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Abstract—Software defined systems use virtualization tech-
nologies to provide an abstraction of the hardware infrastructure
at different layers. Ultimately, the adoption of software defined
systems in all cloud infrastructure components will lead to
Software Defined Cloud Computing. Nevertheless, virtualization
has already been used for years and is a key element of cloud
computing. Traditionally, virtual machines are deployed in cloud
infrastructure and used to execute applications on common oper-
ating systems. New lightweight virtualization technologies, such
as containers and unikernels, appeared later to improve resource
efficiency and facilitate the decomposition of big monolithic appli-
cations into multiple, smaller services. In this work, we present
and empirically evaluate four popular unikernel technologies,
Docker containers and Docker LinuxKit. We deployed containers
both on bare metal and on virtual machines. To fairly evaluate
their performance, we created similar applications for unikernels
and containers. Additionally, we deployed full-fledged database
applications ported on both virtualization technologies. Although
in bibliography there are a few studies which compare unikernels
and containers, in our study for the first time, we provide a
comprehensive performance evaluation of clean-slate and legacy
unikernels, Docker containers and Docker LinuxKit.

Index Terms—Cloud, Software Defined Systems, Virtualiza-
tion, Unikernels, Containers

I. INTRODUCTION

Cloud computing is a well-established but constantly evolv-
ing technology. Virtualization is a fundamental element of
cloud computing. It allows cloud users to share the same
underlying infrastructure, as isolated software abstractions. It
enhances portability, flexibility and scalability on cloud, while
it improves the resource utilization and reduces the cost and
energy consumption of the cloud infrastructure. Software De-
fined Systems (SDS) also use virtualization to provide a soft-
ware abstraction for different subsystems including Software
Defined Networking (SDN) [1], Software Defined Storage
(SDStorage), Software Defined Servers (Virtualization) etc.
[2].

The key objective of SDS is to provide a unified abstraction
of different underlying systems as a single comprehensive
system or resource pools [2], [3]. As far as cloud is concerned,
the ultimate goal is to create a Software-Defined Cloud (SD-
Cloud), where all the physical resources will be virtualized and

controlled via software [4]. The core of any SDCloud is con-
sidered to be SDCompute [2]. SDCompute may employ any
virtualization technology such as XEN or KVM hypervisors.
New lightweight virtualization technologies could become part
of SDCloud and co-exist or even replace traditional full-
fledged VMs.

Containers and unikernels are two of the most dominant
lightweight virtualization technologies. Containers are a more
mature technology, compared to unikernels and offered as
a product by various cloud providers. They share the same
operating system of a host machine. Their main drawback is
weak isolation. On the other hand, although they are not a
new idea, unikernels, have recently gained momentum as a
new virtualization approach in cloud computing. A unikernel
is an immutable, single address space machine image, which
can be deployed by a hypervisor and contains a library
operating system. Unikernels are much smaller and have less
overhead compared to full-flegded VMs, they also provide
higher isolation compared to containers.

In this work, we present and evaluate the performance of
four of the most wide-spread unikernels, two for each main
category. We select OSv and Rumprun as legacy unikernels
and MirageOS and IncludeOS as clean slate unikernels [4].
We also recognize Docker, as the dominant container solution
and we deploy Docker containers on bare metal and on VMs
[5]. Finally, we evaluate LinuxKit [6], which is a toolkit for
building lean, customized OSes for containers. To provide
a fair evaluation between all these different technologies,
we create a custom http web server application for each
system and we also evaluate the performance of SQL database
application ported to containers and unikernels. Although in
recent bibliography there are a few studies which present and
compare lightweight virtualization technologies, for the first
time, in this work we empirically evaluate the performance of
unikernels of both categories, Docker containers and LinuxKit.
We also present our experience with the available tools and the
development process for all the aforementioned virtualization
technologies.

The remainder of this paper is organized as follows. Section
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II provides an overview of the related research. Section III
provides a background on light-weight virtualization technolo-
gies and tools. In Section IV the experimental results are
demonstrated and finally, concluding remarks are presented
in Section V.

