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a b s t r a c t

We show that stochastic programming provides a framework to design hierarchical model predictive
control (MPC) schemes for periodic systems. This is based on the observation that, if the state policy
of an infinite-horizon problem is periodic, the problem can be cast as a stochastic program (SP). This
reveals that it is possible to update periodic state targets by solving a retroactive optimization problem
that progressively accumulates historical data. Moreover, we show that the retroactive problem is a
statistical approximation of the SP and thus delivers optimal targets in the long run. Notably, the
computation of the optimal targets can be achieved without data forecasts. The SP setting also reveals
that the retroactive problem can be seen as a high-level hierarchical layer that provides targets to
guide a low-level MPC controller that operates over a short period at high time resolution. We derive
a retroactive scheme tailored to linear systems by using cutting plane techniques and suggest strategies
to handle nonlinear systems and to analyze stability properties.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

A well-known challenge arising in model predictive control
(MPC) is the computational complexity associated with the length
of the planning horizon and with the time resolution of the
state and control policies (Rawlings & Mayne, 2009). These issues
are often encountered in energy system applications that exhibit
phenomena and disturbances emanating at multiple timescales.
For instance, in energy systems, long horizons are often required
to respond to low-frequency (e.g., seasonal) supply/demand vari-
ations and peak electricity costs (e.g., demand charges) while
fine time resolutions are needed to modulate high-frequency
variations (e.g., from wind/solar supply) and to participate in real-
time markets (Braun, 1990; Dowling, Kumar, & Zavala, 2017).
Computational complexity issues are often handled using reced-
ing horizon (RH) approximations, which are practical but do not
provide optimality guarantees (Risbeck, Maravelias, Rawlings, &
Turney, 2017).
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Hierarchical MPC schemes (Scattolini & Colaneri, 2007, Pi-
casso, De Vito, Scattolini, & Colaneri, 2010) have been recently
proposed to handle multiple scales (and associated computational
complexity issues). These schemes, however, do not provide opti-
mality guarantees in the sense that the computed policies match
those of the long-horizon problem of interest. The hierarchi-
cal scheme proposed in Zavala (2016) uses adjoint information
obtained from a long-term but coarse controller to guide a short-
term controller operating at fine time resolutions. Computational
experiments are provided to demonstrate that this approach can
achieve optimality but no guarantees are given. Moreover, such
an approach requires smoothness and continuity of the adjoint
profiles, which is not guaranteed in general applications.

The hierarchical scheme proposed in this work relies on the
observation that, if the optimal policy of an infinite horizon
problem is periodic (or can be approximated with a periodic
policy), the problem can be cast as a stochastic programming
(SP) problem. Periodicity is a property that is commonly observed
in systems driven by exogenous factors with strong periodic
components (e.g., energy demands and prices) (Huang, Harinath,
& Biegler, 2011; Risbeck, Maravelias, Rawlings, & Turney, 2015).
Under the SP abstraction, the inter-period trajectory of the exoge-
nous factors is interpreted as a realization of a random variable
that triggers a periodic trajectory of the system states (the states
at the beginning and end of the period are the same). More-
over, the periodic states are interpreted as design variables and
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operational policies over the periods are interpreted as recourse
variables. We have recently observed that the SP representation
provides a mechanism to construct hierarchical MPC schemes in
which a long-term (supervisory) MPC controller provides periodic
targets to guide a short-termMPC controller (Kumar et al., 2018a).
Under nominal conditions with perfect forecasts, we have shown
that the hierarchical scheme delivers an optimal policy for the
infinite horizon problem. For the more relevant case of imperfect
forecasts, the hierarchical scheme needs to re-compute periodic
targets. While this can certainly be done using an RH scheme
(e.g., computes targets by anticipating multiple future periods),
such an approach would not provide optimality guarantees. In
fact, to the best of our knowledge, no RH scheme currently exists
that can provide optimal policies in the presence of imperfect
forecast information. Specifically, standard proactive RH schemes
use historical data to compute forecasts and associated control
actions. A fundamental issue with proactive approaches is that
no optimality guarantees can be provided unless the forecast is
perfect.

The contribution of this work is the observation that, under
a periodic setting, one can derive retroactive hierarchical MPC
schemes that accumulate real historical data to asymptotically
deliver optimal targets. The retroactive design principle thus offers
optimality guarantees and, notably, does not require data fore-
casts. The retroactive approach thus provides key advantages over
proactive RH schemes. The targets obtained with the retroactive
scheme are used to guide a low-level controller operating at fine
time resolutions within the periods. In the case of linear systems,
one can derive a specialized retroactive scheme by using incre-
mental cutting-plane (CP) techniques (Higle & Sen, 1991). The SP
setting also reveals strategies to construct retroactive schemes for
nonlinear systems and to obtain the desired stability properties.
We demonstrate the concepts using a battery application and
compare the proposed retroactive hierarchical MPC scheme with
a proactive MPC approach for periodic systems.

The paper is structured as follows. In Section 2, we
provide basic definitions and describe the problem setting. In
Section 3, we introduce the concept of retroactive optimization,
derive an incremental CP scheme for linear systems, discuss
implementation details, and discuss extensions for nonlinear
systems. Computational experiments are presented in Section 4.

2. Basic definitions and setting

In this work, we derive schemes to compute approximate
solutions for the long-horizon problem Om:

min
uξ ,xξ ,η,x0

1
m

∑
ξ∈Ξ

∑
t∈T

ϕ1(xξ,t , uξ,t , dξ,t )+ η

s.t. ϕ2(xξ,t , uξ,t , dξ,t ) ≤ η, ξ ∈ Ξ , t ∈ T (1a)

xξ,t+1 = f (xξ,t , uξ,t , dξ,t ), ξ ∈ Ξ , t ∈ T̄ (1b)

xξ+1,0 = xξ,n, ξ ∈ Ξ̄ (1c)

x1,0 = x0 (1d)

xξ,t ∈ X , uξ,t ∈ U . (1e)

Here, the horizon with p := (n + 1) · m time steps is partitioned
into a set of periods Ξ := {1, . . . ,m} with intra-period times
T := {0, . . . , n}. For convenience, we define the sets T̄ := T \ {n}
and Ξ̄ := Ξ \ {m}. The controls, states, and data trajectories
at period ξ ∈ Ξ and intra-period time t ∈ T are denoted
as uξ,t ∈ Rnu , xξ,t ∈ Rnx , and dξ,t ∈ Rnd , respectively. We
define the notation uξ := {uξ,t}t∈T , xξ := {xξ,t}t∈T , and dξ :=

{dξ,t}t∈T to denote the inner period trajectories. The problem data
is interpreted as exogenous disturbances or factors driving the
system (e.g., market prices, demands, weather, model errors).

