[26] Dagdougui H, Minciardi R, Ouammi A, Robba M, Sacile R. Modeling and optimi-
zation of a hybrid system for the energy supply of a “Green” building. Energy
Convers Manage 2012;64:351–63.

[27] Bianchini G, Casini M, Vicino A, Zarrilli D. Demand-response in building heating
systems: a Model Predictive Control approach. Appl Energy 168, 2016,:159–70.
https://doi.org/10.1016/j.apenergy.2016.01.088. ISSN 0306-2619.

[28] Fiorentini M, Wall J, Ma Z, Braslavsky JH, Cooper P. Hybrid model predictive
control of a residential HVAC system with on-site thermal energy generation and
storage. Appl Energy 2017;187:465–79. https://doi.org/10.1016/j.apenergy.2016.

11.041. ISSN 0306-2619.
[29] Lu Y, Wang S, Sun Y, Yan C. Optimal scheduling of buildings with energy genera-

tion and thermal energy storage under dynamic electricity pricing using mixed-
integer nonlinear programming. Appl Energy 2015;147:49–58.

[30] Bruni G, Cordiner S, Galeotti M, Mulone V, Nobile M, Rocco V. Control Strategy
influence on the efficiency of a hybrid photovoltaic-battery-fuel cell system dis-
tributed generation system for domestic applications. Energy Procedia
2014;45:237–46. https://doi.org/10.1016/j.egypro.2014.01.026.

[31] Bartolucci L, Cordiner S, Mulone V, Rocco V, Rossi JL. Hybrid renewable energy
systems for renewable integration in microgrids: influence of sizing on perfor-
mance. Energy 2018;152:744–58. https://doi.org/10.1016/j.energy.2018.03.165.

[32] Mariani A. Energy efficiency for end-users: design and test of a micro-grid proto-
type. 2012. Ph.D. Dissertation.

[33] Bartolucci L, Cordiner S, Mulone V, et al. Renewable sources integration through
the optimization of the load for residential applications. Energy Procedia
2017;142C:2208–13.

[34] Bruni G, Cordiner S, Mulone V. Domestic distributed power generation: effect of
sizing and energy management strategy on the environmental efficiency of a pho-
tovoltaic-battery-fuel cell system. Energy 77, 2014,:133–43. https://doi.org/10.
1016/j.energy.2014.05.062. ISSN 0360-5442.

[35] Cordiner S, Mulone V, Giordani A, et al. Fuel cell based hybrid renewable energy
systems for off-grid telecom stations: data analysis from on field demonstration
tests. Appl Energy 2017;192:508–18. https://doi.org/10.1016/j.apenergy.2016.08.
162. ISSN 0306-2619.

[36] Bartolucci L, Cordiner S, Mulone V, Rocco V, Rossi JL. Renewable source pene-
tration and microgrids: effects of MILP – based control strategies. Energy
2018;152:416–26. https://doi.org/10.1016/j.energy.2018.03.145.

[37] CNMCA. Homepage|MeteoAM.it – Air Force Weather Service; 2017. Available:
<http://www.meteoam.it/>.

[38] AEEGSI <http://www.autorita.energia.it/it/index.htm>.
[39] Guandalini G, Campanari S, Romano MC. Power-to-gas plants and gas turbines for

improved wind energy dispatchability: energy and economic assessment. Appl
Energy 2015;147:117–30.

L. Bartolucci et al. Electrical Power and Energy Systems 107 (2019) 282–297

297

http://refhub.elsevier.com/S0142-0615(18)32433-5/h0085
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0090
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0090
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0095
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0095
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0100
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0100
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0100
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0100
https://doi.org/10.1016/j.enconman.2015.01.067
https://doi.org/10.1016/j.enconman.2015.01.067
https://doi.org/10.1016/j.apenergy.2016.07.050
https://doi.org/10.1016/j.apenergy.2016.07.050
https://doi.org/10.1016/j.apenergy.2013.10.027
https://doi.org/10.1016/j.apenergy.2013.10.027
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0120
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0120
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0120
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0125
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0125
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0125
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0130
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0130
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0130
https://doi.org/10.1016/j.apenergy.2016.01.088
https://doi.org/10.1016/j.apenergy.2016.11.041
https://doi.org/10.1016/j.apenergy.2016.11.041
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0145
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0145
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0145
https://doi.org/10.1016/j.egypro.2014.01.026
https://doi.org/10.1016/j.energy.2018.03.165
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0160
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0160
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0165
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0165
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0165
https://doi.org/10.1016/j.energy.2014.05.062
https://doi.org/10.1016/j.energy.2014.05.062
https://doi.org/10.1016/j.apenergy.2016.08.162
https://doi.org/10.1016/j.apenergy.2016.08.162
https://doi.org/10.1016/j.energy.2018.03.145
http://www.meteoam.it/
http://www.autorita.energia.it/it/index.htm
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0195
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0195
http://refhub.elsevier.com/S0142-0615(18)32433-5/h0195

	Hybrid renewable energy systems for household ancillary services
	Introduction
	Motivation and background
	Literature overview
	Contribution of the paper

	Hybrid renewable energy system configuration
	Control strategies
	Rule-based control
	Model predictive control

	Case description
	Results: Comparison of Control Strategies
	Results: effect of MPC control strategy on sizing
	Conclusions
	mk:H1_13
	References




