

Optimized Adaptive Streaming with Intelligent

Network Awareness

Prasenjit Chakraborty

Samsung R&D Institute India -
Bangalore

Bengaluru, India

prasenjit.c@samsung.com

Shweta Aggarwal

Samsung R&D Institute India -
Bangalore

Bengaluru, India

shweta.agg@samsung.com

Om Prakash

Samsung R&D Institute India -
Bangalore

Bengaluru, India

om90.prakash@samsung.com

Abstract— Video streaming service, considering both live
as well as video-on-demand contents, has completely
changed the internet world. However, buffering remains
the biggest concern, which severely degrades the quality
of experience. In particular, the amount of time spent in
video buffering phase has the worst impact on the user
engagement. This buffering phase becomes more visible
while streaming in fluctuating networks, which is a
common scenario when user watches streamed video
while travelling or during weather aberration. In this
paper, we propose an intelligent network aware adaptive
streaming method which estimates the past network
trend, optimizes the video queue caching mechanism and
enforces video quality in client device. By doing so, the
algorithm is able to reduce buffering events by average
40% and quality switches by almost 45%, providing an
almost seamless video streaming playback experience.

Keywords— ABR, DASH, HLS, HDS, SS, QoE, OEM,
Queue, Buffering

I. INTRODUCTION

As per research made with BBC iPlayer usage [1] with
data taken for over nine months (1.9 billion sessions of
32M monthly users), it was observed that mobile handset
users often split their content consumption across different
sessions. Such sessions are either first starts on fixed-line
broadband and continues while on the move (53%), or starts
on a cellular connection and continues on a fixed-line
connection (47%). In summary, media consumption trend
clearly shows major viewership is seen during day-to-day
commutating or travelling.

Also, in Q1 of 2017, Mux commissioned an independent
survey that asked 1,035 U.S. consumers about their viewing
experience with online video [2]. As per the report shown in
Fig. 1, re-buffering [5] i.e. stalling of streaming media during
ongoing playback due to bad network, is the most important
factor impacting the viewer’s QoE. The survey wanted to
evaluate the effect the buffering events on length of user’s
viewing session which is shown in Fig. 2. According to the
report [3], streaming session length of a typical viewer is
around 214 seconds when no buffering event occurs and

Fig. 1. Video Streaming Market Research Result

session length reduces significantly with the buffering
interruptions. Moreover, in the report it is shown that 85%
users stopped playback due to re-buffering and stalling
events.

 This user feedback has resulted in increased stress on the
need to deliver a high QoE to satisfy consumers. There is
already widespread adaptation of ABR Streaming approach
for media content delivery over internet, which involves
encoding the source video content at different bit rates and
segmenting them and later in the client side, playback
application switches between these different segments
depending on the network to avoid buffering. There are
several commercial servers available which employs ABR
mechanism via different solution specification. This includes
HTTP Live Streaming (HLS) by Apple, HTTP Dynamic
Streaming (HDS) by Adobe, Smooth Streaming (SS) by
Microsoft as well as Dynamic Adaptive Streaming over
HTTP (DASH) among Content Provider (CP) favorites. All
these specifications, at a broader level, follows the same
ABR methodology and normally handles changes in
network quality in broader level.

Fig. 2. Buffering Reducing Streaming Session Length

����������	
���
���
����
����
����
������
�����
�������������������������� !�"

�#$%�%&'$(%#���%�)��)*'�+���,�����	 224

 But all of these current ABR methodologies (Default-
ABR) has deficiencies, which prohibits it from providing a
true high quality experience, as evident from the current user
survey and user experience data of Fig. 1 as well as Fig. 2.
This becomes specifically visible during frequent network
quality change, causing video quality switch also happening
frequently. As per studies done on user viewing preference
[4] [10], constant video quality is usually preferred to
varying quality. Even constant or nearly constant lower
quality is preferable to frequently varying higher quality.

 Also, Default-ABR adaptation method generally considers
the current network bandwidth to decide on the quality to be
downloaded. So sometimes it can even lead to timing issue,
where immediately after starting a high quality content
download due to current high quality network bandwidth,
suddenly the network quality changes to lower quality. As a
result, high quality fragment downloading during the
streaming in low network takes longer time and results in
buffering. Specially while travelling or commutating, when
network fluctuations are commonly felt, QoE of video
streaming gets affected and buffering problems become more
prominent.