The mapping ϕ1 : Rnu ×Rnx ×Rnd → R is a time-additive cost
function and the mapping ϕ2 : Rnu × Rnx × Rnd → R is a time-
max (peak) cost function. We assume both of these functions to
be bounded in their domains. Minimizing the variable η ∈ R
subject to the constraints (1a) is equivalent to minimize the peak
cost maxξ∈Ξ maxt∈T ϕ2(xξ,t , uξ,t , dξ,t ). Consequently, since ϕ2(·)
is assumed to be bounded, we have that η is bounded as well.
The mapping f : Rnu × Rnx × Rnd → Rnx describes the system
dynamics and X and U are non-empty feasible sets for states and
controls, respectively. For reasons that will become apparent, the
initial state x0 ∈ Rnx in the above formulation is treated as a
decision variable.

The infinite-horizon problem O∞ is obtained by setting
limm→∞. If the data dξ , ξ ∈ Ξ is known, the solution of O∞ pro-
vides a policy with the best possible performance. Unfortunately,
problem Om becomes computationally difficult to solve for large
m (long horizons) and/or for large n (fine time resolutions). An ap-
proximate solution for O∞ is often computed by using a proactive
RH scheme, which approximates the policy by moving forward in
time and by planning over short time horizons (e.g., that span a
few periods). Our goal is to derive an alternative strategy that uses
hierarchical MPC schemes that approximate the solution of O∞ by
using a periodic policy. We define a periodic policy as follows:

Definition 2.1. A policy is said to be periodic if it satisfies the
periodicity constraints xξ,0 = xξ,n for all ξ ∈ Ξ .

To obtain a periodic policy, we enforce periodicity constraints
at every period (after every n steps). These constraints, together
with the continuity constraints (1c), can be expressed as xξ+1,0 =

xξ,0, ξ ∈ Ξ̄ . This set of constraints, in turn, can be reformulated as
xξ,0 = x0, ξ ∈ Ξ . These modifications give the periodic problem
Pm:

min
uξ ,xξ ,η,x0

1
m

∑
ξ∈Ξ

∑
t∈T

ϕ1(xξ,t , uξ,t , dξ,t )+ η (2a)

s.t. ϕ2(xξ,t , uξ,t , dξ,t ) ≤ η, ξ ∈ Ξ , t ∈ T (2b)

xξ,t+1 = f (xξ,t , uξ,t , dξ,t ), ξ ∈ Ξ , t ∈ T̄ (2c)

xξ,0 = x0, ξ ∈ Ξ (2d)

xξ,n = x0, ξ ∈ Ξ (2e)

xξ,t ∈ X , uξ,t ∈ U . (2f)

Remark. The feasible region of Pm is smaller than that of Om
(since the latter does not enforce periodicity every n steps).
Consequently, the performance of Pm is expected to be inferior
to that of Om. In some applications, however, the deterioration of
performance might not be significant. For instance, in Kumar et al.
(2018a), it is shown that enforcing state periodicity constraints
for a battery system (obtained from Pm) results in a policy with a
cost that is 0.2% larger than the cost achieved without periodicity
constraints (obtained from Om).

The solution of Pm provides a better approximation to the
solution of Om as we increase n (increasing the size of the period).
This is because periodicity constraints are enforced less often. For
a fixed value horizon p, we have that in the limit when n = p
and m = 1, we obtain the best possible periodic policy (enforcing
periodicity at the beginning and at the end of the horizon). On
the other hand, in the limit when n = 1 and m = p, we have
the worst possible periodic policy (a steady-state policy). Setting
n = p and m = 1 and eliminating all the periodicity constraints
make Pm and Om equivalent. From these observations, we note
that the length of the period n can be used as a design parameter
to find a periodic policy of Pm that properly approximates the
policy of Om.
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The goal of Pm is to find a periodic state x0, peak cost η, as
well as intra-period policies uξ , xξ ξ ∈ Ξ that minimize the time-
additive and peak costs. We note that, by construction, xξ+1,0 =

xξ,0 = x0 holds for all ξ ∈ Ξ at any solution of Pm. If we have
perfect knowledge of the data dξ , ξ ∈ Ξ , the infinite-horizon
problem P∞ identifies a periodic policy with the best possible
performance. We denote a solution of P∞ as w∗ = (x∗0, η

∗), and
u∗ξ , x

∗

ξ . Unfortunately, problem Pm also becomes computationally
difficult to solve for large m and/or n. Here, one can address
this issue by using a proactive RH scheme with periodicity con-
straints, as proposed in Huang et al. (2011). We will see, however,
that periodicity results in a structure that enables the derivation
of retroactive schemes that offer key advantages over proactive
schemes. In particular, we will see that retroactive schemes can
deliver a solution of O∞ (while proactive schemes cannot).

By analyzing the structure of Pm, we can see that the only
coupling between periods arises from the variables x0 and η.
Consequently, by fixing these variables, we can decompose (2)
into individual period subproblems of the form:

min
uξ ,xξ

∑
t∈T

ϕ1(xξ,t , uξ,t , dξ,t ) (3a)

s.t. ϕ2(xξ,t , uξ,t , dξ,t ) ≤ η, t ∈ T (3b)

xξ,t+1 = f (xξ,t , uξ,t , dξ,t ), t ∈ T̄ (3c)

xξ,0 = x0 (3d)

xξ,n = x0 (3e)

xξ,t ∈ X , uξ,t ∈ U . (3f)

We define this problem as Sξ and we define its optimal cost
as h(w, dξ ), where w := (x0, η) ∈ W := X × R. In the following
discussion, we use the short-hand notation hξ := h(w, dξ ).

We now make the following key assumption regarding the
nature of the data and of the subproblem cost h(w, dξ ).

Assumption 2.1. Assume that {dξ }
∞

ξ=1 is a sequence of indepen-
dent and identically distributed (i.i.d.) realizations of a continuous
random variable D with associated probability space (Ω,F,P)
with associated codomain Ω ′ ⊆ Rnd and σ -algebra F ′. Moreover,
assume that the cost function h : W×Ω ′ → R is continuous and
bounded in its domain.

