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Abstract—The reliability of safety-critical systems is very
important especially in case of electronic systems which are
working in environment with increased occurrence of faults. As
an example, space, aerospace or medical systems can serve. Fault
tolerance is one of the techniques the goal of which is to avoid
the impact of faults on such systems. Lots of fault tolerance
techniques exists and new ones are under investigation. This
paper is targeted mainly to Field Programmable Gate Arrays
(FPGAs) which are also the target technology of many fault
tolerant techniques. It is important to evaluate and test these
techniques. This paper is the continuation of our previously
published research results which presents experimental approach
to evaluate such fault tolerance techniques by monitoring the
impact of faults in the experimental electro-mechanical system
utilizing robot navigation in a maze. However, in this paper, we
research and compare similarities of the theoretical estimation to
various methods of the SEU injection approaches. The theoretical
estimation is calculated using known equations. The impact of
artificially faults injected into the electronic controller, in which
Triple Modular Redundancy is applied, is monitored and used
for statistic reliability analysis. This approach serves as a tool for
the fast reliability evaluation during the development process of
fault tolerance systems.

Keywords—Reliability Analysis, TMR, FPGA, Fault Tolerance,
Robot Controller.

I. INTRODUCTION

The reliability of safety-critical electronic systems which
are working in environment with increased occurrence of faults
is a very challenging topic. A technique called fault tolerance
[1] is commonly used technique which makes electronic sys-
tems more reliable. The goal of this approach is to keep the
system functional, even in the presence of faults. It means
that fault tolerance accepts the fact a fault can appear in
electronic system. Various types of redundancy are the core of
such techniques. Hardware and time redundancy are the most
common ones. Combination and improvements of these basic
methods are still under investigation, e.g. authors of [2] present
approach which is based on the combination of hardware and
time redundancies.

Many fault-tolerant methodologies targeted to Field Pro-
grammable Gate Arrays (FPGAs) have been developed and
new ones are under investigation [3]. The main reason is that
FPGAs are more popular thanks to their flexibility and ability
to be reconfigured in case of fault occurrence. Sensitivity of
FPGAs to faults caused by charged particles [4] is the problem
from the reliability point of view. The configuration of FPGA
is stored as a bitstream in SRAM memory and charged particle
can cause inversion of bit in the bitstream. This event is called
Single Event Upset (SEU) [5].

A fault-tolerant system development usually starts with
a nondurable system that does not tolerate faults [6]. This
nondurable system is usually designed with minimum re-
dundancy and serves as a starting point for the process of
hardening against faults. Then the modifications that should
be made to the nondurable system in order to achieve a
higher level of fault tolerance are proposed by an experienced
fault-tolerant system designer. After integration of proposed
changes into the design, the system must be evaluated to
ensure that the applied changes have the expected impact
on the reliability of the system. The iteration between the
phase of development and the reliability evaluation is the usual
approach. Multiple designs with various combinations of fault
tolerance methods assigned to the partitions of the design are
created. Development ends if two conditions are met: 1) the
system complying with the specification or 2) the findings of
the specifications not being achievable. We to accelerate this
procedure of the development with the capability to evaluate
the estimation of reliability of the resulting system even before
the integration of the method itself. This allows a designer to
exclude such combinations of reliability methods that do not
look perspective.

This work is the continuation of our previously published
paper. Additional experiments were done and experimental
results were compared with results obtained in our previous
publication [7]. This paper is organized as follows. Section II
described reliability analysis and reliability improvement. The
experimental platform which allow us to done experimental
evaluation on real FPGA is introduced in Section III. Section
IV presents reliability analysis and its experimental evaluation.
Section V concludes the paper and mentions plans for our
future research.

II. RELIABILITY ANALYSIS AND ITS IMPROVEMENT

The reliability itself can be quantified with the support of
the theory of probability as most of the reliability indicators are
of a random nature. The length of a time period of the system
operation until the failure occurs is an important starting point
in the reliability indicators computation.

1) Failure Function: If a random variable τ expresses a
length of a time interval from the systems start of the operation
to the point a fault occurs, then the Cumulative Distribution
Function (CDF) [8] F (t) of random variable τ expresses a
probability of the system being in a failure state at the time t.
In this case, the CDF F (t) is denoted as Q(t) and is called
the failure function.

2) Reliability Function: Another reliability indicator is the
so-called reliability function which is denoted as R(t). The978-1-7281-1756-0/19/$31.00 c©2019 IEEE



reliability function expresses a probability of the system being
in an fault-less state at the time t and it is a supplement of the
Q(t) as expressed in Equation 1.

