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AbstrAct
Intelligent networks are regarded as exist-

ing networks incorporating some intelligent 
mechanisms such as cognitive and cooperative 
approaches to improve network performance. 
Security is highly essential in intelligent networks 
but has received less attention so far. In this article, 
we propose a framework that enables a secure 
intelligent network with the assistance of cloud-as-
sisted privacy-preserving machine learning. In the 
framework, the cloud server can first generate a 
model using outsourced machine learning algo-
rithms and then process testing data from the 
network with the generated model in real time, 
which reflects to the network and makes it more 
intelligent. At the same time, the proposal guaran-
tees the security and privacy of both the training 
data and the testing data in the sense that the pro-
posed framework takes advantage of differential 
privacy to perform privacy-preserving data analy-
sis and homomorphic encryption to conduct valid 
operations over encrypted data. The performance 
evaluations of the core primitives employed in 
the framework including differential privacy and 
homomorphic encryption algorithms demonstrate 
the practicability of our proposal.

IntroductIon
Having the services loaded into switches in the 
traditional plain old telephone system complicates 
the introduction and management of sophisticat-
ed services. The growing demand for advanced 
user-oriented services and the desire to manage 
the network more cost effectively drive the evolu-
tion of a new networking architecture, known as 
intelligent networking (IN) [1].

IN is essentially an architectural concept for 
the provision, creation, and management of ser-
vices that separates the service logic from the 
underlying physical switching system. The origin 
of IN can be traced back to 1986 when the basic 
concept was introduced in the IN/1 definition 
proposed by Regional Bell Operating Compa-
nies. In 1989, the European Telecommunications 
Standards Institute (ETSI) and the International 
Telecommunication Union (ITU) began to define 
the target IN architecture in accordance with the 
structured development process, aiming to pro-
mote the standardization of an international IN. 
They defined a particular capability set in each 

phase of evolution. A capability set mainly focus-
es on two aspects, namely service requirement 
and network requirement, including service cre-
ation, management, interaction, processing, net-
work management, and interworking.

The Intelligent Network Conceptual Model 
(INCM) acts a pivotal part in the process of the 
target IN architecture, which serves as a complete 
framework for the design of capability sets. INCM 
is structured into four layers, and the close interre-
lation with each other depicting the engineering 
process of IN is portrayed in Fig. 1.

The top layer is the service plane (SP), where 
users and service providers can describe services 
without considering their implementation, which 
is a service-oriented view. The second layer is the 
global functional plane (GFP), consisting of basic 
call processing, two interaction points known 
as point of initiation (POI) and point of return 
(POR), and a set of service-independent building 
blocks (SIBs). Each SIB is a unit of functionality, 
and a chain of SIBs constitutes the service logic 
described in the SP. The distributed functional 
plane (DFP) is the third layer, enabling network 
designers to describe the functional architecture 
in a distributed view with a range of functional 
entities (FEs). Any given FE is composed of var-
ious functional entity actions (FEAs), and each 
FEA is performed by a series of elementary func-
tions (EFs). Moreover, a sequence of FEAs and the 
information flows through them realize the SIB in 
the second layer. The bottom layer is the physi-
cal plane (PP), where multi-equipment vendors 
model the physical architecture with physical enti-
ties (PEs). Each FE from DFP is mapped to one or 
more PEs, driven by the upper-level service logic.

Traditional networking approaches associated 
with manual, reactive, and centrally administered 
operations are usually time-consuming and error-
prone. However, the next generation network will 
be large-scale, complex, and heterogeneous. Thus, 
the traditional networking approaches are unsuit-
able for the next generation network. Facing the 
dilemma of data explosion but knowledge short-
age, network operators try to optimize the network 
with the assistance of advanced data analytics such 
as machine learning (ML) and artificial intelligence 
(AI), which has attracted much attention from 
academia and industry so far. For example, ETSI 
is defining a cognitive network management archi-
tecture by using AI techniques and context-aware 
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policies to help operators automate network con-
figurations. In order to build an automatic, proac-
tive, self-aware, and predictive network, different 
levels of analytics such as system analytics, user 
and service analytics, and radio analytics have been 
adopted in particular scenarios. For instance, opti-
mized subscriber-centric wireless offload improves 
the throughput and fairness of the network.

Our Contributions. The contributions of this 
article are summarized as follows:
1. We review the conceptual model and the 

working principle of the IN, in which ML 
technology is recommended to be used.

