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Abstract— Video streaming service, considering both live 
as well as video-on-demand contents, has completely 
changed the internet world. However, buffering remains 
the biggest concern, which severely degrades the quality 
of experience. In particular, the amount of time spent in 
video buffering phase has the worst impact on the user 
engagement. This buffering phase becomes more visible 
while streaming in fluctuating networks, which is a 
common scenario when user watches streamed video 
while travelling or during weather aberration. In this 
paper, we propose an intelligent network aware adaptive 
streaming method which estimates the past network 
trend, optimizes the video queue caching mechanism and 
enforces video quality in client device. By doing so, the 
algorithm is able to reduce buffering events by average 
40% and quality switches by almost 45%, providing an 
almost seamless video streaming playback experience. 

 

Keywords— ABR, DASH, HLS, HDS, SS, QoE, OEM, 
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I. INTRODUCTION 

As per research made with BBC iPlayer usage [1] with 
data taken for over nine months (1.9 billion   sessions   of   
32M   monthly   users), it was observed that mobile handset 
users often split their content consumption across different 
sessions. Such sessions are either first starts on fixed-line 
broadband and continues while on the move (53%), or starts 
on a cellular connection and continues on a fixed-line 
connection (47%). In summary, media consumption trend 
clearly shows major viewership is seen during day-to-day 
commutating or travelling. 

Also, in Q1 of 2017, Mux commissioned an independent 
survey that asked 1,035 U.S. consumers about their viewing 
experience with online video [2]. As per the report shown in 
Fig. 1, re-buffering [5] i.e. stalling of streaming media during 
ongoing playback due to bad network, is the most important 
factor impacting the viewer’s QoE. The survey wanted to 
evaluate the effect the buffering events on length of  user’s 
viewing session which is shown in Fig. 2. According to the 
report [3], streaming session length of a typical viewer is 
around 214 seconds when no buffering event occurs and  

 

Fig. 1.  Video Streaming Market Research Result 

session length reduces significantly with the buffering 
interruptions. Moreover, in the report it is shown that 85% 
users stopped playback due to re-buffering and stalling 
events. 

     This user feedback has resulted in increased stress on the 
need to deliver a high QoE to satisfy consumers. There is 
already widespread adaptation of ABR Streaming approach 
for media content delivery over internet, which involves 
encoding the source video content at different bit rates and 
segmenting them and later in the client side, playback 
application switches between these different segments 
depending on the network to avoid buffering. There are 
several commercial servers available which employs ABR 
mechanism via different solution specification. This includes 
HTTP Live Streaming (HLS) by Apple, HTTP Dynamic 
Streaming (HDS) by Adobe, Smooth Streaming (SS) by 
Microsoft as well as Dynamic Adaptive Streaming over 
HTTP (DASH) among Content Provider (CP) favorites. All 
these specifications, at a broader level, follows the same 
ABR methodology and  normally handles changes in 
network quality in broader level.  

 

Fig. 2. Buffering Reducing Streaming Session Length 
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     But all of these current ABR methodologies (Default-
ABR) has deficiencies, which prohibits it from providing  a 
true high quality experience, as evident from the current user 
survey and user experience data of Fig. 1 as well as Fig. 2. 
This becomes specifically visible during frequent network 
quality change, causing video quality switch also happening 
frequently. As per studies done on user viewing preference 
[4] [10], constant video quality is usually preferred to 
varying quality. Even constant or nearly constant lower 
quality is preferable to frequently varying higher quality.  

    Also, Default-ABR adaptation method generally considers 
the current network bandwidth to decide on the quality to be 
downloaded. So sometimes it can even lead to timing issue, 
where immediately after starting a high quality content 
download due to current high quality network bandwidth, 
suddenly the network quality changes to lower quality. As a 
result, high quality fragment downloading during the 
streaming in low network takes longer time and results in 
buffering. Specially while travelling or commutating, when 
network fluctuations are commonly felt, QoE of video 
streaming gets affected and buffering problems become more 
prominent. 

