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A B S T R A C T

Tracking is pervasive on the web. Third party trackers acquire user data through information leak from
websites, and user browsing history using cookies and device fingerprinting. In response, several privacy
protection techniques (e.g. the Ghostery browser extension) have been developed. To the best of our
knowledge, our work is the first study that proposes a reliable methodology for privacy protection comparison,
and extensively compares a wide set of privacy protection techniques. Our contributions are the following. First,
we propose a robust methodology to compare privacy protection techniques when crawling many websites,
and quantify measurement error. To this end, we reuse the privacy footprint and apply the Kolmogorov–
Smirnov test on browsing metrics. This test is likewise applied to HTML-based metrics to assess webpage
quality degradation. To complement HTML-based metrics, we also design a manual analysis. Second, we study
the overlap of blocking resources between most popular browser extensions, and compare the performances
using the proposed methodology. We show that protection techniques have vastly different performances,
and that the best of them exhibit a wide overlap. Next, we analyze the impact of privacy protection
techniques on webpage quality. We show that automated HTML-based analysis sometimes fails to expose
quality reduction perceived by users. Finally, we provide a set of usage recommendations for end-users and
research recommendations for the scientific community. Ghostery and uBlock Origin provide the best trade-off
between protection and webpage quality. Ghostery however requires a configuration step which is difficult for
users. The RequestPolicy Continued and NoScript extensions exhibit the best performances but reduce webpage
quality. Ghostery and uBlock Origin use manually built blocking lists which are cumbersome to maintain.
Research efforts should focus on improving existing approaches that do not rely on blocking lists (such as
Privacy badger or MyTrackingChoices), and automatically building reliable blocking lists.

1. Introduction

The huge growth of the Internet comes along with an ever-
increasing advertising market. Internet users access content provided
for free by publishers. Consequently, publishers monetize their audi-
ence through advertisement. Companies thus buy online exposure to
promote their products. In order to maximize advertisement efficiency,
advertisers tailor ads to users regarding their interests. To this end,
advertisers leverage context (e.g. visited website) or previous browsing
interests.

Advertisers use techniques such as cookies to identify users across
websites and build their browsing history. Other techniques have also
been developed to allow advertising actors to communicate with each
other (such as cookie syncing [1]), or circumvent cookie removal
by respawning cookies using diverse types of data storage inside the
browser (e.g. using Flash [2]). Browser fingerprinting [3] allows a
tracking entity to follow a user across websites without any in-browser
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data storage. In response to these techniques, several counter-measures
were designed. We can here quote the Do Not Track HTTP header [4]
by which a user can ask not to be tracked. Browsers can also block
some or all cookies. Finally, many browser extensions hinder third
party tracking by preventing cookie creation and/or blocking requests
to tracking services.

End-users thus have many techniques available but have trouble
picking one that offers good protection. Similarly, privacy researchers
often want to assess protection efficiency but do not want to test
all available tools. Our goal is to compare existing privacy protec-
tion techniques and provide efficiency-based recommendations. Some
work previously tried to compare privacy protection techniques [5–
12]. Krishnamurthy et al. [5] provide the first comparison of privacy
protection methods but do not evaluate most of the browser extensions
available today because they appeared after the publication of the
paper. Balebako et al. [7] focus on a very specific use case: behavioral
advertising. Mayer et al. [6], Hill [8,9] and Traverso et al. [12] evaluate
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4, 4, 4 and 7 browser extensions on a limited set of websites (respec-
tively Alexa Top 500, 45, 84 and 100 italian URLs). Wills et al. [10]
crawl a thousand of websites but use only six browser extensions.
Merzdovnik et al. [11] use five browser extensions. Furthermore, these
studies do not use the same metrics, it is thus difficult to compare their
results. Our extensive coverage improves the state of the art regarding
measurement methodology and error, and evaluated techniques.

Our contributions are the following. First, we propose a robust
methodology to compare privacy protection techniques against third
party tracking when crawling many websites. To this end, we reuse
the privacy footprint [13] and apply the Kolmogorov–Smirnov test
on browsing metrics. This test is likewise applied on HTML-based
metrics to assess webpage quality degradation. We also design a man-
ual analysis to complement HTML-based metrics. Second, we analyze
the blocked resource overlap between privacy protection techniques,
and compare their performances. Third, we assess the impact of pri-
vacy protection techniques on website quality. Finally, we provide
recommendations for end-users and scientific community. These ex-
periments are performed using the Firefox browser in the context of
OpenWPM [14].

2. Background

This section presents an overview of third party web tracking and
existing privacy protection techniques. We refer the reader to [15,16]
for a more complete description of these aspects.

2.1. Third party web tracking

Websites massively rely on advertisement to monetize user visit.
Advertisers purchase ads for their products directly from publishers
or ad exchanges. When users access websites, they communicate with
all these actors. From the users’ viewpoint, these entities belong to
two categories: first and third parties. First parties are the entities
that users intend to reach, here, publishers. Third parties can be ad-
vertisers, ad exchanges or others actors that provide services to first
parties (such as web analytics). Using techniques such as cookies, local
data storage or fingerprinting, third parties can identify users across
websites. Combining HTTP referrer field and user identification, they
can reconstruct users’ browsing history. Using cookie syncing, trackers
can also exchange user identification and thus improve data collection.

2.2. Privacy protection techniques

Several techniques have been designed to protect users from third
party tracking. Network-based techniques use DNS filtering or proxy.
They however exhibit several shortcomings: proxies cannot analyze
encrypted traffic while DNS filtering only blocks entire domains [11].
User agent spoofing browser extensions may also improve privacy by
hindering fingerprinting, but exhibit poor performance in practice [17].
The next subsections provide a breakdown of browser-related tech-
niques that we compare in this work. Unless specified otherwise, these
extensions are open source.

2.2.1. Extensions
The selection of privacy protection techniques is crucial in our

work. Covering all existing techniques is however extremely difficult
(e.g. some minor extensions may only be available on GitHub, and
needs to be manually installed which is difficult [31]). Furthermore,
as shown in [32], the number of users of such extensions is negligible
compared to that of most used ones. Instead, we cover the most
common ones according to [32] and existing literature [5–12].

We classify these extensions regarding third party tracking im-
pediment methods: blocking lists, heuristics, indiscriminate blocking,
or other. We chose this classification because it exposes extension
characteristics that plays a major role in performance (see Section 6).

Table 1
Privacy protection technique characteristics. Heu.: heuristics ; Ind.: Indiscriminate ;
Popularity (K): popularity in thousands.

