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a b s t r a c t 

Background and Objective: Brain machine interface (BMI) is a system which communicates the brain with 

the external machines. In general, an electroencephalograph (EEG) machine has to be used to monitor 

multi-channel brain responses to improve the BMI performance. However, the bulky size of the EEG ma- 

chine and applying conductive gels in EEG electrodes also cause the inconvenience of daily life applica- 

tions. How to select the relevant EEG channel and remove irrelevant channels is important and useful for 

the development of BMIs. 

Methods: In this research, a smart EEG cap was proposed to improve the above issues. Different from 

the conventional EEG machine, the proposed smart EEG cap contain a spatial filtering circuit to enhance 

EEG features in local area, and it could also select the relevant EEG channel automatically. Moreover, the 

novel dry active electrodes were also designed to acquire EEG without conductive gels in the hairy skin 

of the head, to improve the convenience in use. 

Results: Finally, the proposed smart EEG cap was applied in motion imagery-based BMI and several ex- 

periments were tested to valid the system performance. The proposed smart EEG cap could effectively 

enhance EEG features and select relevant EEG channel, and the information transfer rate of BMI was 

about 6.06 bits/min. 

Conclusions: The proposed smart EEG cap has advantages of measuring EEG without conductive gels and 

wireless transmission to effectively improve the convenience of use, and reduce the limitation of activity 

in daily life. In the future, it might be widely applied in other BMI applications. 

© 2019 Published by Elsevier B.V. 
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. Introduction 

Electroencephalograph (EEG)-based brain machine interface is

 system which can translate the mental tasks of the user into a

ommand to communicate with the external device without us-

ng muscle [1,2] . Most of BMIs require many EEG channels to ac-

uire EEG signals from multiple sites on the scalp skin to pro-

ide a good performance. Before measuring multi-channel brain

esponses, a prolonged preparation time is required and it directly

ffects the convenience in use. Moreover, these EEG channels may

ontain many irrelevant signals, Therefore, for the development of

rain machine interfaces (BMIs), selecting the optimal subset of the

EG channels to replace the use of all EEG channels is an impor-

ant issue. 
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Several approaches in previous studies have been designed to

xtract the optimal subset of the EEG channels to improve the BMI

erformance. In order to remove the noisy and irrelevant chan-

els, the sparse common spatial pattern (SCSP) method proposed

y Arvaneh et al. was used to retain the least EEG channels and

rovide a good accuracy of classification which is similar to that

btained by using all EEG channels [3] . Lal et al. used the tech-

ique of support vector machines (SVM) to the art feature selec-

ion methods, and applied it in the problem of channel selection

4] . Here, EEG features derived from autoregressive (AR) models

ere used to eliminate the EEG channels which least-contributed

n the accuracy of classification. Lan et al. designed a mutual-

nformation-based dimensionality reduction method to select EEG

hannels [5] . The mutual information between the class labels and

he EEG channels were used to determine the channel selection.

y selecting the meaningful EEG channels and removing irrele-

ant EEG channels, the performance of BMIs could be improved

3] . Moreover, reducing the number of the required EEG channels

ould improve the convenience of use, and the computational com-

lexity of BMIs could also be reduced straightforwardly. However,
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Fig. 2. (a) Structure illustration and (b) photograph of designed dry active elec- 

trode. 
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the above BMIs still required many EEG electrodes with conductive

gels and the conventional EEG machine to acquire multi-channel

brain responses, and these EEG signals would be sent to the back-

end BMI platform to select the optimal subset of the EEG channels.

It also reduces the practicability of BMIs and increases the limita-

tion of BMI applications. 

Based on the concept of selecting the optimal subset of the

EEG channels, a smart EEG cap was proposed in this study. Here,

novel dry active electrodes were designed to acquire EEG with-

out conductive gels from the hairy site of the head. Moreover, the

impedance test circuit for electrode-skin interface impedance was

designed in the smart EEG cap to ensure each dry active electrode

contacting with the skin well. Different from other BMIs that have

to acquire and transmit multi EEG channels to the back-end BMI

platform to select the optimal subset of the EEG channels, the pro-

posed smart EEG cap could select the relevant EEG channels di-

rectly after acquiring EEG signals. It also contains a spatial filtering

circuit to enhance the specific EEG features within a local spatial

distribution. Finally, the proposed smart EEG cap was applied in

the application of motion-imagery-based BMIs to improve the is-

sue of the relevant EEG channels related to motion imagery is var-

ied from subject to subject. 