Under the assumption of i.i.d. realizations and a bounded func-
tion h(·), we can establish that the sample average 1

m

∑m
ξ=1 h(w,

dξ ) converges pointwise with probability one to E[h(w,D)] as
m → ∞. Here, E[·] is the expectation operator. This property
is the strong law of large numbers (LLN) and is key because it
reveals that the infinite horizon problem P∞ can be interpreted
as a stochastic programming (SP) problem of the form:

min
w∈W

φ(w) := g(w)+ E [h(w,D)] . (4)

Under this representation, periods are realizations dξ of D,
w = (x0, η) are design (target) variables, and xξ , uξ are (recourse)
policies associated with realization dξ . Here, g : W → R is a cost
function for the design variables. In the context of P∞, we have
g(w) = η, but this function can be generalized to enforce a cost
also on x0. Function g(·) is bounded because φ2(·) (and thus η) are
assumed to be bounded. Since (4) is equivalent to P∞, it delivers
optimal targets w∗. We define the solution set of (4) as S ⊆ W .

Remark. The i.i.d. requirement on {dξ } ensures that LLN holds.
This requirement can be enforced by defining a sufficiently long
period duration n (to eliminate autocorrelation between periods).
This approach is commonly used in statistical extrapolation and
time series analysis (Box, Jenkins, Reinsel, & Ljung, 2015; Ra-
gan & Manuel, 2008). The independence requirement can also

be relaxed by allowing for cost sequences that have bounded
correlation (Hu, Rosalsky, & Volodin, 2008). To give an idea of why
this is the case, we provide the following result.

Property 2.1. Assume that {hξ }
∞
−∞

is a sequence of identically
distributed random variables with expected value µ = E[h(x,D)].
Assume also that there exists 0 ≤ c <∞ such that

∑
∞

ξ=−∞ E[(hξ ′−

µ)(hξ − µ)] ≤ c holds for all ξ ′ = 1, . . . ,∞. Then, limm→∞
1
m∑m

ξ=1 hξ = E[h(x,D)].

Proof. Define Sm :=
∑m

ξ=1 hξ , h̄m := Sm/m, and µ := E[h(x,D)].
The variance of Sm (denoted as V [Sm]) is:

E[(Sm −mµ)2] =
m∑

ξ ′=1

m∑
ξ=1

E[(hξ ′ − µ)(hξ − µ)]

≤

m∑
ξ ′=1

∞∑
ξ=−∞

E[(hξ ′ − µ)(hξ − µ)]

≤ mc.

We thus have V [h̄m] ≤ c/m and, from Chebyshev’s inequality
(with parameter κ > 0),

P(|h̄m − µ| > κ) ≤
1
κ2E[(h̄m − µ)2]

=
1

κ2m2E[(Sm −mµ)2]

≤
mc
m2κ2 =

c
m κ2 .

We thus have limm→∞ h̄m = µ with probability one. □

Remark. We can guarantee that a solution for Pm exists if the
period length n is long enough such that one can find a control
policy uξ that delivers a feasible solution for Sξ for all fixed
w ∈ W and dξ , ξ ∈ Ξ . Here, a feasible solution of Sξ is one
that satisfies the control and state constraints as well as the
periodicity and peak constraints. This assumption is compatible
with that used in the standard MPC literature (a sufficiently long
horizon is assumed such that one can find a feasible control policy
that satisfies the state and terminal constraints) (Subramanian,
Rawlings, & Maravelias, 2014; Zanon, Grüne, & Diehl, 2017). In the
SP literature, such an assumption is equivalent to assuming that
Sξ has relatively complete recourse (i.e., Sξ has a feasible solution
for any w ∈ W and dξ ∈ Ω ′).

3. Hierarchical MPC schemes

The SP representation opens a number of interesting direc-
tions. In particular, it provides a mechanism to derive hierarchical
MPC schemes. For instance, one can use a statistical approximation
of (4) (equivalently of P∞) to provide targets x0, η that guide a
short-term MPC controller of the form (3). As we discuss next, ap-
proximations of P∞ can be constructed and solved in a tractable
manner by using well-established SP techniques (CarøE & Schultz,
1999; Geoffrion, 1972; Zavala, Laird, & Biegler, 2008).

3.1. Retroactive optimization

A key observation that arises from the SP representation is that
one can derive retroactive optimization schemes that accumulate
data over time to refine targets. To explain how such a scheme
would work, assume that the system is currently at the beginning
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of period m + 1 and that the data history {dξ }
m
ξ=1 is known. We

use this information to solve the problem:

min
w∈W

φm(w) := g(w)+
1
m

m∑
ξ=1

h(w, dξ ). (5)

This problem is equivalent to Pm, and because {dξ }
m
ξ=1 is i.i.d., Pm

is a statistical approximation of P∞. In the SP literature, problem
(5) is known as a sample average approximation (SAA). We define
the solution set of Pm as Sm ⊆ W . A solution of Pm is used to
update the targets for the next period wm+1 = (xm+1,0, ηm+1). A
solution of Pm also implicitly contains optimal (retroactive) poli-
cies uξ , xξ , ξ = 1, . . . ,m associated with the historical sequence
{dξ }

m
ξ=1. These retroactive policies are interpreted as policies that

the system would have taken given knowledge of the data.
Given that the system is at the current state target xm,0 (ob-

tained from the solution of Pm−1), we use the targets wm+1 to
guide a short-term MPC controller over period m+1. At this point,
however, the data dm+1 is not known, so we use a forecast d̂m+1
to find policies that optimize the system over the next period
m + 1 while satisfying the targets wm+1. This can be interpreted
as solving Sξ for wm+1 given d̂m+1. The forecast d̂m+1 is typically
obtained by using forecasting techniques such as AR, ARMA, or
ARIMA time series models, or covariance estimators (Kumar et al.,
2018b). At the beginning of the next period m + 2, the actual
data realization dm+1 reveals itself and we use this to solve the
approximation Pm+1 to obtain new targets wm+2.

The retroactive scheme is consistent because, from the law of
large numbers, we know that accumulating data over time will
yield an asymptotically exact statistical approximation limm→∞
φm(w) = φ(w) and thus the targets obtained with Pm will provide
a solution to P∞ as m→∞. This asymptotic convergence result
is formally stated in the following theorem (see Theorem 5.3
in Shapiro, Dentcheva, and Ruszczyński (2009)).