Name License User number (K) Version

Bl
oc

ki
ng

lis
ts

AdBlock Plus [18] GPL v3 13,917 2.7
uBlock Origin [19] GPL v3 3,759 1.6
Ghostery [20] Proprietary 966 5.4.10
Disconnect [21] GPL v3 204 3.15.3
NoTrace [22] – 0.8 2.4
DoNotTrackMe/Blur [23] Prop. 86 6.0.2091
BeefTaco [24] Apa. 2.0 10 1.3.7.1

H
eu

. Privacy Badger [25] GPL v3 205 1.0.6
MyTrackingChoices [24] – 0.1 1.0

In
d. NoScript [26] GPL v2 1,765 2.9

RPC [27] GPL v3 6 1.0

O
th

er HTTPSEverywhere [28] GPL v2 353 5.2.5
Decentraleyes [29] MPL 2.0 69 1.2.2
WebOfTrust [30] GPL v3 315 –

The following browser extensions use blocking lists made of regex-
based rules on domain names. These lists are usually community main-
tained. Ghostery [20] is a proprietary, privacy-focused extension that
uses a specific tracker blocking list. It has recently been bought by the
privacy-focused browser Cliqz [33]. Ghostery requires a configuration
step to select categories of trackers to block. uBlock Origin [19] is
a general purpose blocker. It can also understand the syntax used by
the famous ad-blocker AdBlock Plus. uBlock Origin includes by default:
EasyList, EasyPrivacy, Peter Lowe’s Adservers, Malware domains and
some specific lists. Disconnect [21] is another blocker. Blur [23] (also
known as Do Not Track Me) is a proprietary extension owned by Abine.
It blocks trackers, protects mail addresses and passwords. NoTrace [22]
uses a wide range of techniques in order to enhance privacy on the
Internet. NoTrace needs to be configured after installation. One can also
block tracking by setting opt-out cookies that block domains from set-
ting standard cookies. Several entities [34,35] provide opt-cookie lists.
BeefTaco [36] creates opt-out cookies in the browser. Another privacy
protection approach uses ad-blockers to hinder tracking in the same
way they block advertisements. AdBlock Plus [18] is the most popular
ad blocker. Using specific lists, it can block trackers, social widgets,
or malwares. Since 2011, AdBlock Plus is commercially exploited by
Eyeo which monetizes domain whitelisting [37]. In addition to the ad-
focused EasyList [38] that is used by default in AdBlock Plus, there is
a privacy-focused list called EasyPrivacy [38].

Unlike previous extensions relying on blocking list, some use heuris-
tics to block trackers. Privacy Badger [25] is developed by the Elec-
tronic Frontier Foundation and its behavior is further described in
Section 5.2. By default, Privacy Badger uses the Do Not Track HTTP
header [4] and strips the referrer field in HTTP requests. MyTracking-
Choices [24] is an advertisement friendly privacy protection extension.
It uses an hybrid approach which leverages both heuristics similar to
Privacy Badger and blocking list for bootstrapping. Users can allow
tracking for some website categories.

Some extensions indiscriminately block resources NoScript [26]
disables JavaScript. As a side effect, this also disables some tracking.
RequestPolicy Continued [27] blocks all third party requests.

Finally, some extensions use other mechanisms to protect users’
privacy. HTTPSEverywhere [28] tries to replace HTTP connections
with HTTPS ones if HTTPS is supported. WebOfTrust (WOT) [30] pro-
vides website rating regarding trustworthiness and child safety. It was
temporally removed from extensions stores when it was revealed that
WOT broke privacy rules of browser developers [39]. Decentraleyes
uses local files to emulate resources, e.g. freely available JavaScript
libraries, hosted on centralized entities. This blocks tracking from these
entities. Table 1 provides popularity (measured as the number of users
for Firefox), source code license and version of the extensions used in
our work.
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2.2.2. Browsers
Some browsers also have built-in privacy protection features.

DoNotTrack [4] is a field in the HTTP header that asks the destination
not to track the sender. It was proposed in 2009 and is currently
under standardization in W3C. This feature is turned off by default in
Firefox. The last proposed amendments to the European Union’s ePri-
vacy Regulation hints at an increase interest of policy makers towards
DoNotTrack [40]. Firefox [41] can block cookies: either all or only
third parties’ ones or only third party cookies from previously visited
domains. A tracking protection [42] has also been added in Firefox
version 42. Brave [43] and Cliqz [44] are browsers that emphasize their
privacy protection features.

3. Related work

3.1. Tracking on the internet

The seminal contribution in the field of web privacy was by Kr-
ishnamurthy et al. They first studied the diffusion of privacy infor-
mation [13], then, analyzed the impact of counter-measures on this
diffusion and webpage quality [5], and observed the increase of user-
data aggregation by a small number of entities [45]. Several works
then tried to analyze this phenomenon with more details by classifying
tracking [46] or analyzing geographical variations of tracking [47,48].

While early studies focused on cookie-based tracking, two main
new tracking techniques trends emerged: resilient in-browser data stor-
age [2] and browser fingerprinting [3]. Local data storage allows one
to store data in multiple locations (for example, Flash Local Storage
Object, HTML5 or ETags among other means) on a device to bypass
standard cookie removal. This technique thus provides resilient local
identifier storage. By using browser fingerprint, a tracker can com-
pletely avoid using and storing an identifier inside the browser and
instead recognize a browser, or the device it is installed on, using its
characteristics such as fonts [49], battery [50], canvas [51], hardware
level features [52] or browser extensions [53]. Several studies then
tried to detect fingerprinting [54], or both local storage and finger-
printing [1,14]. Furthermore, Lerner et al. [55] show that local storage
fingerprinting increased between 1996 and 2016. Another privacy
threat is the practice of sharing user identification across tracking
entities. This is called ID-sharing, cookie-syncing or cookie-matching.
While the phenomenon has been documented for some time [56],
recent work analyzed its prevalence in the wild and its impact on user
browsing history sharing among trackers [1,14,57].

Finally, the feasibility of user surveillance through bulk passive
network traffic monitoring-based cookie observation has also been
analyzed [58].

3.2. Automated blocking list building

Many privacy protection tools have been proposed (see Section 2.2).
Most of these tools use manually maintained blocking lists (see Ta-
ble 1). Some proposals automatically build tracking blocking lists using
specific keys in URL that correspond to user identifying data [59],
machine learning on DOM structure [60], Javascript [61,62] or user
browsing behavior [63]. The same machine-learning-based approach
was also applied to ad-blocking list building using network traffic
features [64].

3.3. Privacy protection techniques comparison

While some extensions are used in almost all studies (e.g AdBlock
Plus [18] and Ghostery [20]), many of them are seldom employed.
Similarly, some works compare between four and seven extensions [6–
12] while another focuses on two [5]. Table 2 describes how existing
web privacy-related work used or analyzed existing privacy protection
techniques.

Features used to compare privacy protection techniques are very
diverse and thus complicate result comparison across work. Some
works compare privacy protection techniques in terms of HTTP request
number [6,8,9,11], cookie number [6–9], domain number [8,10,12],
private information diffusion [5], and occurrence of behavioral ad-
vertising [7]. Some counter-measure proposals are also comparing
their approaches to others regarding tracker blocking [42,68,69] or
impact on browser performance [24]. Table 3 lists metrics and features
leveraged by existing web privacy-related studies.