2. System architecture and design 

The proposed smart EEG cap, as illustrated in Fig. 1 (a) and

(b), mainly contained a mechanical design, dry active electrodes,

a wireless bio-potential acquisition module. The mechanical de-

sign of the smart EEG cap with the dry active electrodes were de-

signed to acquire EEG signal without conductive gels in the hairy

head skin. The wireless bio-potential acquisition module was de-

signed to amplify the acquired bio-potential signal, perform the

function of spatial filtering and selecting the relevant EEG chan-

nel, and transmit the selected-channel EEG signals to the BMI plat-

form via Bluetooth. Finally, the BMI platform would receive the
Fig. 1. (a) System architecture and (b) photograph of proposed smart EEG cap. 
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elected-channel EEG signals and perform the function of motion-

magery BMIs. In the BMI platform, a BMI program was also de-

igned to provide several functions, including impedance testing of

lectrode-skin interface and detecting motion imagery event. 

.1. Mechanical design of smart EEG cap with dry active electrodes 

Fig. 2 (a) and (b) showed the basic structure and photograph

f the designed dry active electrode respectively, and it was im-

lemented to acquire bio-potential without conductive gels, in the

airy head skin. It mainly contains the active circuit part and the

etal electrode part. The metal electrode part, made of copper,

as coated with Ag, and was connected with many metal pins

ith spring loaded. These metal pins could easily pass through

he head hair to touch the head skin well, and the spring in the

etal pins allow it contacting with the irregular skin well. For

he active circuit part, its input impedance was ultra-high to avoid

he distortion or attenuation of the acquired bio-potential. More-

ver, the wearable device design could also provide a suitable pres-

ure and ensure a good and stable contact status between the skin

nd the electrode. For the mechanical design, it mainly consisted

f four flexible plastic strips similar to Alice band. The dry active

lectrodes were embedded into the plastic strips. These dry active

lectrodes were placed on O1, O2, P3, P4, C3, C4, F3, and F4 of the

nternational 10–20 EEG system respectively. 

.2. Wireless bio-potential acquisition module 

The designed wireless bio-potential acquisition module, as

llustrated in Fig. 3 (a), mainly contained front-end bio-amplifier

ircuits, an impedance test circuit for electrode-skin interface,

 common average reference (CAR) spatial filtering circuit, a

icroprocessor unit, and a Bluetooth module. The dimension

f the wireless bio-potential acquisition module was about

.3 × 5.2 × 2 cm 

3 . It could operate with 3.5-V DC power supply,

nd its current consumption was about 28 mA. By using a 350 mAh

i-ion battery, it operation time was over 12 h. The impedance

est circuit, which provided a 10 Hz signal source to pass through

he electrode-skin interface to evaluate its impedance [6] , was

esigned to check the electrode-skin contact status. The whole
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Fig. 3. Block diagrams of (a) wireless bio-potential acquisition module, and (b) CAR 

spatial filtering circuit. 
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Fig. 4. Illustration of (a) extracting ERD quantification from μ rhythm EEG, and (b) 

motion-imagery detection. 
ain of the bio-amplifier circuit was set to 10,0 0 0, and it was

esigned to amplify the acquired bio-potential signal. 

In 1997, McFarland et al. investigated the effect of selecting

ifferent spatial filter, including two types of Laplacian deriva-

ions, common average reference, and conventional ear reference,

n the performance of EEG-based BMIs, and indicated that the

arge Laplacian derivations spatial filter and CAR spatial filter could

rovide the better BMI performance [7] . In this study, the common

verage reference spatial filtering circuit was designed for the en-

ancement of the specific EEG feature within a local spatial distri-

ution. Let an EEG system contain N channels and v i ( t ) denote the

aw signal of the i th EEG channel at iteration t , and then the EEG

ignal processed by the CAR spatial filter can be expressed by 

 i,CAR ( t ) = v i ( t ) −
1 

N 

N ∑ 

n =1 

v n ( t ) (1) 

here v i,CAR ( t ) denotes i th channel filtered EEG signal at iteration

. Fig. 3 (b) illustrated the schematic circuit of the CAR spatial fil-

ering circuit. In this circuit, an adder was used to sum up the N-

hannel EEG signals. The resistances R A and R B in the adder were

sed to adjust the gain of the adder, and the resistances R 1 , R 2 ,…,

 N were used to determine the weight of input raw EEG signals.

he instrumentation amplifiers in the front-end bio-amplifier cir-

uits were used as subtractors to subtract the average of the N-

hannel raw EEG signals to obtain the filtered EEG signals v i,CAR ( t ),

i = 1, 2, …, N . The microprocessor was designed to digitize bio-

otential signals with 512 Hz sampling rate, and perform the func-

ion of selecting the relevant EEG channels. Next, the selected-

hannel EEG signals would be sent to the Bluetooth module, to

ransmit to the host system wirelessly. 
. Methods 

The hand motion or motion imagery can reflect on β rhythm

13–30 Hz) and μ (8 Hz–13 Hz), acquired from the sensory-motor

ortex. In 1977, the phenomenon of event-related desynchroniza-

ion (ERD) and event-related synchronization (ERS) was first in-

roduced [8,9] . They found that the decrease of EEG power in β
hythm and μ rhythm measured from the sensory-motor cortex oc-

urred under the motion imagery of the hand, and the increase of

EG power in β rhythm and μ rhythm occurred after motion im-

gery. According to the above phenomenon, the criterion of select-

ng the optimal subset of the EEG channels was designed in this

tudy. 