Many authors have conducted experiments to improve
user QoE while streaming. In [6], [7] and [9] authors have
suggested buffer-based approach to enhance Default-ABR
but initially user has to watch low quality video even if one
is on good network. In [8], authors have shown new
algorithm based on both rate and buffer occupancy. But,
none of them has considered previous network trend in their
studies. Our solution detects fluctuations and suggest
optimized solution which enhances user QoE. Proposed
solution performs well during stable as well as unstable
network conditions.

 In this paper, we propose ways to detect network
fluctuations and an intelligent network aware adaptive
streaming method (Optimized-ABR) by which we can solve
the above shortcomings and achieve better QoE for the end-
user during continuous network fluctuation. A simple
algorithm is devised to detect network fluctuations using
buffer occupancy and number of quality switches. A smart
queue based solution is given to handle these fluctuations.
This approach results in less buffering, less number of
quality switches as well as ability to go back to Default-ABR
technique in case of resumption of constant or near constant
network availability.

 The rest of the paper is organized as follows. Section II

demonstrates our methodology to recognize network

fluctuation and then based on the recognition how

intelligently Optimized-ABR method can reduce quality

switches as well as reduce buffering in detail. Section IV

provides the experimental results on using this technique in

real-network and then comparing with the Default-ABR

technique result. Section V concludes the paper with further

research plan on this technique.

II. PROPOSED METHOD

In this section, we present ways to detect and solve

network fluctuations. In order to understand further

subsections, firstly we discuss about the basic queue model

being used in ABR streaming. In order to ensure smooth

playback, a streaming client adds a buffering capability to

absorb the effect of temporary mismatch between download

rate and consumption rate. This buffering capability on

client side is implemented using queue data structure.

Number of downloaded data bytes in the queue will be more

during peaks i.e. high network bandwidth and will drop

significantly during low network bandwidth. Queue

dynamics govern the loading time and video buffering. The

below sub sections describe how the queueing process

works in general and how our method enhances it for better

QoE.
Fig. 3 shows the queue model where D(r) = Downloading

rate, C(r) = Consumption rate; and B(r) = Buffered data.
Initially, during start-up, when the queue is empty, we
consider the Low Percent (LP) is reached. Again when data
is getting received in queue via downloading, it keeps on
posting buffering messages until High Percent (HP) is
reached. The buffering support provided by queue is decided
by these LP and HP values. So whenever LP is reached,
playback moves to paused state and starts buffering to
download more data for starting the playback. Again
subsequently when HP is reached, a buffering message with
100% will be posted, which instructs the application to
resume the playback. In other words, LP controls the
buffering initiation point and HP, its termination point. HP
also controls the start-up delay. Start-up delay is directly
proportional to HP.

 Suppose the current queue data be “βcurrent”, maximum

queue data be “βmax”

� If (βcurrent*100/ βmax) ≤ LP; buffering starts

� If (βcurrent*100/ βmax) ≥ HP; buffering ends

Having βmax same in both the high and low resolution

components would clearly result in latter having more

cached video data. Cache size variation for video fragment

downloaded in different resolutions can be seen in Table I.

For data collection, Gstreamer media framework [11] was

used for determining fragment size and duration. The above

buffering conditions will be used in subsequent section to

detect the fluctuations on the network.

Fig. 3. Video Queuing Model

225

TABLE I. CACHE SIZE VARIATION WITH FIXED QUEUE.

Dailymotion Site content (fragment duration ~10 sec)

Content Quality Fragment Size

Video Queue

Size

Video Cache
Duration

Low 211 KB 5 MB ~24 sec

Medium 358 KB 5 MB ~14 sec

High-Medium 578 KB 5 MB ~9 sec

High 1.26 MB 5 MB ~4 sec

A. How to recognize network fluctuation ?
 Considering the queue Fig. 3

� If D(r) > C(r), then B(r) will keep on increasing till

βmax is reached.

� If D(r) < C(r), then B(r) will keep on decreasing till

LP and buffering starts.

This network fluctuation can be identified in 2 ways.

We can either put signals at HP and LP and observe the

pattern of respective signals within a fixed time interval (α);

or capture the number of quality switches in a playback. We

will be considering each case separately and doing the

comparative analysis.