Our work is close to [5–12] but improves the state of the art along
four axes: protection techniques, target websites, metrics, and reliabil-
ity. First, we compare more protection techniques (15 and additional
combination of blocking lists), than Krishnamurthy et al. [5] (2), Mayer
et al. [6] (4), Balebako et al. [7] (4), Hill [8,9] (4), Wills et al. [10] (6),
Merzdovnik et al. [11] (5) and Traverso et al. [12] (7). It is difficult
to compare the extensions covered by our work with Krishnamurthy
et al. [5] since the ecosystem was much simpler at the time (AdBlock
Plus and NoScript were the only extensions available). We did not
use some extensions that were addressed in previous studies because
they are either, not supported anymore (e.g. TACO which was owned
by Abine [7,31]), or not available for Firefox (AdBlock [10,24,67],
Superblock Adblocker [24], Adremover [24] and Adblock Pro [24]).
Furthermore, AdBlock (resp Firefox Tracking Protection [42]) uses the
same blocking list as AdBlock Plus (resp. Disconnect). By analyzing
AdBlock Plus and Disconnect, we thus provide performance bounds
on these two techniques. Achara et al. [24] and Wills et al. [10] also
evaluated the performance of an ad-blocking extension that we do not
address in this study: AdGuard Adblocker. Second, we us more websites
than most existing work. We use the Alexa Top 1000 while Mayer
et al. [6], Hill [8,9] and Traverso et al. [12] use the Alexa Top 500,
45, 84 and 100 URLs, and 100 italian URLs. Balebako et al. discussed
five browsing scenarios that use a small number of websites to assess
the occurrence of behavioral advertising, we thus cannot compare the
websites we use. We crawled a number of websites similar to Wills
et al. [10] but analyzed many more protection techniques. We use a
smaller number of crawled websites than Merzdovnik et al. [11] (who
uses Alexa Top 100000) because some of our metrics (such as number
of cookies) require a stateful crawl and thus forbid parallelism. Third,
we use more metrics (see Table 3) than any existing work. We are thus
able to provide a better description of techniques’ performance. We did
not compute the host number metric used by Hill [8,9] because it is
very similar to the number of domains. This metric actually reflects
the internal network architecture of trackers, which is not relevant for
privacy protection comparison. Finally, none of these work performs
several measurements on each website to remove measurement error,
except Mayer et al. [6] who perform three crawls for each URL but
does not provide any justification for this number. To the best our
knowledge, we here propose the first measurement error analysis for
privacy protection technique comparison (see Section 5.1).

4. Methodology

This section presents data collection and used metrics for privacy
protection and webpage quality.

4.1. Data collection

We use OpenWPM [14], an open-source framework written in
Python that relies on Selenium for browser automation. OpenWPM sup-
ports Firefox and provides some extensions. With minor modifications,
we add extensions presented in Table 1 and Section 2.2. This study has
been conducted with Firefox 45.

We crawl the highest-ranked websites by Alexa [72]. Unless stated
otherwise, we perform measurements in August 2017, using IP ad-
dresses located in Japan. Typically, a crawl on the Alexa Top 1000
(Section 6.1) takes about three days with commodity hardware.
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Table 2
Extensions used in previous publications (⋅ for usage in the wild, ○ for ground-truth, ⊙ for ground-truth and usage, + for comparison, ⊕ for comparison and ground-truth, ⋆ for
ML bootstrapping , ∼means that we did not evaluate these techniques but that their results can be derived from our work: AdBlock uses the same default blocking list as AdBlock
Plus and Firefox Tracking Protection uses the same blocking list as Disconnect). The ‘‘ground-truth’’ here means that the considered study uses the blocking list of considered
extensions as reference to classify a domain as related to tracking.

Type Authors & references Extensions Browsers
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Di
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[2

1]

N
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[2
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W
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O
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st

[3
0]

Do
N

ot
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ac
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e/
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ur
[2

3]

M
yT
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ho
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es
[2

4]

RP
C

[2
7]

De
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nt
ra

le
ye

s
[2

9]

N
oS

cr
ip

t
[2

6]

DN
T

[4
]

O
pt

-o
ut

co
ok

ie
s

[3
4–

36
]

H
TT

PS
Ev

er
yw

he
re

[2
8]

Fi
re

fo
x

[4
2]

Cl
iq

z

Krishnamurthy et al. [13] ○
Castelluccia et al. [47] ○ ○

Web Fruchter et al. [48] ○ ○
privacy Carrascosa et al. [66] +
analysis Metwalley et al. [67] ⋅ ⋅ ⊙ ⋅ ⊙ ⋅

Englehardt et al. [58] + + + +
Englehardt et al. [14] ○+ ○+ + +

Malandrino et al. [68] + + + + +
Privacy Malandrino et al. [69] + + + + +
protection Kontaxis et al. [42] + +

Achara et al. [24] + + + + +

Gugelmann et al. [64] +⋆ +⋆
Tracker Metwalley et al. [59] ○ ○
detection Wu et al. [61] ⋆

Yu et al. [70] + + +
Ikram et al. [62] + + + + +

User Leon et al. [31] + + + +
ana. Malandrino et al. [71] +

Comp.

Krishnamurthy et al. [5] + +
Mayer et al. [6] + + + +
Balebako et al. [7] + + + +
Hill [8] + + + +
Hill [9] + + + +
Wills et al. [10] + + + + + +
Merzdovnik et al. [11] + + + + +
Traverso et al. [12] + ○ + ○+ + ○+ + +

Our work – ∼ + + + + + + + + + + + + + + + + ∼

4.2. Privacy protection

In this section, we present our robust methodology to compare
privacy protection techniques across several websites and using several
metrics. We also present privacy footprint [13].

4.2.1. Browsing metrics
As explained in Section 2.1, privacy leakage occurs through com-

munications with trackers, and local data storage (e.g. cookie) allows
trackers to easily identify users across website. It is impossible to
construct the exhaustive set of efficient metrics for privacy protection
techniques comparison. Furthermore, this task is beyond the scope of
our work. Instead, we carefully survey the metrics used in the past
literature, and select commonly used and efficient metrics as shown
in Table 3. As later demonstrated in Section 6.1.1, used metrics are
able to compare and discriminate privacy protection techniques. We
consider five simple browsing-related metrics that reflect the ability of
protection techniques to hinder these two phenomena. We first focus on
HTTP requests. We separately count the requests that are made to the
accessed domain (the number of first party requests), and the requests
that are made to other domains (the number of third party requests).
To this end, we use the second level domain name obtained from
the Public Suffix List [73]. These metrics give a rough estimation on
the performance of a particular extension. A protection technique is
effective if the number of first party requests is not impacted, and the
number of third party requests decreases.