Many authors have conducted experiments to improve 
user QoE while streaming. In [6], [7] and [9] authors have 
suggested buffer-based approach to enhance Default-ABR 
but initially user has to watch low quality video even if one 
is on good network. In [8], authors have shown new 
algorithm based on both rate and buffer occupancy. But, 
none of them has considered previous network trend in their 
studies. Our solution detects fluctuations and suggest 
optimized solution which enhances user QoE. Proposed 
solution performs well during stable as well as unstable 
network conditions. 

     In this paper, we propose ways to detect network 
fluctuations and an intelligent network aware adaptive 
streaming method (Optimized-ABR) by which we can solve 
the above shortcomings and achieve better QoE for the end-
user during continuous network fluctuation. A simple 
algorithm is devised to detect network fluctuations using 
buffer occupancy and number of quality switches. A smart 
queue based solution is given to handle these fluctuations. 
This approach results in less buffering, less number of 
quality switches as well as ability to go back to Default-ABR 
technique in case of resumption of constant or near constant 
network availability. 

     The rest of the paper is organized as follows. Section II 

demonstrates our methodology to recognize network 

fluctuation and then based on the recognition how 

intelligently Optimized-ABR method can reduce quality 

switches as well as reduce buffering in detail. Section IV 

provides the experimental results on using this technique in 

real-network and then comparing with the Default-ABR 

technique result. Section V concludes the paper with further 

research plan on this technique. 

  

II. PROPOSED METHOD 

In this section, we present ways to detect and solve 

network fluctuations. In order to understand further 

subsections, firstly we discuss about the basic queue model 

being used in ABR streaming. In order to ensure smooth 

playback, a streaming client adds a buffering capability to 

absorb the effect of temporary mismatch between download 

rate and consumption rate. This buffering capability on 

client side is implemented using queue data structure. 

Number of downloaded data bytes in the queue will be more 

during peaks i.e. high network bandwidth and will drop 

significantly during low network bandwidth. Queue 

dynamics govern the loading time and video buffering. The 

below sub sections describe how the queueing process 

works in general and how our method enhances it for better 

QoE. 
Fig. 3 shows the queue model where D(r) = Downloading 

rate, C(r) = Consumption rate; and B(r) = Buffered data. 
Initially, during start-up, when the queue is empty, we 
consider the Low Percent (LP) is reached. Again when data 
is getting received in queue via downloading, it keeps on 
posting buffering messages until High Percent (HP) is 
reached. The buffering support provided by queue is decided 
by these LP and HP values. So whenever LP is reached, 
playback moves to paused state and starts buffering to 
download more data for starting the playback. Again 
subsequently when HP is reached, a buffering message with 
100% will be posted, which instructs the application to 
resume the playback. In other words, LP controls the 
buffering initiation point and HP, its termination point.  HP 
also controls the start-up delay. Start-up delay is directly 
proportional to HP. 

       Suppose the current queue data be “βcurrent”, maximum 

queue data be “βmax” 

� If (βcurrent*100/ βmax) ≤ LP; buffering starts 

� If (βcurrent*100/ βmax) ≥ HP; buffering ends 

 

Having βmax same in both the high and low resolution 

components would clearly result in latter having more 

cached video data.  Cache size variation for video fragment 

downloaded in different resolutions can be seen in Table I. 

For data collection, Gstreamer media framework [11] was 

used for determining fragment size and duration. The above 

buffering conditions will be used in subsequent section to 

detect the fluctuations on the network. 

 

 

Fig. 3. Video Queuing Model 
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TABLE I.  CACHE SIZE VARIATION WITH FIXED QUEUE. 

Dailymotion Site content (fragment duration ~10 sec) 

Content Quality Fragment Size 

 
Video Queue 

Size 
 

Video Cache 
Duration 

Low 211 KB 5 MB ~24 sec 

Medium 358 KB 5 MB ~14 sec 

High-Medium 578 KB 5 MB ~9 sec 

High 1.26 MB 5 MB ~4 sec 

 

A. How to recognize network fluctuation ? 
    Considering the queue Fig. 3 

� If D(r) > C(r), then B(r) will keep on increasing till 

βmax is reached. 