For the stage of selecting the relevant EEG channels, the BMI

rogram would show the icons of the stop mark, left arrow or

ight arrow to instruct the user to do nothing, right hand or left

and motion imagery respectively. The whole test procedure of se-

ecting the relevant EEG channels would perform three right hand

nd left hand motion imagery actions sequentially, and the period

f each motion imagery was about 10 s. In each cycle, the user

ould be instructed to relax within the first 4 s, and perform the

otion imagery within the last 6 s. 

In order to extract the features related to the motion imagery,

he normalization of ERD [2, 10] , as illustrated in Fig. 4 (a), could

e calculated as followings. 

RD ( k ) = 

P ERD ( k ) − P baseline 

P baseline 

× 100 ( % ) (2) 

here P baseline denotes the averaged power of the first 4 s μ rhythm

EG. P ERD ( k ) denotes the k -th averaged power of the 2 s μ rhythm

EG with the overlap of 1 s EEG. Finally, the channel, that provided
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Fig. 5. (a) Selected EEG channels and (b) ERD normalization obtained by proposed 

smart EEG cap under right hand and left hand motion imageries. 
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the minimum of the ERD normalization ERD (1), would be selected

as the relevant channel related to right hand or left hand motion

imagery. 

For the design of motion-imagery-based BMI, the ERD nor-

malization vector [ ERD (1), ERD (2), …, ERD (5)] extracted from the

selected-channel EEG was used as the EEG feature of detecting mo-

tion imagery. Here, a neural network with 64 hidden neurons was

used to training the model of right hand and left hand motion im-

agery. Here, radial basis function neural network, which can pro-

vide a multi-dimensional approximation, and contains the advan-

tages of simpler structure, and fast training procedure, was used

in this study [11] . In the beginning, the BMI program would pe-

riodically show two cues to instruct the user. The first cue would

instruct the user to relax for 4 s, and the second cue would in-

struct the user to do motion imagery for 6 s. After each cycle, the

ERD normalization vectors extracted from the two selected chan-

nels related to right hand or left hand motion imagery would be

calculated, and were used as the input of the neural network. If

the ERD normalization of the selected channels was lower than

the given threshold, the channel containing the minimum ERD nor-

malization would be recognized as the event of motion imagery. If

all ERD normalizations of the selected channels were higher than

the given threshold, it would be recognized as the do-no-thinking

state. The whole procedure of motion-imagery detection was illus-

trated in Fig. 4 (b). 

4. Experimental results 

4.1. Performance of smart EEG cap on EEG enhancement and 

selecting channel 

In this section, the selected EEG channels and ERD normaliza-

tion obtained by the proposed smart EEG cap when the partici-

pants performed the right/left hand motion imagery were first in-

vestigated. The selected EEG channels and their ERD normaliza-

tion under the right/left hand motion imagery were showed in

Fig. 5 (a) and (b) respectively. A total of 25 subjects (23 men and 2

women, mean age: 25.73 ± 2.1 years) attended this experiment. For

the right hand motion imagery, the selected EEG channels could be

F3, C3, and P3. The selected EEG channels for the left hand motion

imagery could be F4, C4, and P4. Here, most of the selected chan-

nels under right/left hand motion imagery were at the locations

of C3 and C4 respectively. The range of ERD normalization for the

right/left hand motion imageries were about from −50% to −20%. 

Next, the performance of the proposed smart EEG cap on en-

hancing EEG within a local spatial distribution was first tested.

Here, EEG signals acquired from the locations of C3 and C4 in

10–20 EEG system when performing motion imagery, were used

for test. The definition of the performance on enhancing ERD fea-

ture was the difference between the normalization ERD values of

ERD (1) with and without the CAR spatial filtering circuit. The ex-

perimental results showed the averaged performance of enhancing

ERD feature by using the CAR spatial filtering circuit was about

17.33 ± 11.93%. Therefore, EEG within a local spatial distribution

could exactly be enhanced by the proposed smart EEG cap. 