II. RELATED WORK

In recent years, there has been an increasing interest in
lightweight virtualization technologies. Already, containers are
a vital element of modern cloud computing and play an
important role in emerging concepts, such as microservices.
Unikernels later appeared as a more secure technology com-
pared to containers, with less overhead compared to traditional
VMs. In current literature, there is an increasing number of
studies which propose different implementations of unikernels,
compare and evaluate their performance and present, well-
suited to unikernels, use cases.

In [7], Goethals et al. compared the performance and
memory consumption of OSv and Docker containers. Al-
though they did consider Rumprun and Unik, due to several
issues, they eventually evaluated only OSv unikernels. They
conducted various experiments with REST services and heavy
processing workloads, written in Java, Go, and Python, on
both OSv and Docker. For single-threated REST service stress
tests, they found that unikernels perform better than their
corresponding containers. For heavy workloads, almost all
unikernels performed equally as their container counterparts.
Concerning memory, unikernels consume significantly more
than containers.

Xavier et al. [8], experimentally evaluated the time of
provisioning multiple KVM, Docker and OSv instances con-
currently, on an OpenStack cloud platform. They found that,
for their experimental scenarios, OSv outperformed the other
virtualization options. Moreover, they recognized the cloud
platform as a factor that significantly affects the overall
provisioning time.

The authors of [9], used different benchmarks to evaluate
KVM, Docker, LXC and OSv in terms of processing, storage,
memory and network. Although OSv values are missing on
several experimental results, overall, they found that contain-
ers generally achieved better performance compared to other
virtualization technologies. However they pointed out that
containers do not offer strong security.

In [10], Acharya et al. indicated virtualization as a key
element of new networking solutions, such as SDN and
Network Functions Virtualization (NFV). Similar to [9], they
experimentally evaluated the CPU, memory and Input/Output
(I/O) performance of KVM, Docker, rkt, Rumprun and OSv,
on both x86 and ARMv8 platforms. However, Rumprun and
OSv unikernels are only evaluated on x86 platform. The over-
all results showed that containers are the fastest virtualization
technology followed by unikernels and KVM respectively.

The performance and resource utilization of KVM, Docker
and IncludeOS are compared on both Intel and AMD servers in
[11]. The author, based on various TCP web-service and UDP
network performance experiments, concluded that Docker

performed better and consumed fewer resources compared to
the most unstable IncludeOS. However, IncludeOS performed
better and consumed fewer resources compared to Ubuntu
KVM VM.

In [12], Enberg used Netperf and Memcached to evaluate
the performance of KVM, Docker and OSv unikernels for raw
networking and network intensive application. He noted that,
in general, containers are the fastest virtualization technology
for network intensive applications and unikernels are the
fastest hypervisor-based technology.

Plauth et al. [13] deployed Nginx servers and Redis appli-
cations on Ubuntu, LXD, Docker, Rumprun and OSv, running
natively or on KVM and XEN VMs. They also deployed
an http-conduit server on MirageOS, although a comparison
between a conduit server and the heavily optimized Nginx
server is unequal. They conducted various experiments and
measured different metrics. Concerning application through-
put, they found that most unikernels performed at least equally
well as or even better than containers. Also, they found that
whereas Docker achieved the shortest startup times, unikernels
have tiny image sizes.

In [4], a tool chain called PHP2UNI is presented, which
builds IncludeOS and Rump Kernels unikernel images from
PHP files. The authors found that PHP2Uni-IncludeOS had
the lowest memory usage, then followed HHVM, Docker, the
comparable solution running directly above the OS and last
rump-based solutions, which consumed much more memory.
As far as performance is concerned, for two different uses
cases of high throughput and server-side computation needed,
PHP2UNI achieved the lowest response times.

A lightweight and flexible runtime, for efficient mobile
offloading in Mobile Edge Computing or Mobile Fog Com-
puting was presented in [14]. The runtime was called Android
Unikernel and followed the idea of supporting various applica-
tions in one unikernel (Rich-Unikernel). The authors evaluated
the proposed runtime with four application benchmarks and
observed that it had lower boot-up time, memory footprint,
image size and energy consumption, compared to Android VM
and Android container.

Finally, a Software-Defined Security strategy for cloud,
based on unikernels, has been proposed in [15]. The authors
described a framework which supports on-the-fly generation
of unikernel images, which integrate protection mechanisms
through their source code and as boot arguments. They eval-
uated the performance of the proposed strategy, by deploying
an http web server, rather than regular Virtualbox VMs and
Docker containers. They concluded that unikernels are well
suited to minimize risk exposure with relatively limited costs.