R(t) = 1−Q(t) (1)

3) Failure Density: The failure density f(t) is defined by
the time derivative of a CDF Q(t) if the random variable [8] is
continuous and the derivative exists, as shown in Equation 2.

f(t) =
dQ(t)

dt
(2)

The product of f(t)dt then expresses the probability of
a fault occurrence for a short period of time dt that is
immediately following after the time t. Although, the case in
which the fault occurred earlier before the time t is not taken
into account.

4) Failure Rate: The next reliability indicator is failure
rate which is denoted by λ(t). The failure rate expresses a
conditional failure density at the time t assuming the failure
has not occurred yet. Equation 3 gives a relationship between
the λ(t) and Q(t).

λ(t) =
f(t)

R(t)
=

f(t)

1−Q(t)
(3)

5) Mean Time To Failure: The Mean Time To Failure
(MTTF) which is in the following text denoted as Ts represents
a mean value of the random variable τ observed. The mean
value can be seen as a mean time of all the time period
lengths since the system started its operation to the first failure
occurrence. If the mentioned system is non-recoverable, the
value can be considered a mean time to the first failure as
well. To calculate the Ts, the Equation 4 can be used.

Ts =

∫ ∞
0

R(t)dt (4)

The reliability improvement [9] can be done by several
techniques, lots of them are based on redundancy. Triple
Modular Redundancy (TMR, 3MR) which is based on a
triplication of the component is the most known application
of the hardware redundancy. In this paper, we plan to analyze
the reliability improvement just for TMR. The TMR is based
on using of three equivalent functional units, Figure 1 shows
the structural schematic. The TMR system is composed of
original functional unit and two additional copies of the
same functional unit, which are labeled F1, F2 and F3. The
input signals x are connected as an input for each of the
functional units Fi. The output signals fi(x) are connected
to the voter unit which implements majority function. The
majority function can be performed on the level of bits, whole
vector, etc. It should be noted, that voter used in this paper
operates on the per-bit basis.

If we are not taking into account the corner cases, TMR
by its nature allow us to mask the failure of one module.
Assuming that all Fi units have the same reliability function
R(t), then Equation 5 can be used to calculate the reliability
function of the whole TMR module. An overview of the
reliability indicators of the system with TMR implemented is
given in Table I [6], [9].

RTMR(t) = 3[R(t)]2 − 2[R(t)]3 (5)
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F2

F3

x
M
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Fig. 1. The schematic representation of the TMR method.

TABLE I. TWO MAIN RELIABILITY INDICATORS OF THE TMR
SYSTEMS.

Reliability indicator Input variables Value

Reliability Function R(t) R(t) of the original RTMR(t) = 3[R(t)]2

RTMR(t) functional unit −2[R(t)]3

Mean Time To Failure λ λ of the original
Ts(TMR) = 5

6λTs(TMR) functional unit

III. EVALUATION PLATFORM AND EXPERIMENTAL
SYSTEM

The development of the evaluation platform for monitoring
impact of faults injected into FPGA-based system was the
scope, among other, of our previous work [10]. Developed
evaluation platform is designed for monitoring impact of faults
on electro-mechanical system. The main reason is that lots
of digital systems very often control some mechanical part.
The use of the electro-mechanical system allows us to monitor
not only the impact of faults on the electronic controller but
also on the mechanical part. Our evaluation platform uses
Functional Verification [11] as a tool for checking reactions
of experimental system on injected faults. Functional ver-
ification is usually used for checking if electronic system
corresponds with its specification by monitoring inputs and
outputs in design simulation. We propose extended version of
the functional verification where verified circuit is running on
FPGA as appropriate tool for our purposes. The evaluation
platform which is described in our previous work (e.g. [10])
is composed of:

1) software part of verification environment for the
electronic controller which checks the reaction of
electronic controller and mechanical part on injected
faults running on computer,

2) software simulation environment for mechanical part
simulation running on computer,

3) electronic controller implemented into FPGA, and
4) external fault injector [12] running on a computer

which allows us to simulate real faults in FPGA.

Our experimental electro-mechanical system consists of a
robot for searching a path through a maze and its electronic
controller implemented in FPGA. Unfortunately, we do not
have a real robot device, so we use the simulation tool
Player/Stage [13] which allows us to simulate the robot and
its environment (in our case the robot in a maze). The robot
simulation is executed on a computer which is connected
with the FPGA board by the Ethernet interface through which
data between the robot and its controller are transmitted. Two
versions of the robot controller are used for our experiments
and results comparison. The first version is hard-coded robot
controller which is composed of various functional units
interconnected through the central bus. The second version
is processor-based robot controller which consist of soft-core



processor NEO430 [14] and some external components imple-
mented in FPGA. The searching algorithm is implemented in
C/C++ and performed on the processor.