Theorem 3.1. Suppose that there exists a compact set C ⊂ Rnw

such that: (i) the solution set S of P∞ is nonempty and contained in
C, (ii) the function φ(w) is finite-valued and continuous on C, (iii)
φm(w) converges to φ(w) with probability one as m→∞ uniformly
in w ∈ C, and with probability one for large enough m the solution
set Sm of Pm is nonempty and contained in C. Then, the Hausdorff
distance between the solution sets D(Sm, S) converges to zero with
probability one as m→∞.

The above result implies that the distance of any solution of
Pm to the solution set of P∞ converges to zero as m → ∞.
Statistical approximation results for SPs also indicate that the
probability that a solution of Pm is in the solution set of P∞
increases exponentially with m (Theorem 5.16 in Shapiro et al.
(2009)). In other words, the probability of finding better targets
than those obtained with Pm decays exponentially as information is
accumulated over time.

These asymptotic optimality results provide a key advantage
of the retroactive scheme over traditional proactive RH schemes.
This is based on a fundamental design difference: the retroactive
scheme uses past (but real) data while proactive RH schemes
use future (but approximate) data forecasts. Moreover, proactive
schemes discard historical data when computing new targets. The
fact that historical data is discarded prevents RH schemes from
offering asymptotic optimality guarantees.

3.2. Incremental cutting plane scheme

The structure of Pm can be exploited using decomposition
strategies and this enables scalability to large values of m. In this
section, we provide a decomposition scheme for linear systems,
and we then discuss potential extensions to nonlinear systems.

The retroactive scheme for linear systems proposed is based
on an incremental cutting plane (CP) scheme. Our approach is
an adaptation of the stochastic decomposition scheme proposed
in Higle and Sen (1991) to tackle linear SPs. To derive this linear
setting, we assume that g(w) = cTww where cw ∈ Rnw is a cost
vector, we assume that the set W ⊆ Rnw is polyhedral, and we
assume that Sξ has the form:

h(w, dξ ) := min
y∈R

ny
+

cTξ y s.t. Wy = rξ − Tw. (6)

Here, the data realization is given by dξ = (cξ , rξ ). We use
y(w, dξ ) to denote the primal solution vector containing the intra-
period trajectories (xξ , uξ ) and some additional dummy variables.
The intra-period dynamics are captured using W , T that are co-
efficient matrices. The structure of the recourse problem is used
to simplify algebraic manipulations and is done without loss of
generality (the results that we present hold provided that the
recourse problem is a linear program). The representation of Sξ

allows us to express its dual form in the following compact form:

max
π

π T (rξ − Tw) s.t. W Tπ ≤ cξ . (7)

Here, π (w, dξ ) is a dual solution vector (dual variables of Sξ )
and we recall that π (w, dξ )T (rξ−Tw) = h(w, dξ ) holds for w ∈ W
(from strong duality). We assume that the feasible set of the
dual subproblem is a non-empty, compact, and convex polyhedral
set, and therefore the polyhedron represented by the set P :=
{π |W Tπ ≤ cξ } is a pointed polyhedron for all (w, dξ ) ∈ W×Ω ′.
As a result, Sξ has a finite number of dual vertices or extreme
points (where a vertex of the polyhedron P is a vector π ∈ P
such that we cannot find two distinct vectors π1, π2 ∈ P and a
scalar λ ∈ [0, 1], such that π = λπ1 + (1 − λ)π2 (see Chapter 2
of Bertsimas and Tsitsiklis (1997)). Moreover, because the support
Ω is finite, the set of dual vertices for all subproblems Sξ is
finite (see Theorem 2.9 in Chapter 2 of Bertsimas and Tsitsiklis
(1997)). We use V to denote the set of all these dual vertices.
Consequently, by definition, π (w, dξ ) ∈ V for all (w, dξ ) ∈ W ×
Ω ′.

In the linear setting, the cost function of P∞ (given by φ(w) =
cTww+E[h(w,D)]) can be outer-approximated using CPs accumu-
lated over ξ = 1, . . . ,m as:

φ
m
(w) := max{αm

ξ + (cw + βm
ξ )Tw|ξ = 1, . . . ,m}, (8)

where the coefficients αm
ξ , βm

ξ are selected to match:

αm
ξ + (βm

ξ )Tw

=
1
m

m∑
ξ=1

(πm
ξ )T (rξ − Tw). (9)

Here, πm
ξ ∈ argmax{π T (rξ − Twm)|π ∈ Vm} for ξ = 1, . . . ,m,

where Vm ⊆ V is the collection of vertices accumulated up to
period m and wm = (xm,0, ηm). For convenience, we define the
function hm(w, dξ ) := max{π T (rξ − Tw)|π ∈ Vm} and note
that hm(w, dξ ) = (πm

ξ )T (rξ − Tw) holds. Moreover, we note that
h(w, dξ ) = max{π T (rξ − Tw)|π ∈ V} holds. Since Vm ⊆ V, we
have that (πm

ξ )T (rξ − Tw) ≤ h(w, dξ ).
The running cost is given by φm(w) = cTww+ 1

m

∑m
ξ=1 h(w, dξ ).

We will prove that φ
m
(w) underestimates the running cost φm(w)

for all m and converges to the infinite-horizon cost φ(w) as m→
∞. Consequently, at period m, we update the targets by solving
the master problem Mm:

min
w∈W

φ
m
(w). (10)

This problem is a tractable surrogate of minw∈W φm(w), because
it captures the recourse subproblems by using hyperplanes. This
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becomes particularly important as information is accumulated
over time. The solution of Mm is used to update the targets wm+1,
which in turn are used to solve the recourse subproblem Sξ+1 and
with this, obtain a new dual vertex to be stored in Vm+1. The CP
scheme is summarized as:

(1) Initialize m← 1, Vm ← ∅, and wm.
(2) At period time m+ 1:
(3) Observe dm and solve Sm to obtain π (wm, dm).
(4) Update Vm ← Vm−1 ∪ {π (wm, dm)}.
(5) (a) Obtain πm

ξ ∈ argmax{π T (rξ − Twm)|π ∈ Vm} for all
ξ = 1, . . . ,m.

(b) Get αm
m and βm

m from (9).
(c) Update αm

ξ ←
m−1
m αm−1

ξ , βm
ξ ←

m−1
m βm−1

ξ for ξ =
1, . . . ,m− 1.

(6) Solve Mm and obtain updated targets wm+1.
(7) Shift period time m← m+ 1 and return to Step 2.

We now prove that the CP scheme delivers a sequence of
targets {wm}

∞

m=1 that converges to optimal targets w∗ of P∞. Our
analysis follows along the lines of that presented in Higle and Sen
(1991).