2. We investigate the security and privacy issues 
when using ML to optimize the network, and 
summarize the solutions to these issues.

3. We propose a secure cloud-IN framework in 
which the techniques of privacy-preserving 
ML are employed. The proposed framework 
takes advantage of differential privacy and 
homomorphic encryption to guarantee the 
privacy of both the training data and the test-
ing data.
Organization. The rest of this article is orga-

nized as follows. We introduce ML and its privacy 
issues. We show some existing solutions to these 
issues. We describe our proposed cloud-IN frame-
work. We implement some related core primitives 
in our framework. We then conclude this article.

MAchIne LeArnIng And Its PrIvAcy Issues
The next generation networks are not only ser-
vice-driven but also data-driven. The increasing 
user demands and the emergence of IoT devic-
es bring about data explosion, which drives the 
adoption of advanced data analytics to extract 
useful information. Machine learning techniques 
help network operators who can access large 
amounts of data to make the network more intel-
ligent, especially in predictive analytics. For exam-
ple, network operators can predict changes and 
adjust allocation strategies in real time in a variety 
of scenarios including traffic congestion predic-
tion, balancing the load distribution, and so on.

MAchIne LeArnIng
If dark clouds are gathering in the sky when you 
get ready to leave your home, you would carry 
your umbrella, which comes from your life expe-
rience. Computers could help humans to make 
judgments or estimates using “experience.” From 
the perspective of computers, “experience” usual-
ly appears in the form of data. The purpose of ML 
is to learn how to perform a task by generating a 
model from the data. Let D = {x1, x2, …, xm} rep-
resent a dataset containing m samples. Each sam-
ple x1 is described by d attributes. xi = (xi1; xi2; …; 
xid) denotes a vector of the d-dimension sample 
space X, namely xi  X, where xij denotes the jth 
attribute value of xi.

Sample data is insufficient if you desire to 
generate a model to predict relevant results. 
The information result of the training sample is 
required, such as ((humidity; dark clouds; thun-
der), it will rain). The information result of the 
sample is called a “label,” and the sample with 
a label is called “example.” Generally, (xi, yi) indi-
cates the ith sample, where yi  Y is the label of 
sample x1, and Y is the set of all labels, which is 
called “output space” or “label space.”

Learning tasks can be divided into two catego-
ries according to whether the training data con-
tains labels or not, namely, supervised learning 
and unsupervised learning. The former is repre-
sented by classification and regression; the latter 
is represented by clustering. If the result we desire 
to predict is some discrete values, such a learning 
task is called classification. If the result is continu-
ous values, the learning task is called regression. 
Clustering is such a learning task that divides the 
training data into several groups, and the training 
samples usually do not contain labels.

PrIvAcy Issues
In spite of being extensively used in diverse 
domains, ML brings about many security and pri-
vacy issues that are receiving increasing attention.

The common security threats in ML include 
poisoning attacks, adversarial attacks, and ora-
cle attacks. Moreover, the collected data of users 
sometimes involve personal private information, 
which results in potential privacy leaking issues. 
In the training phase, attackers are able to access 
sensitive information by stealing training data. In 
the prediction phase, attackers are able to extract 
training data or object model information utilizing 
reverse attacks or membership inference attacks. 
The malicious access to the model and the expo-

FIGURE 1. Intelligent network conceptual model.
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sure of model parameters also raise privacy con-
cerns. In 2015, Fredrikson et al. recovered a face 
image used in the training phase successfully by 
exploiting confidence information revealed along 
with predictions [2].

The European Union issued the General Data 
Protection Regulation (GDPR) to punish the ille-
gal use of data in 2018, which is claimed as the 
strictest data protection regulation in history.1 
GDPR is used to punish dishonest behaviors after 
data leakage, but how to prevent data privacy 
from being leaked is an urgent but challenging 
issue.

tooLs for soLvIng the Issues
Privacy-preserving data analysis techniques can be 
adopted to address these issues. In this section, 
we review some primitives including differential 
privacy, homomorphic encryption, deterministic 
encryption, and frequency-smoothing encryption 
that can be used to guarantee the data privacy 
in ML.

dIfferentIAL PrIvAcy
Differential privacy [3] is a powerful tool to per-
form privacy-preserving data analysis, which has 
already been applied to Apple's iOS operat-
ing system and Google's Chrome browser. It 
permits curators to carry out benign aggregate 
analysis while providing meaningful protection 
of the privacy of each individual. In a statistical 
database, differential privacy guarantees that 
the removal or addition of a single item does 
not essentially affect the outcome of any anal-
ysis. The formal definition of differential privacy 
[3] is as follows.