The third metric is the number of third party domains accessed during
a crawl. This is complementary to the number of third party requests.

It provides a metric on the number of blocked entities. There may be
a few domains that generate a lot of requests, or a many domains
that produce a few requests. Efficient protection techniques reduce the
number of third party domains.

This is however not sufficient since third party requests are not
always used to track users, they can also provide content to users
(e.g. media resources) or contact non-tracking third parties (e.g. web-
site analytics). The fourth metric is the number of the profile cookies
obtained from a stateful crawl.

Protection techniques with good performances diminish the number
of cookies.

The last metric is the total amount of data transferred. It is especially
important in low-bandwidth situations for example on mobile. This
metric is directly related to tracking and advertisement. Advertisement
often generates considerable traffic during browsing. However, as we
will see in Section 5.1, this metric shows high variability when crawling
the same website. We thus did not use this metric in our analysis.

4.2.2. Kolmogorov–Smirnov test-based browsing metrics comparison
While the metrics introduced in Section 4.2.1 provide a good esti-

mation of the privacy protection for a particular website, summarizing
this aspect for a set of websites is non-trivial. Fig. 1 presents two
empirical cumulative distribution functions (ECDFs) built on the mean
number of third party requests sent, for each website of the Alexa
Top 1000 world. We use the mean of each metrics for ten crawls to
reduce measurement error (see Section 5.1). We here use two Firefox
configurations: one without any extension (bare) and one with uBlock
Origin. To determine whether one Firefox configuration exhibits the
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Table 3
Metrics used for privacy protection technique comparison (○ for metric used and ⊙ for metric used with breakdown, ⋆ uses total # domains = #3rd party domains + 1 for
the publisher).

Type Authors & references Privacy protection Webpage quality Browser
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Krishnamurthy et al. [13] ○
Web Fruchter et al. [48] ○ ○
privacy Carrascosa et al. [66] ○
analysis Englehardt et al. [58] ○

Englehardt et al. [14] ○ ○ ○ ○

Malandrino et al. [68] ○ ○ ○
Privacy Malandrino et al. [69] ⊙
protection Kontaxis et al. [42] ○ ○ ○

Achara et al. [24] ○ ○ ○

Tracker Yu et al. [70] ○
detection Ikram et al. [62] ○

Krishnamurthy et al. [5] ⊙ ○
Mayer et al. [6] ○ ○

Comparison Balebako et al. [7] ○ ○
Hill [8] ○⋆ ○ ○ ○ ○ ○
Hill [9] ○ ○ ○ ○
Wills et al. [10] ○
Merzdovnik et al. [11] ○
Traverso et al. [12] ⊙ ○ ○

Our work – ○ ○ ⊙ ○ ○ ○ ○ ○ ○ ○ ○ ○

Fig. 1. Example of ECDF of the mean number of third party requests for all websites
in the Alexa Top 1000 with two configurations: default Firefox (bare) and Firefox with
uBlock Origin. The arrow represents the KS statistic.

same performance as another, we use the Kolmogorov–Smirnov (or KS)
test. It is a non-parametric test that does not make any assumption
on the underlying distributions which fit our context. This test relies
on the KS-statistic which is the maximum difference between two
cumulative distributions. The KS statistic is represented by the arrow
on Fig. 1. The null hypothesis is that both ECDFs belong to the same
distribution. In our case, this means that both configurations have the
same performance. We arbitrarily choose a significance level 𝛼 of 0.05
which is in line with common practice and the seminal work of Fisher
[74]. If the 𝑝-value of the KS-test is smaller than 𝛼, we consider the two
ECDFs as distinct. In other words, the two considered configurations
have performances that are statistically different.

4.2.3. Privacy footprint
In this work, we also use the privacy footprint proposed by Kr-

ishnamurthy et al. [13]. The privacy footprint represents interactions
between first parties and third parties (i.e. potential trackers) in a
graph. For each third party accessed by the user when visiting a first
party, an edge is added between the nodes representing the considered
first and third parties. Privacy footprint thus captures both the potential
information leaking from first parties, and the aggregating behavior of
third parties. Krishnamurthy et al. [13] used the second-level domain
name of the authoritative DNS server of third parties to group domains
in the same entity on the same node in the graph. This method is
called ADNS. Krishnamurthy et al. [45] then noticed that unrelated
third parties located on the same hosting service or Content Delivery
Network (CDN) are grouped together by ADNS because they share
authoritative DNS servers. They thus develop a new method called root.
With root, if a third party is located in a hosting service or a CDN,
the second-level domain-name of the third party domain is the node
identifier. Otherwise, as with ADNS, the second-level domain name of
the authoritative DNS server of the considered third party is the node.

We use three metrics that are built on the graph. (1) the number
of third parties reveals tracking breadth. (2) the mean number of third
parties per first party corresponds to tracking intensity. (3) the number
of first parties associated with the top 10 third parties estimates how much
tracking is concentrated on the most prominent third parties.

4.3. Webpage quality

Privacy protection techniques prevent privacy information leakage
by hindering of communications with trackers and blocking cookie
creation, among other techniques. This may however have negative
side-effects on webpage quality. Blocked third party domains may ac-
tually host images or JavaScript that are needed to render the webpage
correctly. We first analyze the impact of privacy protection on browsing
data in an automated fashion. We then perform a manual analysis to
assess privacy protection repercussion on rendered webpage.
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Fig. 2. Relative standard error of the mean of browsing metrics in function of the
number of measurements when accessing www.yahoo.jp. Solid lines represent the
median, dashed lines correspond to 5 and 95-centiles.

4.3.1. HMTL-based metrics
Our goal is to detect layout differences or missing elements that

may reduce webpage quality both in terms of rendering quality and
functionality. We crawl HTML data using OpenWPM. We devise several
metrics that analyze the browsed page. The first metric is the HTML
page size. We then derive two metrics from the crawled HTML data
itself: number of images and scripts. The last two metrics are the total
size of images and scripts. For all metrics, a reduction is associated
with a webpage quality decrease. We here reuse the metric comparison
method presented in Section 4.2.2.

4.3.2. Manual analysis
By analyzing HTML, we are able to determine how many elements

and how much data is missing when privacy protection is used. This,
however, does not assess how well the webpage is rendered inside
the browser. We thus perform a manual analysis to determine web-
page quality obtained with privacy protection techniques. Webpage
screenshots are captured using OpenWPM. First, we want to determine
whether privacy protection techniques impact webpage layout. Our
first question thus is: ‘‘Please rate layout similarity between Bare (left)
and Extension (right)’’. Good layout similarity, however, does not guar-
antee lack of missing elements. The next step is to compare webpage
elements when privacy protection is used and not used. We want to
avoid comparing elements of the same webpages that may change for
different users or crawling time (e.g. news items). We thus ask user
to focus on webpage elements that are part of the user interface. Our
second question thus is: ‘‘Please rate the proportion of elements (image,
text frame, widgets, etc.) of the user interface (e.g.: login button, tabs,
etc, but not news items or pictures) in Bare (left) that are also in
Extension (right)’’. For both questions, users give a rating between 0
and 10, 0 being the worst and 10 the best. Our manual analysis was
performed by six users.