Theorem 3.2. The CP αm
m + (cw + βm

m )Twm generated in period
m provides a statistically valid lower bound (statistically based
estimate of a lower bound) for φ(w) for all w ∈ W .

Proof. Because Vm ⊆ V we have that,

max{π T (rξ − Twm)|π ∈ Vm}

≤ max{π T (rξ − Twm)|π ∈ V},

and (πm
ξ )T (rξ − Twm) = h(wm, dξ ), ξ = 1, . . . ,m. We thus have

1
m

m∑
ξ=1

(πm
ξ )T (rξ − Twm) ≤

1
m

m∑
ξ=1

h(wm, dξ ).

Furthermore, π T (rξ − Tw) ≤ h(w, dξ ) for any π ∈ V and:

cTww +
1
m

m∑
ξ=1

(πm
ξ )T (rξ − Tw)

≤ cTww +
1
m

m∑
ξ=1

h(w, dξ ) = φm(w), w ∈ W.

The result follows from (9) and by noticing that φm(w) is a
statistical approximation of φ(w). □

As more observations dξ are collected, it is important that all
the collected CPs provide a statistically valid lower bound for
φ(w). This is the goal of Step 5b in the CP scheme. In particular,
at period m+ p with p > 0:

1
m+ p

m∑
ξ=1

(πm
ξ )T (rξ − Tw) ≤

1
m+ p

m∑
ξ=1

h(w, dξ )

≤
1

m+ p

m+p∑
ξ=1

h(w, dξ )

Thus, in the (m+ p)th period, the CP

cTww +
1

m+ p

m∑
ξ=1

(πm
ξ )T (rξ − Tw)

= α(m+p)
m + (β (m+p)

m + cw)Tw

still provides a statistically valid lower bound for φ(w).
We now explore the limiting behavior of hm(·), which embeds

all CP information accumulated over time.

Lemma 3.1. The sequence {hm(·)}∞m=1 converges uniformly on W .

Proof. Vm ⊆ Vm+1 ⊆ V implies that hm(w, dξ ) ≤ hm+1(w, dξ ) ≤
h(w, dξ ) for all w ∈ W and dξ . Since {hm(·)}∞k=1 increases mono-
tonically and is bounded by the finite function h(·), it follows that
{hm(·)}∞k=1 converges point-wise to some function ϕ(·) satisfying
ϕ(w, dξ ) ≤ h(w, dξ ) for all w ∈ W , dξ ∈ Ω ′. Since Vm ⊆ Vm+1 ⊆

V, we have V̄ = limm→∞ Vm ⊆ V. Since V is a finite set, so V̄ is
also a finite set, and we have that:

ϕ(w, dξ ) = lim
m→∞

hm(w, dξ )

= lim
m→∞

max{π T (rξ − Tw)|π ∈ Vm}

= max{π T (rξ − Tw)|π ∈ V̄},

and it follows that ϕ(·) is a continuous function. As W × Ω ′

is a compact space, and {hm(·)}∞m=1 is a monotonic sequence of
continuous functions, it follows that it converges uniformly to
ϕ(·) (see Theorem 7.13 in Rudin et al. (1964)). □

We now show that the sequence of CPs generated provides
support points for φ(·) in the limit m→∞.

Theorem 3.3. Let {wmk}
∞

k=1 be an infinite subsequence of {wm}
∞

m=1.
If wmk → w̄ then, with probability one,

lim
k→∞

1
mk

mk∑
ξ=1

(πmk
ξ )T (rξ − Twmk ) = E[h(w̄,D)].

In addition, every limit of {αmk
mk , β

mk
mk + cw}∞k=1 defines a support of

φ(w) at w̄, with probability one.

Proof. By definition, we have that

hmk (wmk , dξ ) = (πmk
ξ )T (rξ − Twmk )

1
mk

mk∑
ξ=1

hmk (wmk , dξ ) =
1
mk

mk∑
ξ=1

(πmk
ξ )T (rξ − Twmk ).

By Lemma 3.1, there exists ϕ(·) ≤ h(·) such that {hm}
∞

m=0
converges uniformly to ϕ(·). We thus have:

lim
k→∞

1
mk

mk∑
ξ=1

[
hmk (wmk , dξ )− ϕ(w̄, dξ )

]
= 0,

and limk→∞
1
mk

∑mk
ξ=1 h(w, dξ ) = E[h(w,D)] with probability one.

It is now sufficient to show that ϕ(w̄, dξ ) = h(w̄, dξ ) with
probability one. Let dξ be a given realization and suppose that,
for every δ > 0, we have P{|D− dξ | < δ}. Then, for every
δ > 0, |dmk − dξ | < δ infinitely often, with probability one.
Because h(·) is a continuous function and {hm(·)}∞m=1 is uniformly
convergent, for every ϵ > 0 there exist a δ > 0 and N <∞ such
that |(w̄, dξ )− (w, d)| < δ and with:

|h(w̄, dξ )− h(w̄, d)| <
ϵ

3
|hmk (w̄, dξ )− hmk (w̄, d)| <

ϵ

3
, k ≥ N.

Consequently, because limk→∞wmk = w̄, we have P{|D− dξ | <

δ} implies that for every ϵ > 0 there exists a further subsequence
{(wm′k

, dm′k )}
∞

k=1 and K <∞ such that

|h(w̄, dξ )− hm′k
(w̄, dm′k )| <

ϵ

3
|h(w̄, dm′k )− h(wm′k

, dm′k )| <
ϵ

3
|hm′k

(wm′k
, dm′k )− hm′k

(wm′k
, dξ )| <

ϵ

3
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for all m′k ≥ K . By construction, hm′k
(wm′k

, dm′k ) = h(wm′k
, dm′k ).

Thus, for every ϵ > 0, there exists a subsequence {wm′k
}
∞

k=1 and
K <∞ such that

|h(w̄, dξ )− hm′k
(wm′k

, dξ )| < ϵ

for all m′k ≥ K . Consequently, it follows that ϕ(w̄, dξ ) = h(w̄, dξ ).
Finally, since Ω ′ is compact, we have that P{|D− dξ | < δ}

for some δ > 0 and for only finitely many values of dξ , with
probability one. Thus, with probability one, ϕ(w̄, dξ ) = h(w̄, dξ )
for all but a finite number of realizations. Hence, with probability
one,

lim
k→∞

1
mk

mk∑
ξ=1

(πmk
ξ )T (rξ − Twmk ) = E[h(w,D)].