A randomized function K gives e-differential 
privacy if for all data sets D and D differing on at 
most one element, and all S  Range(K),

Pr[K(D)  S]  exp(e)Pr[K(D)  S], 

where e is the privacy risk factor.
Differential privacy has the following proper-

ties.
Composability. If two queries are answered 

with e1 and e2 for differential privacy level, then 
the pair of queries is (e1 + e2) differential privacy 
level.

Post-processing. Whatever processes are per-
formed on the results of a differential privacy algo-
rithm, the processed results are still differentially 
private.

Differential privacy techniques were suggested 
to be applied to ML due to its nice properties. 
However, the introduction of noise reduces the 
availability of the model; thus, how to balance the 
data privacy and model accuracy has become a 
hot research topic. In 2017, Ligett et al. [4] pro-
posed a general “noise reduction” framework to 
maximize the privacy level under the fixed accu-
racy requirement.

hoMoMorPhIc encryPtIon

Homomorphic encryption allows anyone (not just 
the key holder) to conduct certain algebraic oper-
ations on the ciphertext c, which is equivalent to 
performing corresponding operations on plaintext 
m. Mathematically, given a homomorphic encryp-
tion function E, and two plaintexts m1, m2, one can 
publicly compute E(m1 * m2) = E(m1) º E(m2). There 
are some well-known homomorphic encryption 
schemes such as ElGamal encryption and Paillier 
encryption. Ehsan et al. [5] utilized homomorphic 
encryption to protect the dataset privacy, where 
the activation functions in the neural network 
were replaced with polynomial approximation.

other technIques
In 2007, Bellare et al. introduced deterministic 
encryption [6], which allows to search encrypt-
ed data. Deterministic encryption enables 
semantic security and at the same time provides 
as-strong-as-possible privacy, where the encryp-
tion algorithm is deterministic.

However, classical frequency analysis attack 
on deterministic encryption is possible. If the dis-
tribution of plaintext is not uniform, an adversary 
who has a reference dataset can calculate the 
expected plaintext frequencies. When an adver-
sary can access a snapshot of encrypted data, 
they can match the frequency in the encrypted 
domain to the plaintext domain. In order to resist 
inference attacks caused by frequency analysis 
while protecting data privacy, Lacharit et al. intro-
duced frequency-smoothing encryption [7], which 
extends deterministic encryption to somewhat 
randomized encryption.

secure cLoud-InteLLIgent network frAMework
In this section, we propose a secure cloud-IN 
architecture assisted by privacy-preserving ML.

With the advances of cloud computing, the 
techniques of integrating on-site applications with 
cloud services have been extensively investigated. 
The cloud-based IN optimizes the network perfor-
mance by taking advantage of cloud computing 
capacity, which could dynamically adjust resource 
allocations as needed. Driven by the demand to 
reduce network overhead and improve scalabil-
ity, predictability, as well as adaptability of the 
network, ML as a service is offered to perform 
ML algorithms on the cloud. However, the cloud 
is not fully trusted [8, 9], which leads to privacy 
issues in ML since the raw data accessed from the 
network are usually privacy-sensitive.

As shown in Fig. 2, the proposed cloud-IN 
framework consists of two parts, namely the net-
work platform and the cloud:
• Network platform: The basic network plat-

form of our proposed framework is com-
posed of network-connected devices such 
as network cards, switches, routers, and 
transmission media in physics. To adapt the 
expansion of network scale and the diversity 
of network devices, we create a new virtual-
ized networking layer which decouples the 
function of network layers from hardware 
and is programmatic provisioning.

• Cloud: The cloud servers in the proposed 
cloud-intelligent network framework have 
huge storage space and strong computing 

The European Union issued the General Data Protection Regulation (GDPR) to punish the illegal use of  
data in 2018, which is claimed as the strictest data protection regulation in history. GDPR is used to 
punish dishonest behaviors after data leakage, but how to prevent data privacy from being leaked  

is an urgent but challenging issue.