III. BACKGROUND

A. Virtualization Technologies

Virtualization was originally introduced by IBM in 1960
and the first virtual machine (VM) was created seven years
later [16]. Nowadays, modern VMs follow the same principles.
A hypervisor (also called virtual machine monitor VMM)
creates and manages VMs and allows multiple OSes to run
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on the same underlying hardware. The machine, in which the
hypervisor is running, is called host machine and each VM
running on a host machine is called ”guest machine”.

Fig. 1: Virtualization technologies and methods.

1) Virtual Machines: There are two types of hypervisors,
Type-1 (Fig. 1 a) and Type-2 (Fig. 1 b). Type-1 hypervisors,
also called ”bare-metal hypervisors”, are directly installed on
the hardware, whereas Type-2 hypervisors, also called hosted
hypervisors, run on top of the host OS. Each VM runs its own
OS and is isolated from the others. Several VMs can coexist
simultaneously on the same physical machine and be managed
by the same hypervisor. Due to its nature, a VM can easily
migrate and be duplicated among physical servers, something
that simplifies systems maintenance and failure recovery.

Although in our study we evaluated the lightweight vir-
tualization technologies of containers and unikernels, we
used KVM (Kernel-based Virtual Machine) to run Docker
containers on top of VMs (Fig. 1 c). Running containers
on top of VMs is a technique which is mainly used to
drastically improve containers’ isolation [5]. KVM is open
source software and it is not clear whether it is a Type-1
or Type-2 hypervisor, because it loads a kernel module into
Linux kernel and transforms the host into a hypervisor. Every
VM is treated by the host OS as a regular Linux process.
KVM uses a modified QEMU (Quick Emulator), which uses
CPU extensions, to emulate all the resources of the VMs and
supports paravirtualization through Virtio [17].

2) Containers: Containers, in contrast to VMs, are a vir-
tualization technology which does not require a hypervisor.
Containers operate at the OS level and are managed by
a container engine. They are more lightweight and can be
created significantly faster than VMs, mainly because they
do not run an instance of a complete OS. Containers share
the host’s OS kernel and run multiple isolated processes over
the same host [5]. To control resource consumption and to
provide isolation, containers rely on control groups (cgroups)
and namespaces features of Linux kernel. Containers’ main
advantages, compared to VMs, are low overhead and fast
boot process, however, containers do not excel at providing
isolation as VMs do.

In our study, we focus on Docker as it is an open source
and widely used container platform [18]. Docker also provides
Docker Hub, which allows to easily share and manage Docker
containers among users. In 2017, Docker announced LinuxKit
[19], a toolkit to build minimal Linux subsystems that only

include exactly the components which the runtime platform
requires [20]. LinuxKit images can be deployed by various
hypervisors, cloud providers and on x86 64 and arm64 bare
metal. In our experiments, we run LinuxKit images with
QEMU.

3) Unikernels: Unikernels are actually specialized, single-
address, immutable, minimal VMs, built by using library
OSes [21]. While the kernel size of traditional, general-
purpose operating systems is steadily getting bigger and more
complicated the unikernels approach is based on the concept
of library operating systems [22]. Unikernels contain a single
application, they do not have separate user and kernel address
space and hold only the code and libraries required to run
the application they are built for (Fig. 1 d). Also, because
unikernels are built to run only a specific application, which
is hard coded into the image, they have small file size and
footprint, minimal attack surface and booting time as low as 10
ms, according to IBM [21], [23]. This almost instant boot time
of unikernels is exploited by Jitsu (Just-in-Time Summoning
of Unikernels), which is presented in [24]. Jitsu is actually
a DNS server which launches the unikernel that will service
an address, when it receives the DNS lookup request for that
address.

Traditional VMs, unikernels and containers, provide dif-
ferent levels of performance and isolation, have different
footprints, boot times, density and maturity. VMs have been
used in production for many years, they provide hardware
level isolation, however they are usually as big as hundreds
of MegaBytes to GigaBytes, have relatively high resource
consumption and significant boot times. Containers have high
density, lower resource consumption and boot times with their
main drawback to be poor isolation. Unikernels, although un-
der development, promise hardware level isolation and higher
performance than containers. On the other hand, unikernels
have limitations resulting from their own design and even
when they are eventually production ready, they will not be a
panacea.