Moreover, since h(w, dξ ) = max{π T (rξ−Tw)|π ∈ V} and Vm ⊂ V
for all m, it follows that

cTww +
1
mk

mk∑
ξ=1

h(w, dξ ) ≥ cTww +
1
mk

mk∑
ξ=1

π
mT

k
ξ (rξ − Tw)

= α
mk
mk +

(
β

mk
mk + cw

)T
w.

We conclude that, with probability one, φ(w) is at least as large
as any limiting cut that is associated with the subsequence of cuts
defined by {(αmk

mk , β
mk
mk + c)}∞k=1. Thus, any limiting cut defines a

support of φ(w) at w̄. □

Theorem 3.4. There exists a subsequence of {wmk}
∞

k=1, satisfying
limk→∞(φ

mk
(wmk )− φ

mk−1
(wmk )) = 0.

Proof. See proof of Theorem 3 in Higle and Sen (1991).
We now establish the main convergence result.

Theorem 3.5. There exists a subsequence {wmk}
∞

k=1, such that every
accumulation point of {wmk}

∞

k=1 is an optimal solution w∗ of P∞,
with probability one.

Proof. Let w∗ be an optimal solution of P∞. From Theorem 3.4,
there exists a subsequence {wmk}

∞

k=1 such that limk→∞(φ
mk

(wmk )
− φ

mk−1
(wmk )) = 0. Let {wmk}k∈K be a further subsequence such

that limk∈K wmk = w̄. Compactness of W ensures that w̄ ∈ W ,
and thus φ(w∗) ≤ φ(w̄). We know that:

φ
m
(w) ≤ cTww +

1
m

m∑
ξ=1

h(w, dξ ), w ∈ W, (11)

and thus,

lim sup
m∈M

φ
m
(w∗) ≤ cTww∗ + E[h(w∗,D)] = φ(w∗) (12)

with probability one for any index set M. Since wm minimizes
φ

m−1
(·) on W , we have φ

m−1
(wm) ≤ φ

m−1
(w∗) for all m. From

Theorem 3.3, limk∈K φmk (wmk ) ≤ φ(w̄) with probability one and,
also by definition, limk∈K φ

mk
(wmk ) − φ

mk−1
(wmk ) = 0. Thus, we

have limk∈K φ
mk−1

(wmk ) = φ(w̄), with probability one. Combining
these results we obtain:

φ(w∗) ≤ φ(w̄)
= lim sup

k∈K
φ

mk−1
(wmk )

≤ φ
mk−1

(w∗) ≤ φ(w∗),

with probability one. We thus have that φ(w̄) = φ(w∗). □

3.3. Short-term MPC controller

The CP scheme is guaranteed to deliver optimal targets as
data is accumulated over time. Notably, because the scheme is
inherently retroactive, it achieves optimal targets without using
any data forecasts. So the question is: How does the proposed
scheme accommodate forecast information? From an implemen-
tation stand-point, another important question is: What metrics
can one use to monitor optimality of the targets?

The proposed scheme offers a couple of mechanisms to embed
forecast information. First, initial guesses for the targets wm =

(xm,0, ηm) at period m = 1, can be obtained by solving Pm′

for some m′ ≥ 1 that uses a data forecast {d̂ξ }
m′
ξ=1. Because

the forecast is expected to contain errors, the initial targets are
expected to be suboptimal but these will be refined as true data
is obtained. Also, as discussed in Section 3.1, the proposed scheme
also enables the incorporation of forecasts at the beginning of
each period to compute the intra-period policies. In particular,
given that the system is at xm, the current guess for the targets
wm+1, and a forecast d̂m+1 over period m + 1, one can compute
the internal control and state policies ŷm+1 = (x̂m+1, ûm+1) that
satisfy the targets wm+1 using an intra-period MPC controller. In
the linear case, this can be done by solving:

min
y∈R

ny
+

ĉTm+1y s.t. Wy = r̂m+1 − Twm+1. (13)

Clearly, the policies ŷm+1 are suboptimal because the forecast
d̂m+1 will deviate from the true realization dm+1 (this becomes
known at the end of period ξ+1). Because the cost function h(·, ·)
is continuous, one can use standard perturbation results to show
that the optimality error in the intra-period policy is bounded by
the forecast error as |h(wm+1, dm+1)− h(wm+1, d̂m+1)| ≤ L∥dm+1−
d̂m+1∥ for some Lipschitz constant L ∈ R+ (see Theorem 4.156
in Bonnans and Shapiro (2013)). This implies that the quality
of the forecast does affect the optimality with respect to the
intra-period policies. Interestingly, however, the short-term MPC
controller only needs to have a forecast over a period of length
n (as opposed to over the entire horizon p). Consequently, the
hierarchical MPC controller is less sensitive to forecast errors than
standard proactive MPC approaches. In addition, we emphasize
that the forecast quality does not affect the optimality of the
targets.

The period length n introduces an interesting and impor-
tant trade-off between long-term and short-term performance.
As discussed previously, increasing n ensures that the resulting
periodic policy better approximates the policy of problem Om. On
the other hand, increasing n indicates that the short-term MPC
controller needs to run over a longer period; as a result, it is more
computationally expensive and susceptible to forecast errors. For
instance, as we have noted, as n is increased the hierarchical MPC
scheme resembles a standard proactive MPC scheme (since the
periodicity constraints are enforced less often).

The full hierarchical scheme is sketched in Fig. 1 and is sum-
marized as follows:

(1) Initialize m← 1, Vm ← ∅, and wm.
(2) Use forecast d̂m and targets wm to obtain intra-period poli-

cies ŷm using MPC controller.
(3) Let system transition from m→ m+ 1.
(4) Observe dm and solve Sm to obtain π (wm, dm).
(5) Update Vm ← Vm−1 ∪ {π (wm, dm)}.
(6) Obtain αm

ξ , βm
ξ , ξ = 1, . . . ,m from cut generator.

(7) Solve Mm and obtain updated targets wm+1.
(8) Shift period time m← m+ 1 and return to Step 2.
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Fig. 1. Sketch of hierarchical scheme using cutting planes.