IV. RELIABILITY ANALYSIS AND EXPERIMENTAL
EVALUATION

The goal of this work is to evaluate some of the basic
reliability indicators of the two versions of robot controller
which was mention in Section III and their fault-tolerant
versions with TMR applied (noted as noft and tmr).

The fault injection was set up with a constant SEU in-
jection rate. The SEUs were injected to the utilized bits of
the bitstream that represent the content of Look-Up Tables
(LUTs). The important parameter of fault injection is a time
delay dc between two injected faults. The dc actually does
not necessarily have to be constant. We have experimentally
chosen the dc to be described by the uniform distribution with
a mean value of 12 s and a variance of 2 s.

The scenario of one verification run was as follows:
1) the robot controller unit was initialized, the maze and

starting and target positions were the same during all
the verification runs,

2) the Player/Stage simulation environment was started
with the robot placed on the starting position,

3) after 15 s, for each component c, the SEU injection
started with the dc time period, the bits into which
faults were injected were selected uniformly at ran-
dom,

4) the time from the robot start to the first failure was
monitored, the ability of the robot to reach the target
position was observed as well.

This verification scenario was repeated 3500 times for all
versions of the robot controller units. In detail, experimental
strategies follow:
• fault injection into unhardened robot controller, com-

ponent c is whole robot controller (noft),
• fault injection into TMR version of robot controller

which respect increased area, faults were injected
into three component c1, c2, c3 (instances of robot
controller) concurrently which led to three times fault
intensity for whole robot controller (tmr),

• fault injection into TMR version of robot controller,
faults were injected into one component c, which rep-
resents whole hardened robot controller (fault intensity
is the same as in noft case) (tmr1).

The data acquired included the time of the first failure
occurrence and information on whether the robot successfully
reached the target position.

The data obtained from the previously described exper-
iments were then processed. The multi-set of all the times
measured from the start of the operation of the system to
the first detection of an error on the system outputs was
transformed to a discrete failure function Q(t) which was
then converted to the reliability function R(t). The other
reliability indicators failure density f(t) and failure rate λ(t)
was computed according to proposed equations. All the data
are discretized with the time-step of 15 s in Table II. The final
values of the reliability functions on the bottom of Table II
are notclose to the limit value of zero, as in most cases the

faults injected did not appear in the form of an error on the
outputs of the robot controller unit. The threshold time length
the robot had to find its path within was evaluated to 204 s,
that is also the maximum time for which the system has been
verified.

TABLE II. A DISCRETIZATION OF THE MEASURED failure function
Q(T) OF THE noft AND tmr VERSION OF THE hard-coded AND

processor-based ROBOT CONTROLLER WITH THE ESTIMATION FOR THE tmr
ROBOT CONTROLLER.

Hard-coded robot cont. Processor-based robot cont.
Time t First err. detect. Q(t) First err. detect. Q(t)
[s] [−] [%] [−] [−] [%] [−]

0− 14.9̄

noft 0 0.0% 0.00 0 0.0% 0.00
tmr 0 0.0% 0.00 0 0.0% 0.00
tmr1 0 0.0% 0.00 0 0.0% 0.00
est. − 0.0% 0.00 − 0.0% 0.00

15− 29.9̄

noft 6 0.2% 0.00 16 0.5% 0.00
tmr 1 0.0% 0.00 8 0.2% 0.00
tmr1 0 0.0% 0.00 0 0.0% 0.00
est. − 0.0% 0.00 − 0.0% 0.00

30− 44.9̄

noft 9 0.3% 0.00 12 0.3% 0.01
tmr 0 0.0% 0.00 10 0.3% 0.01
tmr1 0 0.0% 0.00 2 0.1% 0.00
est. − 0.0% 0.00 − 0.0% 0.00

45− 59.9̄

noft 35 1.0% 0.01 45 1.3% 0.02
tmr 8 0.2% 0.00 35 1.0% 0.02
tmr1 3 0.1% 0.00 5 0.1% 0.00
est. − 0.0% 0.00 − 0.1% 0.00

60− 74.9̄

noft 28 0.8% 0.02 35 1.0% 0.03
tmr 25 0.7% 0.01 61 1.7% 0.03
tmr1 4 0.1% 0.00 3 0.1% 0.00
est. − 0.0% 0.00 − 0.2% 0.00