4) Unikernels and tools: There is already a big number of
available unikernel solutions and probably more will appear
going forward [25]. We can classify unikernels in two gen-
eral categories, clean-slate and legacy. Clean-slate unikernels
follow a minimalistic approach and are usually language
specific. Clean-slate unikernels require re-implemented OS
functions and more effort to develop applications. However,
they produce smaller images with lower resource requirements
compared to legacy unikernels [25]. On the other hand, legacy
unikernels are POSIX compatible and re-use existing libraries.
These unikernels have larger images and higher resource
requirements but are used to easily port applications to uniker-
nels, by cross-compiling existing applications [7]. In our study
we evaluated the clean-slate MirageOS and IncludeOS and
compared their performance to OSv and Rumprun legacy
unikernels.

MirageOS is one of the first library operating systems used
to construct unikernels [22]. It follows a clean-slate approach,
can be deployed on XEN, KVM and lightweight hypervisors,
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TABLE I: Unikernel Tools.

Unikernels
and Tools Languages Hypervisors and Cloud

OSv Java, Node, Ruby, Scala,
JavaSCript, C, C++

KVM, XEN, VirtualBox,
Vmware, ESXi, Amazon
EC2, Google Cloud

Rumprun
C, C++, Erlan, Go,
Java, JavaScript, Node.js,
Python, Ruby, Rust

KVM, XEN

IncludeOS C++
KVM/QEMU, VirtualBox,
hvt, ESXi, Google Cloud,
Bochs, OpenStack

MirageOS OCaml KVM/QEMU, Xen, hvt

Unik Node.js, Go, Java, C/C++,
Python, OCaml

AWS, QEMU, VirtualBox,
PhotonController, XEN,
hvt, vSphere, OpenStack,
Google Cloud

as well as on Amazon EC2 and Google Compute Engine [26].
MirageOS unikernel images are written in OCaml and there
are currently available almost 100 MirageOS libraries [27].
MirageOS-based solutions are proposed in [15], [21], [24],
[28], [29] and [30].

Rumprun uses the kernel-quality drivers of rump kernels
to build unikernels [31]. Rump kernels are originated from
NetBSD, which was specifically designed to be ported to as
many hardware platforms as possible [32]. Rumprun supports
various languages (Table I) and allows porting POSIX software
to unikernel [33]. Rumprun unikernels can run on Xen and
KVM hypervisors, as well as on bare metal. In [34], Rumprun
unikernel was used as a building block for multiserver systems
and in [35] the authors implemented a Rumprun-based Edge-
hosted Personal Service.

The OSv cloud-focused unikernel is presented in [36].
It provides execution environments for many languages and
supports different hypervisors and cloud platforms (Table I).
OSv provides a more general-purpose unikernel base and
produces large unikernel images which can be used to run
any application that can run in a single process [32]. In
[37], there is a repository with many popular applications
already ported to OSv and ready to be deployed. In [38], the
authors presented an architecture for provisioning OSv-based
Unikernels in OpenStack.

IncludeOS is still (v0.12 as of February 2019) an under
development library operating system for writing unikernel
applications in C++ [39]. IncludeOS has many features in
common with MirageOS. However, it supports more hypervi-
sors and cloud providers compared to MirageOS and provides
an orchestration tool which is called mothership [40].

Unik is not a unikernel or a library operating system, but a
tool for compiling and deploying unikernels [41]. Unik tried
to make the development of unikernels as easy as Docker
did for containers. It supports Rumprun, OSv, IncludeOS and
MirageOS unikernels and many backends (Table I). UniK is
fully controllable through a REST API, supports integration
with orchestration tools such as Kubernetes and promises a
high degree of pluggability and scalability [32].