The SP interpretation allows us to derive metrics and tech-
niques to monitor optimality. We first note that the running
cost φm(wm) evaluated at the current target wm can be evaluated
by solving the sequence of subproblems Sξ , ξ = 1, . . . ,m. The
running cost is an upper bound of the optimal running cost
(obtained by solving Pm). Moreover, the proposed CP scheme
offers the guarantee that the cost φ

m
(wm) is a lower bound

of the running cost φm(wm), which is an asymptotically exact
statistical approximation of φ(wm). The difference between the
running cost (upper bound) and the lower bound is known in
the SP literature as the optimality gap and is formally defined
as ϵm := (φm(wm) − φ

m
(wm))/φm(wm). Here, we refer to ϵm as

the current gap. The convergence of the CP scheme guarantees
that limm→∞ ϵm = 0. We note that this gap can be used to
measure the quality of the CP approximation but should be used
with care when interpreting optimality. In particular, the gap can
only be used as a measure of optimality in the limit m → ∞
(once the running cost φm(wm) is close to the actual cost φ∞(wm)).
Consequently, one usually resorts to computing confidence inter-
vals for φm(wm) by using inference (evaluate the cost at wm but
using different combinations of realizations) (Linderoth, Shapiro,
& Wright, 2006). Motivated by this, in benchmarking studies,
we are also interested in monitoring the overall optimality gap
ϵ̄m := (φ∞(wm) − φ

m
(wm))/φ∞(wm), provided that φ∞(wm) can

be computed.

3.4. Extensions to nonlinear systems

In the case of linear systems, the CP scheme can approximate
the running cost φm(w) using a finite number of supporting hy-
perplanes, which keeps the master problem Mm tractable. The SP
representation opens the door to other schemes such as proximal
point methods for nonlinear (but convex) problems (Bertsekas,
2011). Here, the idea is to prevent the accumulation of data over
time by summarizing past information in terms of a proximal
term. In our context, for instance, the proximal point strategy will
result in a problem of the form at stage m:

min
w∈W

µ∥w − wm∥
2
+ g(w)+

1
m′

m∑
ξ=m′

h(w, dξ ). (14)

Here, µ∥w−wm∥
2 is a regularization term with parameter µ >

0. This term summarizes data before time m′ and resembles the
arrival cost used in moving horizon estimation (Rao, Rawlings, &
Mayne, 2003). In the general case of nonconvex problems, one can
use a statistical approximation minw∈W φm(w) at every period m
by using linear algebra decomposition schemes. In particular, it
is well-known that problems with the structure of Pm give linear
algebra systems that enable parallel decomposition (Zavala et al.,

2008). Given that the coupling is only in the space of the periodic
targets x0, this approach can scale to systems with thousands of
states and tens of thousands of periods (realizations). This ap-
proach, however, exhibits a fundamental limitation in the number
of periods that it can handle (because data is accumulated un-
boundedly over time). This is, in fact, also a limitation of statistical
approximation schemes for SP. To circumvent this issue, one can
use clustering techniques that seek to compress the realization
space to maintain a tractable approximation (Cao, Laird, & Zavala,
2016). Such techniques are based on the observation that data
realizations tend to be redundant and only a small subset actually
impacts the cost. One can quantify the error incurred in the
scenario compression by using inference techniques (Linderoth
et al., 2006).

3.5. Stability considerations

The proposed hierarchical schemes provide important stability
properties. A formal treatment of such properties is beyond the
scope of this work, but here we present some basic arguments.
We first consider the nominal case, in which the data realization
in each period is the same (dξ = dξ ′ for all ξ, ξ ′) and it is
known. This is equivalent to assuming that the dynamics are
of the form xξ,t+1 = f (xξ,t , uξ,t ) (they are time-invariant). We
also assume that no peak cost φ2(·) is used. This nominal setting
is considered in the periodic MPC formulations of Huang et al.
(2011) and Zanon et al. (2017). Both of these formulations use
a proactive RH strategy and enforce a periodicity constraint at
the end of the horizon. In Huang et al. (2011), it is shown that
their MPC scheme delivers a periodic state that is a steady-
state (the closed-loop system is stable). In Zanon et al. (2017),
it is shown that their MPC scheme converges to a periodic state
(not necessarily a steady-state), and is thus stable in this sense.
Converse to a periodic state that is not a steady-state is desirable
because this provides flexibility. Both of these proactive schemes
require dissipativity properties. For this same nominal setting, we
note that the solution of P∞ also delivers a periodic state (by
construction). Since the proposed hierarchical scheme converges
to the periodic state of P∞, we thus have that our approach is
stable in this sense. This result does not require any dissipativity
assumptions.

For the more general case in which the data changes in each
period, we have that the dynamics are time-variant. Moreover,
we have that the data cannot be forecast perfectly. Surprisingly,
for this more challenging setting, we have that the retroactive
scheme proposed also delivers the optimal periodic state and thus
is stable. This is a remarkable result that no other known scheme
reported in the literature provides.
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The short-term MPC controller admits a standard state-
feedback control representation. This is because the control policy
inside the period is updated based on the current state and
the desired state target. The long-term controller (updating the
targets), however, does not admit such a representation because
it is retroactive (and not proactive). In particular, it uses the
entire history (and not just the current state) to compute the next
targets. In future work, we will formalize the stability analysis of
the approach and the associated state-feedback representation.

4. Computational experiments

The performance of the proposed scheme is demonstrated us-
ing an application in buildings with electricity storage. The goal of
the controller is to determine optimal short-term (hourly) partici-
pation strategies in frequency regulation (FR) and energy markets
that maximize revenue and simultaneously mitigate long-term
demand charges. We consider a utility-scale stationary battery
with a capacity of 0.5 MWh, rated power of 1 MW, and a ramping
limit of 0.5 MW/h. We use real data for energy and FR prices
from PJM Interconnection (shown in Fig. 2). We also use real load
data for a typical university campus (shown also in Fig. 2). The
periodic components in the energy prices and the load profile can
be clearly observed, while periodicity of FR prices is not as strong.
The MPC problem is formulated using daily periods of n = 24
hours and we consider a horizon of m = 300 days (nearly a year).
The model parameters include the battery storage capacity (E
kWh), maximum discharging and charging rates (power) (P, P in
kW, respectively), minimum fraction of battery capacity reserved
for frequency regulation (ρ in kWh/kW), and maximum ramping
limit (∆P in kW/h). The random data are the loads (Lξ,t kW),
market prices for electricity and FR capacity (π e