� If D(r) < C(r), then B(r) will keep on decreasing till 

LP and buffering starts. 

 

This network fluctuation can be identified in 2 ways. 

We can either put signals at HP and LP and observe the 

pattern of respective signals within a fixed time interval (α); 

or capture the number of quality switches in a playback. We 

will be considering each case separately and doing the 

comparative analysis. 

 

� Option 1: Signal based technique 

 

In this technique, two signals are created during queue 

class initialization and emitted when LP or HP condition 

hits. The pattern of signals we are focusing here will be “HP 

followed by LP” and “LP followed by HP”. We maintain 

the pattern occurrence count for a definite time interval (α), 

which can be checked against a pre-decided maximum 

occurrence limit. If the count surpasses the limit then we are 

in unstable network zone. We can further optimize it by 

using Lower Buffering Limit (LBL) as signal emission 

point. LBL is a value greater than LP that helps us in 

capturing the fluctuations at an early stage and hence, more 

effectively. 

 

� Option 2: Quality switching based technique 

 

Number of resolution switches is directly impacted by 

the network conditions. Higher the network variations more 

will be the number of switches. So keeping the count of 

quality switches can be used as a deciding factor. However, 

this technique is sometimes misleading. As the number of 

variants present increases, in good network condition, 

resolution switching is commonly seen in upper variants 

(subjected to client side implementation of switching logic) 

but user experience is not hugely affected. 

 

 It is challenging to identify the valid quality switches. 

For example, if there are total 10 variants, considering user 

visual impact, switching between lowest and 2nd lowest 

variants would not be much different. But variation between 

1st and 4th lowest variant maybe easily identifiable. We have 

solved this problem by grouping the variants and not 

increasing the count if switching is happening in the same 

group of variants. Basically, grouping is a simple 

methodology to partition all available quality variants based 

on the content encoding parameters. This helps us in 

logically enforce quality switching among different quality 

partitions to achieve good results. Here, for our 

experimental purposes we have divided the variants in three 

groups namely low, medium and high. There can be cases 

where numbers of groups are equal to number of variants. 

So to know the optimum methodology to confirm about 

network fluctuation, both Option-1 and modified Option-2 

is used in conjunction to achieve the desired result. 

Algorithm 1 shows the simple algorithm for determining 

network fluctuations. 

 

B. Proposed Optimization Technique 
In this section, we will present the algorithm for 

solving network fluctuation issues. Default-

ABR methodology uses the current downloading rate to 

estimate the next segment bandwidth value. But during 

network fluctuations, this approach does not provide best 

user QoE results as the current conditions may not reflect 

the upcoming network problems. Inaccurate estimates will 

lead to re-buffering events and frequent quality switches. 

To overcome this drawback in default ABR methodology; 

we propose a different client-side bitrate adaptation 

approach. 

Algorithm will be devised in such a way that if the 

network is stable during the course of playback, Default-

ABR or bandwidth based approach will be used otherwise 

we will switch to our proposed solution. Once network 

stabilizes, we will come back to default setting i.e. using 

bandwidth as the deciding factor. 

Optimized-ABR approach: 
 

In proposed solution, we will use buffer occupancy to 

decide the next segment bandwidth. The idea behind this is 

to reduce buffering count caused due to inaccurate 

bandwidth estimates during fluctuating network conditions. 

We will divide the variants according to section III (Option 

2) where we have discussed about the importance of 

grouping variants. Qualities are grouped on the basis of their 

switching impact on user QoE i.e. if switching is happening 

within the qualities of same group, the impact on user 

experience will be less. Moreover, we can select the lowest 

bitrate quality amongst the variants of same group. Further, 

we will partition the queue in same number of parts as that  
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of number of quality groups. For instance, we have taken 

three groups say low, medium and high. The corresponding 

partitioned queue is shown in Fig. 4. First part of the queue 

will be filled with segments from lower video quality group, 

second part with medium quality and when data inside 

queue surpasses the second region i.e. when we have 

enough data to sustain, we will switch back to Default-

ABR approach. There is a trade-off between rebuffering and 

playing high quality. So, more the size of low and medium 

queue parts, lesser will be the re-buffering events. 