1 http://scikit-learn.org/
stable/
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power, where the received data can be pro-
cessed in real time and turned into quan-
tifiable information. Privacy-preserving ML 
algorithms are performed on the cloud to 
improve both the privacy and value of data, 
thus making the network more intelligent.
Privacy-preserving ML is the core process of 

the framework. Considering the expensive com-
putation cost of homomorphic encryption, we 
enforce differential privacy in the training phase 
to protect the training model and directly protect 
real-time data in the testing phase by homomor-
phic encryption, and in the training phase after 
data preprocessing including data cleaning, con-
version, and clustering. The cloud servers first 
extract features of the uploaded data and assume 
a fixed privacy requirement e according to the 
specific objectives. They then attempt to maxi-
mize the accuracy of the trained model. We per-
turb the objective function by adding noise and 
generate a noisy model, which prevents reverse 
attacks and membership inference attacks so as 
to protect the training data. The training phase is 
shown in Fig. 3a. In the testing phase, local servers 
or clients first preprocess the real-time data and 
then encrypt the data with homomorphic encryp-
tion. Then the cloud performs classification or 
prediction tasks over the encrypted data using the 
generated model, which is noisy but sufficiently 
accurate, and finally returns the encrypted results 
back to the underlying network. The testing phase 
is shown in Fig. 3b.

IMPLeMentAtIon
In this section, we report the implementations 
with a living example of the proposed secure 
cloud-IN framework. We first show some imple-
mentation results of homomorphic encryptions. 
Then we implement a fundamental but important 
ML algorithm called a linear regression algorithm, 
including linear regression under differential pri-
vacy and linear regression over homomorphic 
encryption ciphertexts.

IMPLeMentAtIon of hoMoMorPhIc encryPtIon
We give two typical implementations of homo-
morphic encryption (HE), including a full HE 
(FHE) named HELIB, and a somewhat vector 
HE named VHE. We conduct all simulations for 
HE algorithms on a laptop with i3-4130 CPU @ 
1.40 GHz and 8 GB RAM running Ubuntu 14.04. 
HELIB and VHE are built over software packages 
in [10, 11], respectively, which both invoke the 
well-known high-performance number theory C++ 
Library (NTL) for arbitrary length integers.2 We 
use gcc/g++ 4.8.4 to compile all used programs 
in our experiments.

In our experiments, the security parameters 
[12, 13] are set based on the following consid-
eration. First of all, the security level is taken as l 
= 128 to guarantee practical security. In order to 
compare the performance effectively, we need 
to set parameters for HELIB and VHE, respec-
tively, as follows. For HELIB, the native plaintext 
space is Z[X]/(Fm(X), pr), where m = 1025, p = 
2, r = 10. Then we set L = 10, c = 2, and w = 
64, denoting the number of levels, the number 
of columns in key switching matrix, and the Ham-
ming weight of a secret key, respectively. Finally, 
for the monic irreducible polynomial G over Zp, 

we only require that the degree of G divides the 
degree of the irreducible factors of Fm(X) modulo 
p. On the other hand, considering the associated 
VHE parameters, we assign p = 10 for the same 
plaintext space. Further, we specify that w < 230, 
l = 50, q = 2128, and eBound = 200 to ensure the 
correctness of ciphertext operations [11].

Note that most scenarios using HE, such as 
privacy-preserving image processing and ML [14], 
are required to encrypt data items (or records) 
containing multiple attributes (or features). Con-
sequently, a data record can be treated as a 
vector with m dimension. To improve efficiency, 
it is expected to encipher the vector in a batch 
manner, that is, record-wise, not attribute by attri-
bute. Fortunately, both HELIB and VHE support 
the integer vector batch encryption. In addition, 
calculating inner product in ciphertext domains is 
an important operation for many security applica-
tions (e.g., the privacy-preserving similarity mea-
sure in top-k retrieval). Therefore, in the following, 
we give a comparison between HELIB and VHE in 
terms of time costs of the key generating, vector 
encryption (m = 40) and inner production calcula-
tion, as illustrated in Fig. 4.

To test the KeyGen, VectorEnc, and Encrypt-
ed InnerProduct algorithms of each scheme, we 
repeat each algorithm 100 times and get the 2 http://shoup.net/ntl/

FIGURE 2. Secure cloud-intelligent network framework.