5. Measurement parameters

We address two measurement parameters: the impact of crawling
parameters on measurement error, and the training of Privacy Badger.

5.1. Impact of crawling parameters on measurement error

During our preliminary experiment, we notice that measurement
results are not stable. Querying twice a website usually yields two
different metric values. To determine the appropriate number of mea-
surements that generates a small error, we conducted a detailed study

Fig. 3. ECDF of the relative standard error of the mean of browsing metrics on the
Alexa Top 1000 websites crawled ten times. Vertical dashed lines represent the relative
standard error for www.yahoo.jp.

on the website showing the highest variability in our preliminary
experiment: www.yahoo.jp. These measurements were performed is
November 2016.

Varying the number of measurements, we computed the relative
standard error of the mean of four browsing metrics.

Fig. 2 shows that the relative standard error decreases when the
number of measurements increases. Performing ten crawls reduces the
relative standard error on the number of first party requests, third party
requests, and third party domains to less than 5%. The number of
bytes received, however, still has a large error, we thus discard this
metric. One possible reasons for this measurement error is the webpage
advertisement churn. Guha et al. [75] analyze ad churn during page
reloads. They show that the number of unique new ads increases
quickly during the first ten reloads but only linearly thereafter. This
further justifies our choice to use ten measurements. An existing com-
parison of privacy protection techniques [6] uses three crawls for each
website and extension. They however do not motivate this choice nor
provided measurement error analysis. We perform ten crawls because
this value is a reasonable trade-off between measurement error and
duration.

Fig. 3 is the ECDF of the relative standard error of the mean of
the number of first and third party requests, and of the number of
third party domains for all websites in the Alexa Top 1000 crawled 10
times. Most websites have a relative standard error smaller than that
of www.yahoo.jp (here in dashed lines). Overall, 99% of websites have
a relative standard error smaller than 1% for all observed features.

5.2. Privacy badger training

Privacy Badger employs heuristics to determine if a domain is
performing tracking (see Section 2.2.1). Privacy Badger measures the
number of times that a domain reads a cookie as a third party. When
this number is greater than three, the considered domain is blocked. On
top of this, cookies are also whitelisted using heuristics. This behavior
causes a freshly installed Privacy Badger not to block any domain. As
the user browses websites, more and more domains are blocked. To
fairly evaluate Privacy Badger, we analyze the impact of Privacy Badger
training. In other words, we intend to quantify how many websites need
to be accessed to ensure that Privacy Badger is completely trained.

If we were to determine the number of websites regular users need
to browse to train Privacy Badger, we should use a browsing model
such as AOL search logs [76] as Roesner et al. [46] do. Our use-case
here is however to ensure that Privacy Badger is trained for a specific
set of websites. We thus measure Privacy Badger’s performance on the
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Fig. 4. Performances of Privacy Badger depending on the number of crawl performed for its training. The horizontal dashed line represents a default Firefox as reference.

Fig. 5. Performance comparison of protection techniques regarding the mean # first party request, mean # third party requests, mean # third party domains and # cookies. Each
metric value corresponds to the total obtained by crawling the Alexa Top 1000 websites. The mean and standard deviation are computed on ten crawls. The number on top of
technique name is the KS-based rank. Bare: Firefox alone, MTC: MyTrackingChoices, PB: Privacy Badger, FF no 3PC: Firefox no 3rd party cookie, FF no 3PC EV: Firefox no 3rd
party cookie blocking except from previously visited domains, ABP: AdBlockPlus, EL: EasyList, EP: EasyPrivacy, RPC: RequestPolicy Continued . AdBlock Plus uBo-like uses all
uBlock Origin’s lists except uBlock Origin’s specific ones; it thus loads EasyList, EasyPrivacy, Peter Lowe’s Ad Server list and Malware domains.

Alexa Top 100 websites after training. These crawls were performed is
November 2016. This training consists of several repeated crawls tar-
geting the same set of websites and performed without reinitializing the
user profile, i.e. Privacy Badger continues its training. We use zero to
five successive training crawls and then perform a single measurement
crawl.

The results of this experiment are shown in Fig. 4. The dashed
line corresponds to a reference: crawling results of a bare browser.

KS test groups the six measurements with Privacy Badger together,
but separates them from the bare browser. Without training, Privacy
Badger is already able to provide partial protection. After a single
training pass, the number of third party requests is reduced by 10.3%.
The results however do not improve when the number of training crawl
increases. We also ran a single training crawl on the Alexa Top 500
websites and observed similar performance as with a single training
crawl. The training is thus complete with less than one crawl (here
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Fig. 6. Privacy footprint [13,45] for the Alexa Top 1000 world. The mean and standard
deviation are computed on the metric value of the ten crawl. EV: Firefox no 3rd party
cookie blocking except from previously visited domains, ABP: AdBlockPlus, EL: EasyList,
EP: EasyPrivacy.

one hundred websites). MyTrackingChoices uses the same principle
but without Privacy Badger’s cookie data-based white-listing heuristics.
One can thus expect MyTrackingChoices to train faster. Moreover,
MyTrackingChoices is provided with a small bootstrapping tracker list
which should further reduce training time. For the remainder of this
paper, we train Privacy Badger using a single crawl on the considered
Alexa Top websites. Out of the four existing work that uses Privacy
Badger [8,11,12,62], only two actually perform some training [8,11].
We here provide the first estimation of how much website needs to be
visited to complete Privacy Badger’s training. In the remainder of the
paper, we use a single training pass.

6. Results

6.1. Privacy protection

We compare protection techniques, first in terms of performance
and then, regarding their blocking overlap.

6.1.1. Browsing metrics
We perform a general comparison of privacy protection techniques.

We crawled the Alexa Top 1000 World using 21 different browser
configurations. One configuration is the default setup of the Firefox
browser (Bare). One configuration is Firefox setup with the DoNotTrack
HTTP header. Two configurations use Firefox’s ability to block cookies:
third party ones or third party cookies except from previously visited
websites. We do not use complete cookie blocking because we hypoth-
esize that users want to keep using cookie for some domains. Three
configurations set up AdBlock Plus with various lists: EasyList, EasyList
and EasyPrivacy and a filter set similar to uBlock Origin (EasyList,
EasyPrivacy, Peter Lowe’s Ad Server list and Malware domains). One
configuration uses NoTrace with the high preset (the default con-
figuration has no effect on our metrics). The last 14 configurations
are extensions with their default setting. We do not use the Firefox
Tracking Protection [42] because OpenWPM does not support it yet.
However, this technique uses the Disconnect blocking list. This means
that by analyzing Disconnect, we provide a performance bound on
Firefox Tracking Protection’s performances. The results are shown in
Fig. 5. The number on top of technique name is the KS-based rank (see
Section 4.2.2).