Optimized-ABR aims to improve the user QoE factors such 

as buffering frequency and video quality switching 

frequency. 

 

Our proposed technique selects lower bandwidth 

segments when the chances of queue getting drain are 

higher, thus, reducing the possibility of buffering. 

 

To address the issue of frequent quality switches, we 

enforce video quality to remain in a particular group for a 

longer duration. Thus, instant jumps from one quality group 

to another are minimized. Optimized-ABR approach aims at 

caching more data during high network bandwidth by  

 
 
Fig. 4 Queue during Optimized-ABR (3 groups) 

lowering down the quality so that we can sustain the bad 

network intervals. 

 

To illustrate it further, let us consider the example given 

in Table II. Based on Algorithm 1, we can identify the 

network fluctuation. Let us assume, at the current stage, we 

are getting good bandwidth for download. 

 

Let the current high Download rate be D(r/high). So in 

bandwidth based approach, at this point, good network 

speed will be utilized in downloading high quality video, 

So it will take Λ(t/high) sec to download a fragment, where, 

 Λ(t/high) = 1.26 MB / D(r/high). 

 

But, as per our proposed optimization technique, we are 

forcing the download to medium Quality group, even when 

D(r/high) is maintained same. So in our proposed 

methodology, fragment download will take only Λ(t/high-

medium)  time, where, 

Λ(t/high- medium) = 578 KB / D(r/high). 

 

Now, let’s assume, due to network fluctuation, after T 

seconds, network download rate will suddenly drop to very 

low value. 

 

So the number of video fragments which would have 

cached in default ABR method would be N(Default-ABR), 

where,  

 N(Default-ABR) = T / Λ(t/high). 

 

But with the proposed methodology, it would be, 
N(Optimized-ABR), where, 

 N(Optimized-ABR) = T / Λ(t/high- medium). 

 

Now since (Λ(t/high) >> Λ(t/high- medium)), so (N(Default-ABR) << 

N(Optimized-ABR)), i.e. the number of cached fragments will 

obviously be much more in the proposed design compared 

to default design. This will result in less buffering as more 

cache would help in sustaining in the bad network portion of 

fluctuation. 

C. Why to disable the Optimization Technique ? 
In previous sub section, we have proposed an 

optimization technique which helps in improving user QoE 

when user is in fluctuating network condition. But when 

normalcy has returned to the network condition, if we won’t 

disable our logic, it will keep on downloading lower 

resolution fragment even when user is getting high 
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downloading speed. So disabling the logic is of equal 

importance as implementing it. Normalcy of network can be 

understood as same logic mentioned in Section II (B), when 

buffer occupancy surpasses the medium queue region. This 

marks as the point, the queue returns to the Default-ABR 

methodology. 

III. EXPERIMENTAL RESULTS 

For our experimental purpose, we have used two 

smartphones of same model having same hardware 

specifications (Tizen OS having Quad-core Spreadtrum 1.5 

GHz Processor having WVGA Resolution). One device was 

working on Default-ABR mechanism and other on 

Optimized-ABR. For streaming content, we have used 

Dailymotion, Hotstar and Jio applications and have 

conducted many experiments playing different video 

TABLE II.  CONTENT SIZE AND RESOLUTION VARIATIONS. 

Dailymotion Site content (fragment duration ~10 sec) 
Content 
Quality 

Fragment 
Size 

Video 
Resolution 

Overall 
Bitrate 

Video Encoder 
Settings 

Low 211 KB 320x284 173 kb/s 

AVC(Baseline

@L1.3) , 5 Ref 

frames 
 

Medium 358 KB 512x288 294 kb/s 

AVC(Baseline

@L2.2) , 3 Ref 
frames 

 

High-
Medium 

578 KB 848x480 476 kb/s 

AVC(High@L3
.1) , 4 Ref 

frames , 

CABAC 
 

High 1.26 MB 1280x720 
1064 

kb/s 

AVC(High@L3

.1) , 5 Ref 
frames , 

CABAC 

 

 

contents but same video on both devices at a time. 