ξ,t $/kWh and
π

f
ξ,t $/kW respectively), demand charge (monthly) (πD in $/kW),

and fraction of FR capacity requested by ISO (αξ,t ). The decision
variables are net battery discharge rate (power) (Pξ,t in kW), FR
capacity provided to ISO (Fξ,t in kW), state-of-charge (SOC) of the
battery (Eξ,t in kWh), load requested from utility (dξ,t in kW) and
peak load (D in kW). The formulation minimizes the total cost
(negative total revenue), which is given by the demand charge
(peak cost) and the revenues collected from the market (time-
additive cost). Detailed notation and analysis of this formulation
is presented in Kumar et al. (2018a). The problem has the form:

min
1
m

∑
ξ∈Ξ

∑
t∈T

(
−π e

ξ,t (Pξ,t − αξ,tFξ,t )− π
f
ξ,tFξ,t

)
+ πDD

s.t. Pξ,t + Fξ,t ≤ P, t ∈ T , ξ ∈ Ξ

Pξ,t − Fξ,t ≥ −P, t ∈ T , ξ ∈ Ξ

Eξ,t+1 = Eξ,t − Pξ,t + αξ,tFξ,t , t ∈ T̄ , ξ ∈ Ξ

ρFξ,t ≤ Eξ,t ≤ E − ρFξ,t , t ∈ T , ξ ∈ Ξ

ρFξ,t ≤ Eξ,t+1 ≤ E − ρFξ,t , t ∈ T̄ , ξ ∈ Ξ

− ∆P ≤ Pξ,t+1 − Pξ,t ≤ ∆P, t ∈ T̄ , ξ ∈ Ξ

dξ,t = Lξ,t − Pξ,t + αξ,tFξ,t , t ∈ T , ξ ∈ Ξ

dξ,t ≤ D, t ∈ T , ξ ∈ Ξ

Pξ,t + Fξ,t ≤ Lξ,t , t ∈ T , ξ ∈ Ξ

Eξ,0 = E0, ξ ∈ Ξ

Eξ,Nξ
= E0, ξ ∈ Ξ

0 ≤ Eξ,t ≤ E, t ∈ T , ξ ∈ Ξ

− P ≤ Pξ,t ≤ P, t ∈ T , ξ ∈ Ξ

0 ≤ Fξ,t ≤ P, t ∈ T , ξ ∈ Ξ

Fig. 2. Energy price (top), FR price (middle), and load (bottom) data.

We first solve the long-horizon MPC problem (1) for a horizon
of 300 days assuming perfect knowledge of the data to obtain
the optimal policy. We compare this policy against that of a long-
horizon MPC formulation that enforces periodicity constraints (2).
The optimal and periodic policies over 30 days are presented in
Fig. 3. Here, we can see that the policies match. The total cost of
the long-horizon MPC problem is $136,050 while the cost of the
long-horizon problem with periodicity constraints is $136,068.
We can see that, in this application, state periodicity arises nat-
urally because the battery needs to maintain a minimum SOC
level after each period. We then ran the proposed retroactive CP
scheme for 300 periods to progressively update the targets. The
evolution of the current gap ϵm and overall optimality gap ϵ̄m
is shown in Fig. 4. We observe that the overall gap eventually
vanishes, demonstrating that the CP scheme delivers optimal
targets. The overall gap closes to zero close to the end of the
horizon, once the peak demand is observed. We also see that the
current gap closes to 0% in about 50 periods and stays there for
the rest of the horizon. This illustrates that the cutting planes
approximate the cost function well, but also that this metric can
be misleading. We have also found that the performance of the
proposed hierarchical scheme is close to that obtained with the
optimal long-term periodic policy. In particular, the cost of the
hierarchical MPC is $139,978 (a difference of 2.89%). Accelerating
the convergence of the CP scheme can help decrease this gap. We
also compared the performance of the hierarchical scheme with
that of a standard (non-periodic) MPC scheme that uses a predic-
tion horizon one and fourteen days. The corresponding costs are
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Fig. 3. Optimal and optimal periodic policies.

Fig. 4. Evolution of optimality gap.

$139,884 and $138,739. We can see that the cost decreases slowly
with the prediction horizon. We also observe that the cost for
standard MPC with a one-day prediction horizon is similar to that
of the hierarchical scheme. The hierarchical scheme, however,
offers optimality guarantees (standard MPC does not).

Fig. 5 shows the evolution of the periodic state and peak
targets. We see that the CP scheme adaptively updates the targets
as data is accumulated over time. The SOC target settles quickly to
the optimal level of 59%. The peak target requires more periods to
settle and this behavior is attributed to the fact that the peak load
is observed at period 264. After this period the peak settles at its
optimal value of 32,935 kW. Fig. 6 shows the intra-period policies
for the short-term MPC controller for the first 7 days (periods) of
operation. We see that the controller follows the target of the CP
scheme.

We also compared the retroactive hierarchical MPC scheme
with the proactive MPC approach for periodic systems of Huang
et al. (2011). For this scheme, we consider a prediction horizon
of 7 days and a period of 1 day. For this comparison, we removed
the demand charge (peak cost) from the formulation and assumed
that disturbances can be forecast perfectly. In Fig. 7, we present
the evolution of the periodic SOC for both approaches. We ob-
serve that, with the proactive approach, the periodic state does
not converge. This is because the dynamics are time-varying. A
similar behavior would be expected from the proactive scheme
of Zanon et al. (2017). On the other hand, the retroactive approach
converges to a periodic state. Moreover, we found that the cost
of the proactive scheme is 5% worse than that of the retroactive
scheme. This is because the proactive scheme does not capture
the long-term trend of the disturbances. In other words, the
retroactive scheme delivers a policy that is close-to-optimal.

5. Conclusions and future work

We showed that stochastic programming provides a frame-
work to design hierarchical MPC schemes for periodic systems.

Fig. 5. Evolution of periodic SOC (top) and peak (bottom) targets obtained with
cutting-plane scheme.

Fig. 6. Evolution of periodic SOC targets and intra-period policies obtained with
CP scheme (first seven periods).

Fig. 7. Comparison of evolution of periodic SOC resulting from the retroactive
approach and Huang and Biegler’s proactive MPC approach (Huang et al., 2011).

We have shown that, under periodicity, it is possible to com-
pute and refine periodic state targets by solving a retroactive
optimization problem that progressively accumulates historical
data. The retroactive problem is a statistical approximation of the
stochastic program that delivers optimal targets in the long run
to guide a short-term MPC controller. The computation of the
optimal targets can be achieved without data forecasts. The SP
setting opens the door to a number of potential developments
in hierarchical MPC scheme. As part of future work, we are
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interested in exploring schemes for nonlinear systems and to
provide optimality and stability results. Moreover, it is necessary
to investigate convergent schemes that have faster convergence
than cutting planes, that prevent accumulation of large amounts
of data over time, and that factor in forecast information in a
more effective manner.
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