FIGURE 3. Outsourced machine learning tasks overview.
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average running time. As shown in Fig. 4, VHE 
is much more effi  cient than HELIB. For example, 
for security level l = 128 and a vector with the 
dimension of m = 40, the time of KeyGen, Vec-
torEnc, and Encrypted InnerProduct is about 7347 
ms, 278 ms, and 3642 ms, respectively, in HELIB. 
Meanwhile, in VHE, the time is 847 ms, 5 ms, and 
457 ms, respectively. It shows that VHE is orders 
of magnitude faster than HELIB. The reason is 
also obvious: VHE is specially designed for inte-
ger vector homomorphism, only requiring sup-
port for limited homomorphic operations, such 
as the addition, key switching, and inner product, 
while HELIB is developed for fully homomorphic 
encryption, which can evaluate arbitrary polyno-
mial-depth circuits. To this end, HELIB has to pay 
extra cost to implement some expensive opera-
tions such as KeySwitch, ModulusSwitch, Re-lin-
earity, and Bootstrapping.

IMPLeMentAtIon of LIneAr regressIon under 
dIfferentIAL PrIvAcy

To demonstrate the feasibility of enforcing diff er-
ential privacy in our framework, we implement 
linear regression to predict the value of annual 
income in Brazil. In order to protect the training 
model, we apply the function mechanism [15] to 
perturb the objective function of the optimization 

problem rather than its results, which is a general 
framework for regression analysis under e-diff er-
ential privacy. The dataset loaded from Integrated 
Public Use Microdata Series3 contains 190,000 
records, and each record has 13 attributes. All the 
computations are conducted on the Matlab (ver-
sion 2013b) on a desktop with 3 GHz Intel Core 
i5-7400 CPU and 8 GB RAM.

We set the index for dividing the dataset into 
training set and testing set to 0.8, the training 
epoch to 800, then change the value of priva-
cy budget e to 0.1, 0.2, 0.5, 1, 1.5, 2, respective-
ly, and measure the error rate of the results, as 
shown in Fig. 5. Experiment results show that the 
value of error rate decreased with the increasing 
of privacy budget e. Thus, in the training phase of 
the proposed privacy-preserving ML process, it is 
practical to dynamically adjust the value of e and 
select the optimum one according to the specifi c 
dataset and objectives, and thus to reach high 
accuracy of results with less noise injected.

IMPLeMentAtIon of LIneAr regressIon over 
hoMoMorPhIc encryPtIon

We implement linear regression to predict house 
prices in Boston over homomorphic encrypted 
data, which is based on the TensorFlow,4 scikit-
learn,5 and python-paillier6 libraries. TensorFlow 
is an open source software library developed by 
Google using data flow graphs for high-perfor-
mance numerical computation. Scikit-learn is a 
set of simple and effi  cient tools with various algo-
rithms of ML for data mining and data analysis. 
Python-paillier is a partially homomorphic encryp-
tion library in python. All the computations are 
conducted on the Jupyter Notebook web applica-
tion on a MacBook Pro with 2 GHz Intel Core i5 
and 8 GB RAM.

We set the index for dividing the dataset into 
training set and testing set to 0.8, the value of 
learning rate to 0.01, and the training epoch to 
800. The dataset we used has 506 samples and is 
loaded from sklearn. First, we train a model based 
on the training data and measure the root mean 
square error of the training process, as shown in 
Fig. 6a. After generating a linear regression model, 
we test the model over testing data, as shown in 
Fig. 6b. Then we use the generated model to per-
form prediction over encrypted data, pick 100 
rows randomly, and encrypt them with the paillier 
encryption scheme from the python-paillier library 
as a new input. After that we decrypt the cipher 
predictions, as shown in Fig. 6c. Comparing the 
Fig. 6c with Fig. 6b, the predictions over encrypt-
ed data reach the expected demand. The simple 
implementation comes to the conclusion that HE 
is a practical method for privacy-preserving ML.

concLusIon
Machine learning can be used to promote net-
work performance, and thus to make the network 
more intelligent. However, there are numerous 
security and privacy issues when machine learn-
ing is applied. In this article, we propose a secure 
cloud-intelligent network framework assisted by 
privacy-preserving machine learning. The pro-
posal guarantees the privacy of both the train-
ing data and the testing data in the sense that it 
takes advantage of diff erential privacy to perform 
privacy-preserving data analysis and homomor-

FIGURE 4. Time comparison.

FIGURE 5. Implementation of linear regression under diff erential privacy.

3 https://international.ipums.
org/international/

4 https://www.tensorfl ow.
org

5 http://scikit-learn.org/
stable/

6 https://python-paillier.
readthedocs.io/en/develop/
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phic encryption to conduct valid operations over 
encrypted data. The experimental evaluations of 
the core tools of the framework show its practica-
bility. Our future work is to deploy the framework 
in real-world intelligent networks.
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FIGURE 6. Implementation of linear regression over 
homomorphic encryption.