Solo5 has originally started from IBM Research and is
a unikernel base [42]. Solo5 is actually the lowest layer
of the unikernel which interacts with the hypervisor [43].
Solo5 enabled MirageOS unikernels to run on either Linux
KVM/QEMU or on a specialized unikernel monitor which
is originally called ukvm. The ukvm monitor was presented
in [24] and it is a minimal specialized monitor, which only
contains what the unikernel needs, both in terms of interface
and implementation.. According to [23], ukvm is less than
5% of the code size of a traditional monitor, and due to
its minimalism, it has higher isolation, lower complexity and
faster booting time for unikernels. Ukvm, since Solo5 version
0.4.0, is called Solo5-hvt (hardware virtualized tender) and
is referred to as tender and not as monitor anymore, thus
it thereafter supports additional tenders, such as sandboxed
process tender (spt) [44]. Since 2017 Solo5 also supports
IncludeOS unikernels.

IV. EVALUATION

In this section, we present the hardware and software
setup of our system, the applications which were deployed
in all visualization technologies, the benchmarks for both
http web server and SQL server applications and discuss the
experimental results.

A. Experimental Setup

All the experiments were executed on a 3.7 GHz Intel
CORE I3-6100 processor with 8 GB of DDR4 DIMM RAM,
240GB Western Digital SSD and 100 Mbps Ethernet. A
connected, second machine was used as client, to stress the
server and record the experimental results. The server was
running Ubuntu Server 16.04.3 LTS. In cases where traditional
VMs were deployed, the guest machine was running the
lightweight, general purpose OS, Alpine 3.9.0 Virtual edition.

We used QEMU 2.5.0 for VMs and Docker 5:18.09 for con-
tainers, on both Ubuntu and Alpine. LinuxKit images created
with LinuxKit 0.6+ and unikernel images were deployed with
OSv 0.52.0, the latest available version of Rumprun in January
2019, IncludeOS 0.14.0 and MirageOS 3.4.0.

For the SQL database application, we selected MySQL
5.6.38 and the MyISAM storage engine, since they were avail-
able and stable in all virtualization technologies, except for
LinuxKit in which we necessarily used the Alpine equivalent
to MySQL 5.6.38, MariaDB v10.1.32. For the http web server
use case, we developed a simple http web server in compatible
programming languages. In every case we used the default
Linux network stack, without adjusting any of its predefined
variables.

Every VM and container was limited to use one CPU
core and 1GB of RAM. The benchmarks used to measure
the performance of the two use cases were sysbench with
the OLTP (online transaction processing) component [45] for
MySQL and wrk [46] to measure the performance of the http
web server applications.
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B. Http Web Server
1) Http web server application images development:

Widely used web server applications, such as nginx [47], have
already been ported to legacy unikernels, including OSv and
Rumprun. However, because porting this kind of applications
to clean-slate unikernels requires a significant amount of effort,
there are no equivalent MirageOS and IncludeOS implemen-
tations available.

To provide a fair comparison among all virtualization ap-
proaches, we developed a basic http web server application for
each case. Our application was built to respond to http requests
and to send the requested webpage to clients. If the requested
webpage does not exist, the http web server returns an error
message. In our evaluation, we used a static html webpage.

To create the unikernel applications, first we used the
tools provided by each unikernel ecosystem and second, we
developed again the same unikernels with Unik. Although we
addressed many issues, we managed to create and run all four
different unikernels with Unik and Virtualbox hypervisor. Unik
has some very interesting capabilities, nevertheless it is still
in experimental phase. We may note that, in its current stage,
Unik is far from providing a Docker-like and easy way of
building unikernels.

First, we wrote the http web server application for the
MirageOS unikernel. MirageOS consists of OCaml libraries
which link with a runtime to form a unikernel [48]. These
libraries are managed via the OPAM package manager [49].
Ocaml is a general-purpose programming language with an
emphasis on expressiveness and safety [50]. MirageOS also
provides a repository with example codes in [51]. We adapted
the tutorial code of [51] to create our application on OCaml.
Before building the unikernel, we configured it with boot target
hvt and then we built and ran the unikernel image with hvt.
The MirageOS unikernel used a bridged TAP virtual network
interface.

For the second clean-slate unikernel, IncludeOS, we wrote
a similar C++ version of the previous OCaml http web server
application. In IncludeOS main github repository [52], there
are also source code examples of simple applications, which
we adapted to create our own application. IncludeOS is the
second unikernel, which is compatible with hvt. In this case as
well, we built and ran the IncludeOS unikernel with a bridged
TAP virtual network interface.