All techniques have a limited impact on first party requests. The
most aggressive technique is NoScript [26]. This is due to the fact that

Javascript is pervasive on Internet. Other techniques exhibit a limited
impact on th enumber of blocked first party requests.

Except for the number of cookies, the two most effective extensions
are RequestPolicy Continued and NoScript which reduce the number
of third party HTTP requests by 96% and 87%. However, as shown
in Section 6.2 and other studies [5,69], they strongly impact webpage
quality.

Among other techniques, Ghostery [20] and uBlock Origin [19]
provide the best performances. They reduce the number of third party
HTTP requests by 58% and 55%. Ghostery however needs to be con-
figured which is difficult for users [31]. AdBlock Plus [18] uBO-like
has similar performances with uBlock Origin and Ghostery. Our results
show that users can manually setup AdBlock to obtain good results,
unfortunately this is difficult [31]. Furthermore, AdBlock Plus used
with EasyList is much more CPU and memory-hungry than uBlock
Origin [24].

Another group of techniques provides average performances: Dis-
connect (and Firefox Tracking Protection), AdBlock Plus (with EasyList
and EasyList + EasyPrivacy), Privacy Badger, Blur, BeefTaco and No-
Trace. Their results are mostly consistent across third party requests
and domains, and cookies. Privacy Badger [25], Blur [23], Discon-
nect [21] and AdBlock Plus with the EasyList block a relatively large
number of third party HTTP requests (between 33% and 48%), but a
fairly small number of third party domains (between 8% and 33%).
We hypothesize that these techniques block the main trackers but fail
to impact the tracking long-tail [14]. MyTrackingChoices performances
are worse than untrained Privacy Badger. We hypothesize that this is
due to a GUI bug that forbids users from customizing website categories
where blocking occurs. MyTrackingChoices thus always block tracking
on 13 websites categories out of 32. BeefTaco has a noticeable impact
on cookies but no impact on other metrics. This is consistent with
previously observed tracking long tail [14]. This phenomenon makes
the opt-out cookie maintenance very difficult while the protection that
they offer is limited to cookie blocking. NoTrace [22] provides average
protection despite being setup at its highest level. NoTrace increases
users’ online privacy awareness [71], but unfortunately, users cannot
reliably setup the extensions [31] which is required.

Remaining techniques provide poor protection. Decentraleyes [29]
has almost no effect on the results. We hypothesize that blocking
library loading requests only marginally impacts HTTP traffic. The
DoNotTrack HTTP header [4] also has barely no effect. If trackers
complied with DoNotTrack, the number of cookies would significantly
drop. We thus conclude that DoNotTrack is not respected by most
trackers. WebOfTrust and HTTPSEverywhere have no effect.

We note that WebOfTrust and NoTrace both yield significantly more
third party requests than Firefox without any extensions. WebOfTrust
also contacts more third party domains and increases the number of
cookies. WebOfTrust annotate hyperlinks in webpages with trust rating.
We hypothesize that this rating is obtained from WebOfTrust servers
and thus impact our metrics. We do not have any explanation regarding
NoTrace’s behavior.

When we block third party cookies in Firefox, there is a reduction
in the number of third party domains. Blocking cookies also slightly
reduces the number of third party requests. As hypothesized in [14],
this may be due to impeded cookie-syncing interactions. However,
contrary to Englehardt et al. [14], third party cookie blocking here has
poor performances. This may be due to the fact that, unlike [14], we
perform a stateful crawl. In a previous study [58] that uses stateful
crawl and OpenWPM, third party cookie blocking also exhibits poor
performances. The metric used in this study is however extremely
specific, it thus is very difficult to compare our results with theirs.
Furthermore, some third parties from the Alexa Top 1000 are first party
at some point (e.g. Twitter, Facebook). Their cookies are thus created
as first parties.
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Fig. 7. Overlap of third party requests and domains blocked by five extensions (PB: Privacy Badger, Dis: Disconnect, ADB: AdBlock Plus, Gho: Ghostery, uBO: uBlock Origin).
Square surfaces represent the metric value for the extension on the row.

Fig. 8. Comparison of protection techniques’ website quality regarding: number of image and scripts and size of images and scripts. We crawled the Alexa Top 100 websites.
The mean and standard deviation are computed on ten crawls. The number on top of technique name is the KS-based rank. Bare: Firefox alone, FF: Firefox feature, MTC:
MyTrackingChoices, PB (trained): Privacy Badger (trained), FF no 3rd coo. EV: Firefox no 3rd party cookie blocking except from previously visited domains, ABP: AdBlockPlus,
EL: EasyList, EP: EasyPrivacy, RPC: Request Policy Continued. AdBlock Plus uBo-like uses all uBlock Origin’s lists except uBlock Origin’s specific ones; it thus loads EasyList,
EasyPrivacy, Peter Lowe’s Ad Server list and Malware domains.

6.1.2. Privacy footprint
We then compared extensions using the privacy footprint (see Sec-

tion 4.2.3 and [13]). Fig. 6 presents these results. They are similar
to browsing metrics’ Fig. 5. Six extensions exhibit much better results
than the rest: RequestPolicy Continued, NoScript, Ghostery, uBlock
Origin and AdBlock Plus with uBlock Origin’s list. For RequestPolicy
Continued, the mean number of third parties per first party is very small
while the total number of third parties is much higher. This means
that some third parties are detected but that they are present on a
limited set of first parties. NoScript results are here close to Ghostery’s.
The hierarchy between Ghostery, uBlock Origin and the customized
AdBlock Plus is here very clear and follows this order. We hypothesized

that the uniqueness of Ghostery and uBlock Origin blocking lists (see
Section 6.1.3) is the main factor of their superior performances.

6.1.3. Overlap
Next, we measure the overlap between the five extensions among

the most popular ones regarding the number of blocked third party
requests and blocked third party domains using a matrix view. We here
data crawled on the Alexa Top 100 websites in November 2016. We
do not analyze NoScript [26] (resp. RequestPolicy Continued [27])
here because it indiscriminately blocks Javascript (resp. third party
requests). Privacy Badger has been trained on the Alexa Top 100 web-
sites and each extension is used with its default blocking list. AdBlock
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Plus uses the EasyList. uBlock Origin loads EasyList, EasyPrivacy, Peter
Lowe’s Ad Server list, Malware domains, and some uBlock specific lists.
Ghostery is set up with all its filter categories, while Disconnect is
employed with its own filters.