 

In order to capture the real-time network fluctuations in 

real field testing, the devices were taken on a moving 

vehicle, both playing same adaptive bitrate content and 

working on same network operator. The study was 

conducted using multiple service providers to cover the 

various network conditions and results are demonstrated for 

Reliance JIO and Bharti Airtel networks. The comparative 

analysis was done for both the devices. 

 

Fig. 5 and Fig. 6 depict the results for Airtel and 

Reliance respectively; where Part (A) shows the network 

bandwidth trend over time (IST). Part (B) and (C), show the 

duration for which buffering was noticed for devices 

without solution and with solution respectively. Part (D) 

demonstrates the advantage of Optimized-ABR over 

Default-ABR. 

 

          
                       (A) 

 

       
        (B)                      (C) 

 
                              

 
                                                                 (D) 

 

Fig. 5 Experimental Result-1 with Airtel 

 

Experiment-1 uses 30 and 60 as the low and medium 

partition values and Experiment-2 used 50 and 80 

respectively. In Experiment-1, the buffering duration 

reduction seen is around 40% and around 47% for quality 

switch count. 

 

For Experiment 2, the values are approximately 42% 

and 50% respectively. This demonstrate that the buffering 

time and buffering count seen in Default-ABR is more than 

Optimized-ABR. Moreover, the quality switch count has 

also been reduced by a significant amount. 

 

On doing the collaborative analysis, the improvement in 

re-buffering events varies from 20-60% and switching 

frequency varies from 40-50%. Hence, with our proposed 

solution the values of buffering time, buffering count and 

switching count are decreasing. 
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                    (A) 
 

     
            (B)                       (C) 

 

 
                  (D) 

 
Fig. 6 Experimental Result-2 with Reliance JIO 

 

IV. CONCLUSION AND FUTURE WORK 

In this paper, we introduced an Optimized-ABR 

algorithm which helps in improving user QoE during 

fluctuating network conditions over current state-of-the- art 

Default-ABR methodology. We have proposed ways of 

knowing network fluctuations by using LP and HP 

parameters and by using quality switch count. We further 

formulated methods to handle the fluctuation manipulating 

queue parameters by dividing queue in various groups and 

forcing video quality to relatively lower variants. At last, 

two experimental results are shown to demonstrate the 

effectiveness of our proposed solution. 

 

In summary, compared to existing state-of-the- art 

Default-ABR methodology, current proposed Optimized- 

ABR methodology has resulted in reduction of buffering 

event occurring by almost 40% as well as switch count  

   
           (A)                                                       (B) 

 

             
                  Bitrate 
 
Algorithm 

 
High 

Bitrate 

 
Medium 
Bitrate 

 
Low 

Bitrate 

Optimized- 
ABR 

20m 49sec 4m 43sec 31m10sec 

Default-             
ABR 

26m 27sec 3m19sec 26m56sec 

                      C) COMPARISON BETWEEN ‘A’ AND ‘B’ W.R.T. DIFFERENT  

                                              QUALITY PLAYBACK DURATION 

 
Fig. 7 Different Quality playback duration comparison 

reduction of around 45% respectively on average. 

 

It can easily be inferred from the results, with this 

technique being employed, User QoE would be enhanced up 

to a good extent as there is significant reduction in buffering 

time as well as quality switching frequency. 

 

Now coming to the future work scope, Fig. 7 shows the 

video rate played during Experiment-2 and below table 

depicts the total time for which a particular quality has been 

played. High bitrate content is played for more time in 

Default-ABR than in Optimized-ABR. So there is a definite 

scope of improvement for optimizing the optimized 

methodology further. 

 

Future research plan includes using neural networks to 

get better user QoE in every aspect. 
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