OSv and Rumprun unikernels, in contrast to MirageOS and
IncludeOS, support a wide range of programming languages
(Table I). Also, both of them maintain on-line repositories with
useful examples and applications for different languages [37],
[53]. We selected Java to develop our application for both
legacy unikernels. We also used two additional tools. Apache
Maven [54] automation tool to build the Java application and
Capstan [55] to run OSv. Our experimental setup for these
unikernels, was similar to the previous ones, but in these cases
we deployed them with QEMU and not with hvt.

Finally, on Docker and LinuxKit, we used the same Docker
container image. We developed an http web server in C++
and created a Docker image. With this image, we created

a LinuxKit image. We ran Docker containers with CPU and
memory limitations, with their default bridges. For LinuxKit
images, we applied the same source limitations and ran them
with QEMU and bridged TAP virtual network. In the case
of Docker containers running on top of a VM, we used
KVM/QEMU to deploy Alpine VM with bridged TAP virtual
network interface and limited resources to 1 CPU Core and
1GB ram. We selected Alpine OS as guest OS, mainly because
of its minimal design and high performance.

2) Performance evaluation of http web server applications:
Table II presents four different metrics, for requests per second
and latency, for the http web server application, for different
virtualization technologies and number of concurrent clients.
For every case we can see the average and max value of
requests per second and latency, as well as the standard
deviation and the percentage of values appeared in +/- standard
deviation. If we observe the requests per second values, we
can easily recognize that Rumprun unikernels achieved signifi-
cantly lower performance, compared to the other virtualization
technologies. Compared to OSv unikernel, Rumprun achieved
in average 18 times fewer http requests per second and has
twice as high latency in average.

To understand why Rumpruns performance is so low, we
have to keep in mind that the http web server application
mainly uses the TCP/IP network stack of the system. Also,
worth noting is that Rumprun is using the unmodified TCP/IP
network stack of NetBSD. In a similar to ours experimental
scenario, the authors of [10] measured the bandwidth of
the TCP network protocol for Docker, rkt, KVM, OSv and
Rumprum. They stressed the system with the Iperf network
benchmarking tool and, for their experimental setup, they
found that Rumprun achieved 32 times lower network per-
formance compared to OSv. To further investigate how this
significant performance difference is affected by the type of
http web server application, we deployed the highly optimized
nginx web server on Rumprun and OSv. The results, which are
not presented in this work due to space limitations, followed a
similar pattern to the previous ones. In average, nginx running
on OSv achieved 5 times more requests/sec compared to
Rumprun.

Concerning unikernels, OSv achieved the highest average
number of requests per second and then MirageOS follows
with less than 2.5% difference in the average number of
requests per second in total, for different number of clients.
However, OSv presents almost 3 times higher standard devi-
ation compared to MirageOS. Docker on bare metal achieved
the highest average number of requests per second for all
different experimental configurations, then OSv follows, Lin-
uxKit, MirageOS, Docker on VM-Virtio, Docker on VM,
IncludeOS and finally Rumprun with important difference in
its performance. For more than 20 concurrent clients, OSv
achieved in average 2.75% higher number of requests per sec-
ond compared to Docker. MirageOS, for even higher number
of concurrent clients (90 - 100) achieved equal and even higher
number of requests per second compared to Docker.

In the second half of Table II we can see the latency metrics,
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for the same experiments. The highest average latency values
achieved by Rumprun and the lowest by IncludeOS. It is worth
mentioning that the overall max latency values for MirageOS,
IncludeOS and Rumprun were ranged between 40 and 80
milliseconds whereas, for the other virtualization technologies
exceeded one second. Moreover, we can observe that for these
three unikernels, the overall standard deviation of latency is
very low. MirageOS running on ukvm achieved the lowest
latency and only 5% lower average request rate from Docker
on bare metal.

TABLE III: Memory usage in MB per unikernel.

OSV Rumprun IncludeOS MirageOS
Memory

consumption
(Mbytes)

185 97 16 7

Additionally, for this experimental scenario, we used the
”free -m” Linux command, to measure the amount of memory
that each unikernel needs in order to operate. The values
presented in Table III, are in alignment with our initial claims,
that clean-slate unikernels, such as MirageOS and IncludeOS,
have lower resource consumption than legacy unikernels.