Let us consider two extensions. Let 𝐸𝑖 be the extension on the row
𝑖, and 𝐸𝑗 the extension on the column 𝑗. The resources blocked by 𝐸𝑖
(resp. 𝐸𝑗) are noted 𝐵𝑖 (resp. 𝐵𝑗). On the left (resp. top), the green (resp.
purple) square on row 𝑖 (resp. column 𝑗) represents the total number
of resource blocked by 𝐸𝑖 (resp. 𝐸𝑗). On each line 𝑖 of the matrix, the
surface of the square represents the total number of resources blocked
by 𝐸𝑖: |𝐵𝑖|. The inner purple square on row 𝑖 and column 𝑗 represents
the intersection between 𝐸𝑖 and 𝐸𝑗 and its surface is |𝐵𝑖 ∩ 𝐵𝑗 |. The
diagonal orange square surface displays resources that are only blocked
by 𝐸𝑖: |𝐵𝑖 − {𝐵𝑘∀𝑘 ≠ 𝑖}|.

As an example, we see AdBlock Plus on the second line of Fig. 7(a).
Square surfaces on this line represent the number of third party requests
blocked by AdBlock Plus: 1356. The first square on the considered line
represents the intersection with Privacy Badger which is encoded by the
surface of the inner purple square, here 678. The green surface outside
the purple square describes the resources blocked by AdBlock Plus but
not by Privacy Badger. The next square on this line is located on the
diagonal, and represents the resources blocked by AdBlock Plus only.
Remaining squares on this line depicts intersections with Disconnect,
Ghostery and uBlock Origin in the same fashion as the intersection with
Privacy badger is represented (see above).

The overlap of the third party requests (Fig. 7(a)) shows that there
is a big overlap across all extensions. All third party requests blocked by
Privacy Badger are also blocked by uBlock Origin. Similarly, Ghostery
almost completely covers Privacy Badger. Despite using two different
blocking techniques, lists and heuristics, these extensions exhibit a
significant overlap. This proves that the Privacy Badger’s heuristics are
reliable.

Results on the third party domains on Fig. 7(b) are similar to
Fig. 7(a). The major difference is that Privacy Badger’s impact is
smaller. This is consistent with the heuristics behavior (see Section 5.2)
that only block third party domains that are seen across several web-
sites. These heuristics thus have trouble blocking less prominent track-
ers [14].

Both figures illustrate that Ghostery and uBlock Origin block many
specific resources that other extensions do not block. We speculate that
this is due the fact that their blocking list settings are unique. This may
explain why they exhibit the best performance (see Section 6.1.1).

Some resources are only blocked by AdBlock Plus. It however uses
EasyList which is also employed by uBlock Origin. The ten crawls made
with AdBlock Plus may have reached some third parties that were not
contacted during the ten measurements made with uBlock Origin. We
thus hypothesize that this observation is another side-effect of the ad
churn observed by Guha et al. [75].

Summary
The most popular extensions show a wide overlap. Ghostery and

uBlock Origin block specific resources that are not affected by other
extensions. In terms of overall privacy protection, RequestPolicyCon-
tinued and NoScript show the best performances. Ghostery and uBlock
Origin protect users slightly less. Remaining techniques provide aver-
age to low protection. The DoNotTrack HTTP header provides almost
no protection.

6.2. Webpage quality

We finally analyze how privacy protection techniques impact web-
site quality. We use an HTML-based automated approach and perform
a manual analysis.

Fig. 9. Webpage quality manual analysis. Users are presented two screenshots obtained
with Firefox alone and with a privacy protection technique. The first question (blue)
asks user to rate layout similarity. The second question (red) corresponds to the
proportion of elements observed with Firefox alone also present when a privacy
protection technique is used. Screenshots are captured on the Alexa Top 50. Boxplots
extend to the upper and lower quartile and contain a line that represents the median.
Dashed lines show min/max range. When not visible, median is located on top of the
upper quartile. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

6.2.1. HTML metrics
We crawl the Alexa Top 100 world on the 21 different browser

configurations of Section 6.1.1. We use the metrics presented in Sec-
tion 4.3.1 and the ranking method exposed in Section 4.2.2. Fig. 8
presents the results. We discard the HTML size metric because there
is no significant change across protection techniques. NoScript has a
noticeable impact on all metrics. This is especially visible for the script
number, and image and script size. RequestPolicy Continued’s impact
is smaller than NoScript’s except for image size. We hypothesize that
RequestPolicy Continued blocks third party image hosting services, and
thus impacts many websites. NoScript greatly reduces the total size
of scripts which is consistent with its goal: blocking JavaScript on
webpages. Other privacy protection techniques appear to have a limited
impact of website quality. Compared to other techniques, Ghostery
exhibits a smaller impact on images and a higher reduction of the
number of script and their total size. This is consistent with its tracking
protection goal. This extension actually does not intend to block media
such as advertisements.

6.2.2. Manual analysis
The previous subsubsection analyzes webpages quality in terms of

HTML and associated data. This automated approach does not nec-
essarily reflect the quality of the rendered webpage. We perform a
manual analysis to cope with this limitation. We gather screenshots
of the Alexa Top 50 without pages from the same entity but with
distinct localization (e.g. Google and Amazon). These screenshots were
gathered in November 2016. We use the seven techniques that provided
the best privacy protection (see Section 6.1.1): Privacy Badger trained,
Blur, Disconnect, uBlock Origin, Ghostery, NoScript and RequestPolicy
Continued. For each webpage and protection technique, we display a
picture that contains two screenshots side-to-side to the user: the left
one captured with Firefox alone, the other with Firefox used with an
extension. We use the questions about layout similarity and missing
elements presented in Section 4.3.2. Fig. 9 exposes our results. The
blue (resp. red) boxplot corresponds to the first (resp. second) question.
Overall, Privacy Badger, Blur, Disconnect, uBlockOrigin and Ghostery
have a very small impact on rendered webpages. On the other hand,
RequestPolicy Continued and NoScript significantly impact on pages
both in terms of layout and missing elements. This is consistent with
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Section 6.2.1 and previous results [5,69]. The manual analysis uncovers
RequestPolicy Continued’s strong impact on webpage quality which
was not exposed by HTML-based metrics.

Summary
Both studies show that RequestPolicyContinued and NoScript re-

duce webpage quality. Other extensions do not have such impact.

6.3. Summary

Fig. 10 summarizes our findings. Each metric-based synthetic index
is build as the mean of previously used metrics (see Sections 4.2.1 and
4.3.1) normalized using the metric value obtained with Firefox used
alone. Manual analysis-based index is the mean of the mean rating of
both questions. Fig. 10(a) shows that our manual analysis captures the
negative effects of RequestPolicy Continued that are not visible with
HTML-based metrics. Figs. 10(b) and 10(c) demonstrate RequestPolicy
Continued and NoScript show the best protection performances but
impact browsing experience. Ghostery and uBlock Origin protect users
slightly less but have a smaller impact on webpage quality. Remaining
techniques provide average protection.