� Option 1: Signal based technique

In this technique, two signals are created during queue

class initialization and emitted when LP or HP condition

hits. The pattern of signals we are focusing here will be “HP

followed by LP” and “LP followed by HP”. We maintain

the pattern occurrence count for a definite time interval (α),

which can be checked against a pre-decided maximum

occurrence limit. If the count surpasses the limit then we are

in unstable network zone. We can further optimize it by

using Lower Buffering Limit (LBL) as signal emission

point. LBL is a value greater than LP that helps us in

capturing the fluctuations at an early stage and hence, more

effectively.

� Option 2: Quality switching based technique

Number of resolution switches is directly impacted by

the network conditions. Higher the network variations more

will be the number of switches. So keeping the count of

quality switches can be used as a deciding factor. However,

this technique is sometimes misleading. As the number of

variants present increases, in good network condition,

resolution switching is commonly seen in upper variants

(subjected to client side implementation of switching logic)

but user experience is not hugely affected.

 It is challenging to identify the valid quality switches.

For example, if there are total 10 variants, considering user

visual impact, switching between lowest and 2nd lowest

variants would not be much different. But variation between

1st and 4th lowest variant maybe easily identifiable. We have

solved this problem by grouping the variants and not

increasing the count if switching is happening in the same

group of variants. Basically, grouping is a simple

methodology to partition all available quality variants based

on the content encoding parameters. This helps us in

logically enforce quality switching among different quality

partitions to achieve good results. Here, for our

experimental purposes we have divided the variants in three

groups namely low, medium and high. There can be cases

where numbers of groups are equal to number of variants.

So to know the optimum methodology to confirm about

network fluctuation, both Option-1 and modified Option-2

is used in conjunction to achieve the desired result.

Algorithm 1 shows the simple algorithm for determining

network fluctuations.

B. Proposed Optimization Technique
In this section, we will present the algorithm for

solving network fluctuation issues. Default-

ABR methodology uses the current downloading rate to

estimate the next segment bandwidth value. But during

network fluctuations, this approach does not provide best

user QoE results as the current conditions may not reflect

the upcoming network problems. Inaccurate estimates will

lead to re-buffering events and frequent quality switches.

To overcome this drawback in default ABR methodology;

we propose a different client-side bitrate adaptation

approach.

Algorithm will be devised in such a way that if the

network is stable during the course of playback, Default-

ABR or bandwidth based approach will be used otherwise

we will switch to our proposed solution. Once network

stabilizes, we will come back to default setting i.e. using

bandwidth as the deciding factor.

Optimized-ABR approach:

In proposed solution, we will use buffer occupancy to

decide the next segment bandwidth. The idea behind this is

to reduce buffering count caused due to inaccurate

bandwidth estimates during fluctuating network conditions.

We will divide the variants according to section III (Option

2) where we have discussed about the importance of

grouping variants. Qualities are grouped on the basis of their

switching impact on user QoE i.e. if switching is happening

within the qualities of same group, the impact on user

experience will be less. Moreover, we can select the lowest

bitrate quality amongst the variants of same group. Further,

we will partition the queue in same number of parts as that

226

of number of quality groups. For instance, we have taken

three groups say low, medium and high. The corresponding

partitioned queue is shown in Fig. 4. First part of the queue

will be filled with segments from lower video quality group,

second part with medium quality and when data inside

queue surpasses the second region i.e. when we have

enough data to sustain, we will switch back to Default-

ABR approach. There is a trade-off between rebuffering and

playing high quality. So, more the size of low and medium

queue parts, lesser will be the re-buffering events.

Optimized-ABR aims to improve the user QoE factors such

as buffering frequency and video quality switching

frequency.

Our proposed technique selects lower bandwidth

segments when the chances of queue getting drain are

higher, thus, reducing the possibility of buffering.

To address the issue of frequent quality switches, we

enforce video quality to remain in a particular group for a

longer duration. Thus, instant jumps from one quality group

to another are minimized. Optimized-ABR approach aims at

caching more data during high network bandwidth by

Fig. 4 Queue during Optimized-ABR (3 groups)

lowering down the quality so that we can sustain the bad

network intervals.

To illustrate it further, let us consider the example given

in Table II. Based on Algorithm 1, we can identify the

network fluctuation. Let us assume, at the current stage, we

are getting good bandwidth for download.