C. SQL Database

In the second series of our experiments, we deployed
MySQL server applications with Docker containers, OSv and
Rumprun unikernels and last LinuKit. In contrast to the http
web server experiments, in which we developed the http web
server applications, in this series we used, already ported
to containers and unikernels MySQL server applications. In
Docker Hub there are more than 2 million public images
available to download, whereas there are more than 36 com-
monly used applications ported to Rumprun and more than
105 application ported to OSv. Our experience with OSv and
Rumprun, showed that not only there are more OSv ported
applications than Rumprun, but also that OSv applications
are more functional. For example, MySQL application on
Rumprun supports only MyISAM storage engine.

We initially used sysbench OLTP to populate our database
with 500.000 rows of random data. Then, we quantified
the performances of each virtualization solution for both
read/write and read-only requests. In all cases we used the
same MySQL configuration file. Fig. 2 illustrates the requests
per second recorded values for read/write and read-only re-
quests. In case of read/write requests, sysbench selects queries
from five SELECT queries, two UPDATE queries, a DELETE
query and an INSERT query. As we noticed in our results, the
ratio was about 65% reads, 25% writes and 10% other queries.

As it would be expected, read-only requests had the highest
request/sec rate, compared to more complicated read/write
requests, in all cases. By observing Fig. 2, we recognize
that Rumprun achieved by far the lowest performance. In
average containers running on bare metal, LinuxKit and VM
achieved higher requests/sec rate and lower average time for
request (Fig. 2, Table IV). For this experimental scenario,

OSv achieved in average 27% fewer requests/sec compared to
Docker on bare metal. Worth noting is that, although read-only
requests to container on bare metal and on paravirtualized VM
had almost the same performance, there is a much bigger dif-
ference for read-write requests between them. Most probably
this happens because the hypervisor used buffering. Regarding
latency, except for Rumprun, there is no big difference for the
other virtualization technologies.

Fig. 2: SQL server performance.

TABLE IV: SQL server latency in ms.

Read Only Read-Write
Avg Max 95% Avg Max 95%

Container
on Bare Metal 5.22 40.63 6.7 5.7 25.14 6.97

Container
on VM 6.02 81.23 9.61 8.73 74.92 11.73

Container
on VM-Virtio 5.13 63.95 6.58 8.31 223.75 13.74

LinuxKit 5.59 21.15 6.05 8.84 79.37 10.77
OSv 6.61 68.46 7.65 10.4 68.49 16.32
Rumprun 27.59 78.61 28.68 49.82 233.06 138.71

V. CONCLUSIONS

Towards Software Defined Cloud Computing, virtualization
technologies do play an important role. Lightweight virtualiza-
tion technologies, such as containers and unikernels, provide
an interesting alternative to traditional VMs. Containers have
already been used in cloud for several years. Lately, the old
idea of unikernels tries to find a new application in the cloud
environment.

In this study, for the first time, we used the well-known
Docker container engine to deploy containers in 3 different
ways and we compared their performance to 4 different
unikernel solutions. We deployed Containers on bare metal,
containers on minimalistic KVM VMs and Linuxkit. We
developed a simple http web server and we also used SQL
database application images, to compare the performance of
containers to both clean-slate and legacy unikernels.

Our experimental evaluation showed that in almost all cases
containers had higher request rate compared to unikernels.
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However, OSv and MirageOS achieved comparable perfor-
mance to containers and in some cases marginally higher
than them. As for latency, MirageOs, IncludeOS and Rumprun
showed significant lower and more stable values compared
to containers. Between unikernels, MirageOS showed high
performance, the lowest latency and the lowest memory usage,
with its main drawback to be that it only supports OCaml. On
the other hand, OSv supports many languages, has a public di-
rectory of already ported applications, achieved lower latency
than containers and comparable performance but significantly
higher memory utilization.

In our evaluation we tried different tools through the de-
velopment process. Maven and Capstan help us run OSv
unikernels. We employed Unik to develop and run, all the four
kinds of unikernels. Unik, as most unikernel technologies, is
currently under development and even if it is very promising, it
is far from fulfilling its goals. Our empirical evaluation shows
that each technology provides benefits but also has drawbacks
at different levels. Each of these lightweight virtualization
technologies can be used appropriately in different cases.
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