7. Discussions

7.1. Recommendations

Our analysis shows that RequestPolicy Continued and Noscript are
the most effective privacy protection techniques. Similarly to previous
work [5,69], we confirm that they affect webpage quality. Users that
want to avoid website breakage can instead use uBlock Origin or
Ghostery. The latter however needs to be configured which is difficult
for users [31]. We note that previous work [11,12] also recommended
uBlock Origin and Ghostery. Their results were however noisy (per-
centiles are overlapping in [12] and some techniques actually observed
more fingerprinting than the default browser in [11]) due to the use
of single crawl to each website. Our robust measurement methodology
does not suffer from the same weakness, and show that uBlock Origin or
Ghostery exhibit statistically better performance than other techniques.

Previous network traffic monitoring studies [67,77] show that users
are more preoccupied by blocking ads than tracking. Malloy et al. [78]
show that ad-blockers usage vary between 18% and 37% in analyzed
countries (US, UK, Germany, France, and Canada). Metwalley et al.
show [67] that 10 to 18% of users had installed AdBlock Plus while less
than 3.5% (resp. 2%) were using DoNotTrackMe/Blur (resp. Ghostery).
Similarly, Pujol et al. [77] speculate that out of the 19.7% of users
that install AdBlock Plus, less than 15% of them setup the EasyPrivacy
list. We show that the default setup of AdBlock Plus has average
performances but that it can be configured to achieve good results. This
task is however difficult for users [31]. We thus advise ad-blocking
users that want to improve their privacy to directly change to more
efficient extensions (see above).

Extensions that do not rely on manually maintained filters, Pri-
vacy Badger and MyTrackingChoices, exhibit average performances.
It however is not clear how their performances may be improved.
Analyzing extensions’ behavior against existing blocking lists would
help to improve their results. Blocking list-based protection techniques
are efficient but their scalability is limited due to human intervention.
Current efforts [59–62,64] to automatically build blocking list are thus
extremely relevant.

Ghostery and uBlock Origin block a significant amount of resources
that are not blocked by other protection techniques. Both should thus
be considered as relevant when assessing users’ ability to protect them-
selves.

7.2. Limitations

In this work, we estimate the impact of privacy protection tech-
niques on webpage quality in terms of missing elements and data (using
HTML-based metrics Section 4.3.1 and alteration to the webpage layout
and elements (using a user manual analysis Section 4.3.2). We however
do not address the functionality loss. We intend to explore this aspect
in future work along two axes. We plan to explore each website beyond
its homepage to improve website coverage.

Several work [46,59–62,64] automatically build blocking lists. We
did not evaluate them because produced lists are not publicly available.

Evaluated approaches aim at blocking tracking. One side effect is
advertisement blocking. These approaches thus threaten the current
economic model of many publishers on the Internet. Techniques ex-
amined in this work however do not have the same impact on third
party tracking. For example, Ghostery and MyTrackingChoices can
block tracking for specific website categories. Similarly, Firefox’s third
party cookie blocking only partially impacts advertisement techniques
(such as Real-Time Bidding, RTB) that rely on user interests. Olejnik
et al. [57] show that new users (i.e. users without any browsing history)
are less valued by advertisers. A user that blocks all third parties
cookies thus reduces his customer value for advertisers, and, conse-
quently, publisher’s revenue. This however does not completely block
tracking and thus, advertisement transactions (e.g. bidding in RTB).
Indiscriminate third party blocking techniques (such as RequestPolicy
Continued [27]) however have a much bigger impact on advertising.
They for example block interactions between ad exchange and bidders
in the case of RTB. All privacy protection techniques presented in this
work may thus have very different impact on advertising. We intend to
address this aspect in future work.

Ghostery [20] and MyTrackingChoices [24] can block tracking for
specific website categories, and thus, allow monetization for others.
This is obviously less aggressive than most approaches addressed in
this work. Achara et al. [24] however report that 30% of users block
the tracking for all categories. These users thus have no reason to use
these two techniques instead of other ones.

7.3. Future work

As shown in Section 3, existing work uses a vast array of metrics.
Some of them are tailored to very specific use cases (such as behavioral
advertising [7,66] and cookie-based mass-surveillance [58]). Similarly,
data-related metrics present an obvious interest in a mobile context. We
intend to add new metrics to this work. We also want to analyze the
impact of all these protection techniques on specific attacks (browser
fingerprinting [3,14], cookie syncing [1,14,57,79]).

Analyzing extensions inside other browsers, such as Chrome, In-
ternet Explorer or Opera, would provide a wider picture of privacy
protection techniques in the wild. Selenium, the browser automation
framework used by OpenWPM, supports these browsers. OpenWPM,
however, currently only supports Firefox. Furthermore, browsers in-
clude more and more privacy protection (e.g. Firefox [42], Brave [43],
Cliqz [70]). Cliqz and Brave are not supported by Selenium, which
make both browsers impossible to use with OpenWPM (see Section 4.1).
We however intend to add them later on.

While some works use domain name-based heuristics [57,80] to
identify third parties, others use blocking lists-based extensions as
ground-truth (see Table 2). When the latter method is used, tracking’s
long tail [14] may cause many false negatives. Beyond our analysis in
Section 6.1, we intend to investigate blocking lists more thoroughly.

8. Conclusions

This work extensively compares existing privacy protection tech-
niques against third party tracking and provides four contributions.
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Fig. 10. Scatter plots of synthetic index for privacy protection, HTML-based quality and manual analysis-based quality.

First, we propose a robust methodology to compare privacy protection
techniques when crawling many websites, and quantify measurement
error. We use the privacy footprint [13] and apply the Kolmogorov–
Smirnov (KS) test on browsing metrics to evaluate privacy protection.
This test is likewise applied to HTML-based metrics to assess the impact
on webpage quality. We also design a manual analysis to complement
HTML-based metrics. Our second contribution is a privacy protection
techniques comparison in terms of overlap and performances. We show
that the most popular privacy protection techniques exhibit a common
blocking baseline. We also highlight the fact that some extensions,
namely Ghostery and uBlock Origin, have a very specific behavior and
are the only ones to block some domains. Our third contribution is a
comparison of the impact of privacy protection techniques on webpage
quality. Our fourth contribution is a set of usage recommendations for
end-users, and research recommendation for the scientific community.
Ghostery and uBlock Origin provide the best trade-off between protec-
tion and webpage quality. Ghostery however requires a configuration
step which is difficult for users [31]. The RequestPolicy Continued and
NoScript extensions exhibit the best performances but reduce webpage
quality. Ghostery and uBlock Origin use manually built blocking lists
which are cumbersome to maintain. Research efforts should focus on
improving existing approaches that do not rely on blocking lists (such
as Privacy Badger or MyTrackingChoices) and automating blocking list
building.
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