75− 89.9̄

noft 8 0.2% 0.02 11 0.3% 0.03
tmr 11 0.3% 0.01 69 2.0% 0.05
tmr1 1 0.0% 0.00 9 0.3% 0.01
est. − 0.0% 0.00 − 0.1% 0.00

90− 104.9̄

noft 47 1.3% 0.04 64 1.8% 0.05
tmr 53 1.5% 0.03 169 4.8% 0.10
tmr1 18 0.5% 0.01 26 0.7% 0.01
est. − 0.2% 0.00 − 0.5% 0.01

105− 119.9̄

noft 42 1.2% 0.05 30 0.9% 0.06
tmr 36 1.0% 0.04 76 2.2% 0.12
tmr1 8 0.2% 0.01 18 0.5% 0.02
est. − 0.2% 0.00 − 0.3% 0.01

120− 134.9̄

noft 52 1.5% 0.06 51 1.5% 0.08
tmr 34 1.0% 0.05 92 2.6% 0.15
tmr1 4 0.1% 0.01 21 0.6% 0.02
est. − 0.2% 0.01 − 0.6% 0.02

135− 149.9̄

noft 36 1.0% 0.08 30 0.9% 0.08
tmr 47 1.3% 0.06 66 1.9% 0.17
tmr1 4 0.1% 0.01 19 0.5% 0.03
est. − 0.4% 0.01 − 0.4% 0.02

150− 164.9̄

noft 42 1.2% 0.09 24 0.7% 0.09
tmr 33 0.9% 0.07 85 2.4% 0.19
tmr1 6 0.2% 0.01 16 0.5% 0.03
est. − 0.3% 0.01 − 0.3% 0.02

165− 179.9̄

noft 50 1.4% 0.10 17 0.5% 0.10
tmr 48 1.4% 0.08 64 1.8% 0.21
tmr1 8 0.2% 0.02 26 0.7% 0.04
est. − 0.6% 0.02 − 0.2% 0.03

180− 194.9̄

noft 45 1.3% 0.11 50 1.4% 0.11
tmr 46 1.3% 0.10 129 3.7% 0.25
tmr1 15 0.4% 0.02 58 1.7% 0.06
est. − 0.7% 0.03 − 0.8% 0.03

195− 209.9̄

noft 856 24.5% 0.36 1520 43.4% 0.54
tmr 787 22.5% 0.32 1373 39.2% 0.64
tmr1 129 3.7% 0.06 296 8.5% 0.14
est. − 21.8% 0.25 − 53.3% 0.57

Measured data were also transformed to reliability func-
tions R(t) for both versions of robot controller. The R(t)
functions for hard-coded robot controller are shown in Figure
2. Red lines show, that tmr version (injection into 3 compo-
nent, respect increased area) is better than noft version, but
significantly worse than estimation. These results were also
presented in [7] and additional experiments with version tmr1
(injection into whole controller, increased area is not taken into



account) were performed. Green line shows, that tmr1 version
is almost the same as estimation.

Fig. 2. An experimental evaluation of the measured results of the reliability
function for the noft and the tmr versions of the hard-coded robot controller.

Additional experiments with processor-based robot con-
troller were performed to confirmation of previous results.
Figure 3 show the same chart for processor-based robot con-
troller. The big difference is that tmr version (injection into 3
component, respect increased area) is worse than noft version.
The processor is a complex system and a fault injection with
higher intensity led to its worse reliability. On the other hand,
tmr1 version (injection into whole controller, increased area is
not taken into account) represented by green line is almost the
same as estimated reliability. These experiments confirm, that
equation 5 does not take into account increased area of TMR
system.

Fig. 3. The measured results of the reliability function for the noft and the
tmr versions of the processor-based robot controller.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper we present the combination of experimental
and theoretical evaluation of robot controller reliability. We
applied a commonly used TMR on the robot controller (there
were three instances of the robot controller complemented
with the majority voter). The first step was fault injection into
unhardened version of robot controller, reliability indicators
calculation and then estimated reliability of TMR version
were calculated according to commonly used equation 5.
Next step was experimental evaluation of estimated reliability
indicators. The first experiments were done with fault injection
into all robot controller instances concurrently with respect to
increased area. The experimentally measured results indicated
significantly worse reliability than the estimation predicted.
The second experiment was done with fault injection just into
the whole robot controller and the obtained results correspond
with the estimated reliability. These experiments confirm, that
equation 5 does not take into account increased area of TMR
system.

Presented results were obtained using TMR without faulty
module recovery. The faulty module recovery significantly
increases the operation time without failure. The scope of our
future research is to apply reconfiguration as a tool for faulty
module recovery and perform similar experiments and examine
benefits and negatives.
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