Let the current high Download rate be D(r/high). So in

bandwidth based approach, at this point, good network

speed will be utilized in downloading high quality video,

So it will take Λ(t/high) sec to download a fragment, where,

 Λ(t/high) = 1.26 MB / D(r/high).

But, as per our proposed optimization technique, we are

forcing the download to medium Quality group, even when

D(r/high) is maintained same. So in our proposed

methodology, fragment download will take only Λ(t/high-

medium) time, where,

Λ(t/high- medium) = 578 KB / D(r/high).

Now, let’s assume, due to network fluctuation, after T

seconds, network download rate will suddenly drop to very

low value.

So the number of video fragments which would have

cached in default ABR method would be N(Default-ABR),

where,

 N(Default-ABR) = T / Λ(t/high).

But with the proposed methodology, it would be,
N(Optimized-ABR), where,

 N(Optimized-ABR) = T / Λ(t/high- medium).

Now since (Λ(t/high) >> Λ(t/high- medium)), so (N(Default-ABR) <<

N(Optimized-ABR)), i.e. the number of cached fragments will

obviously be much more in the proposed design compared

to default design. This will result in less buffering as more

cache would help in sustaining in the bad network portion of

fluctuation.

C. Why to disable the Optimization Technique ?
In previous sub section, we have proposed an

optimization technique which helps in improving user QoE

when user is in fluctuating network condition. But when

normalcy has returned to the network condition, if we won’t

disable our logic, it will keep on downloading lower

resolution fragment even when user is getting high

227

downloading speed. So disabling the logic is of equal

importance as implementing it. Normalcy of network can be

understood as same logic mentioned in Section II (B), when

buffer occupancy surpasses the medium queue region. This

marks as the point, the queue returns to the Default-ABR

methodology.

III. EXPERIMENTAL RESULTS

For our experimental purpose, we have used two

smartphones of same model having same hardware

specifications (Tizen OS having Quad-core Spreadtrum 1.5

GHz Processor having WVGA Resolution). One device was

working on Default-ABR mechanism and other on

Optimized-ABR. For streaming content, we have used

Dailymotion, Hotstar and Jio applications and have

conducted many experiments playing different video

TABLE II. CONTENT SIZE AND RESOLUTION VARIATIONS.

Dailymotion Site content (fragment duration ~10 sec)
Content
Quality

Fragment
Size

Video
Resolution

Overall
Bitrate

Video Encoder
Settings

Low 211 KB 320x284 173 kb/s

AVC(Baseline

@L1.3) , 5 Ref

frames

Medium 358 KB 512x288 294 kb/s

AVC(Baseline

@L2.2) , 3 Ref
frames

High-
Medium

578 KB 848x480 476 kb/s

AVC(High@L3
.1) , 4 Ref

frames ,

CABAC

High 1.26 MB 1280x720
1064

kb/s

AVC(High@L3

.1) , 5 Ref
frames ,

CABAC

contents but same video on both devices at a time.

In order to capture the real-time network fluctuations in

real field testing, the devices were taken on a moving

vehicle, both playing same adaptive bitrate content and

working on same network operator. The study was

conducted using multiple service providers to cover the

various network conditions and results are demonstrated for

Reliance JIO and Bharti Airtel networks. The comparative

analysis was done for both the devices.

Fig. 5 and Fig. 6 depict the results for Airtel and

Reliance respectively; where Part (A) shows the network

bandwidth trend over time (IST). Part (B) and (C), show the

duration for which buffering was noticed for devices

without solution and with solution respectively. Part (D)

demonstrates the advantage of Optimized-ABR over

Default-ABR.

 (A)

 (B) (C)

 (D)

Fig. 5 Experimental Result-1 with Airtel

Experiment-1 uses 30 and 60 as the low and medium

partition values and Experiment-2 used 50 and 80

respectively. In Experiment-1, the buffering duration

reduction seen is around 40% and around 47% for quality

switch count.

For Experiment 2, the values are approximately 42%

and 50% respectively. This demonstrate that the buffering

time and buffering count seen in Default-ABR is more than

Optimized-ABR. Moreover, the quality switch count has

also been reduced by a significant amount.

On doing the collaborative analysis, the improvement in

re-buffering events varies from 20-60% and switching

frequency varies from 40-50%. Hence, with our proposed

solution the values of buffering time, buffering count and

switching count are decreasing.

228

 (A)

 (B) (C)

 (D)

Fig. 6 Experimental Result-2 with Reliance JIO

IV. CONCLUSION AND FUTURE WORK

In this paper, we introduced an Optimized-ABR

algorithm which helps in improving user QoE during

fluctuating network conditions over current state-of-the- art

Default-ABR methodology. We have proposed ways of

knowing network fluctuations by using LP and HP

parameters and by using quality switch count. We further

formulated methods to handle the fluctuation manipulating

queue parameters by dividing queue in various groups and

forcing video quality to relatively lower variants. At last,

two experimental results are shown to demonstrate the

effectiveness of our proposed solution.

In summary, compared to existing state-of-the- art

Default-ABR methodology, current proposed Optimized-

ABR methodology has resulted in reduction of buffering

event occurring by almost 40% as well as switch count

 (A) (B)

 Bitrate

Algorithm

High

Bitrate

Medium
Bitrate

Low

Bitrate

Optimized-
ABR

20m 49sec 4m 43sec 31m10sec

Default-
ABR

26m 27sec 3m19sec 26m56sec

 C) COMPARISON BETWEEN ‘A’ AND ‘B’ W.R.T. DIFFERENT

 QUALITY PLAYBACK DURATION

Fig. 7 Different Quality playback duration comparison

reduction of around 45% respectively on average.

It can easily be inferred from the results, with this

technique being employed, User QoE would be enhanced up

to a good extent as there is significant reduction in buffering

time as well as quality switching frequency.

Now coming to the future work scope, Fig. 7 shows the

video rate played during Experiment-2 and below table

depicts the total time for which a particular quality has been

played. High bitrate content is played for more time in

Default-ABR than in Optimized-ABR. So there is a definite

scope of improvement for optimizing the optimized

methodology further.

Future research plan includes using neural networks to

get better user QoE in every aspect.

ACKNOWLEDGMENT

I would like to thank Dr. Narasinga Rao Miniskar for his
guidance while reviewing this paper.

REFERENCES

[1] D. Karamshuk, N. Sastry, A. Secker, and J. Chandaria, “On factors
affecting the usage and adoption of a nation-wide TV streaming
service,” in Proc. IEEE INFOCOM, Apr./May 2015, pp. 837–845

[2] https://static.mux.com/downloads/2017-Video-Streaming-
Perceptions-Report.pdf

[3] https://mux.com/blog/buffering-reduces-video-watch-time-by-40-
according-to-research/

[4] M.-N Garcia, F. De Simone, S. Tavakoli, N. Staelens, S. Egger, K.
Brunnstr¨om, A. Raake, “QUALITY OF EXPERIENCE AND HTTP
ADAPTIVE STREAMING: A REVIEW OF SUBJECTIVE
STUDIES”, in Quality of Multimedia Experience (QoMEX), 2014

229

[5] https://gstreamer.freedesktop.org/documentation/application-

 development/advanced/buffering.html

[6] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson,“A
Buffer-based Approach to Rate Adaptation: Evidence from a Large
Video Streaming Service,” in Proc. ACM Conf. on SIGCOMM,
August 2014.

[7] H. Le, D. Nguyen, N. Ngoc, A. Pham, and T. C. Thang, "Buffer-based
Bitrate Adaptation for Adaptive HTTP Streaming," Proc. of the IEEE
international Conference on Advanced Technologies for
Communications, pp. 33-38, October 2013.

[8] H. T. Le, H. N. Nguyen, N. P. Ngoc, A. T. Pham, and T. C. Thang, “A
Novel AdaptationMethod for HTTP Streaming of VBR Videos over
Mobile Networks,” MobileInformation Systems, vol. 2016, Article ID
2920850, 2016.

[9] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over HTTP,” in Proc.
ACM SIGCOMM, 2015.

[10] M. Seufert, T. Hoßfeld, and C. Sieber, “Impact of Intermediate Layer
on Quality of Experience of HTTP Adaptive Streaming,” in 11th Intl.
Conference on Network and Service Management (CNSM),
Barcelona, Spain, 2015.

[11] “GStreamer multimedia framework.” http://gstreamer.freedesktop.org/

230