4.2. Performance of smart EEG cap applied in motion-imagery BMI 

The BMI performance of the proposed smart EEG cap was in-

vestigated in this section. In the beginning of this experiment, a

stop mark was presented to instruct the user to do nothing for

4 s. Next, a randomly selected arrow mark was presented to in-

struct the user to do right hand or left hand motion imagery. The

period of each hand motion imagery test was about 10 s. A total

of 10 subjects (10 males, mean age: 24.78 ± 1.5 years) attended

this experiment, and all subjects were simply trained for half of
n hour. Before evaluating the performance on detecting motion

magery, the binary classification test parameters have to be first

efined: (i) True positive indicates the right/left hand motion im-

gery was correctly recognized as an action of right/left hand mo-

ion imagery, (ii) True negative indicates the state of doing nothing

orrectly recognized as an idle state, (iii) False positive indicates

he state of doing nothing was incorrectly recognized as an action

f right/left hand motion imagery, and (iv) False negative indicates

he right/left hand motion imagery was incorrectly recognized as

n action of left/right hand motion imagery or an idle state. Here,

he performance of the proposed system on recognizing motion

magery was evaluated by F-measure, and it can be calculated from

ensitivity and positive predictive value (PPV) 

The performance on recognizing left and right hand motion im-

geries by using the proposed smart EEG cap were listed in Fig. 6 .

t showed that the averaged F-measure values for detecting motion

magery was about 74.64 ± 4.88%. The averaged PPV and sensitivity

or detecting motion imagery were 73.44 ± 7.25% and 76.39 ± 5.92%

espectively. The accuracy of recognizing motion-imagery event

as 73.19 ± 5.20%. Next, the information transfer rate (ITR) [12,

3] was evaluated, and the definition of the information transfer

ate was given by 

 = log 2 N + P log 2 P + ( 1 − P ) log 2 [ ( 1 − P ) ( N − 1 ) ] (3)

here B is the information transfer rate, P is the accuracy of rec-

gnizing motion imagery, and N is the number of mental pro-

esses. Then, the definition of bit rate is given by (bits/ sym-

ol) × (symbols/min). In this system, N was set to 3, including the

tate of doing nothing and the right/left hand motion imagery.

n the proposed system, its information transfer rate was about

.01 bits per trial (bit rate = 6.06 bits/min). 
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Fig. 6. PPV, sensitivity, F-measure, and accuracy of motion-imagery detection by 

using proposed smart EEG cap. 
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. Discussions 

In the proposed smart EEG cap, dry active electrodes were de-

igned and applied in EEG measurement. The design of the pin-

haped electrode with spring loaded can easily separate the head

air and contact with the irregular skin well, and the part of the

ctive circuit can reduce the signal attenuation and phase distor-

ion due to its low input current and ultra-high input impedance

14] . The wearable mechanical design also provided a slight pres-

ure to ensure a good and stable contact status between the skin

nd the electrode to acquire a good EEG signal quality. Moreover,

t also could help the user easily wearing to improve the conve-

ience in daily life use. The CAR spatial filtering circuit with 8 EEG

hannels (O1, O2, P3, P4, C3, C4, F3, and F4) was also designed

nd implemented in this smart EEG cap and its performance of

nhancing ERD feature was also good. Mohammed J. Alhaddad in-

icated that the performance of CAR spatial filter outperformed

hat of the other re-references techniques [15] . They also indicated

hat the performances of the CAR spatial filter with 8, 16, and 32

hannels were similar, and the accuracy of BMI obviously became

oorer when reducing the EEG channel number to 4 channels. S.C.

g and P. Raveendran used 26 EEG channels around the motor cor-

ex region to perform the CAR spatial filter. They indicated that it

annot provide a good performance of enhancing EEG feature re-

ated to motion imagery when all of the EEG channels were around

he motor cortex region [16] . The EEG channels selected near the

otor-sensory cortex might cause that a large proportion of spe-

ific EEG related to motion imagery was merged into the common

ode signal, and this also reduced the efficiency of enhancing spe-

ific EEG features within a local spatial distribution. The locations

f the EEG channels used in the CAR spatial filtering circuit of

he smart EEG cap were distributed over large region of the brain

emisphere to successfully avoid the above issue. Finally, the per-

ormance of the proposed smart EEG cap on motion imagery detec-
Table 1 

System comparison between proposed system and other online motion-imagery B

Ang et al. [20] Handiru et al. 

Number of used EEG channels 27 64 

Type of EEG electrode Conventional EEG electrode Conventional E

Accuracy (%) 70 63 

Bit rate (bits/min) – –

Function of selecting channel No Yes 

Unit of computing ERD Back-end computer Back-end comp

Wearability No No 

Wireless module No No 
ion was also tested. The averaged accuracy of the proposed smart

EG cap on motion-imagery detection was 73.19 ± 5.20%, and the

TR was about 1.01 bits per trial. 

In previous studies, several online motion imagery-based BMIs

ith or without the function of selecting channels have been

uccessfully proposed [17–19] . System comparison between pro-

osed system and other online motion-imagery BMIs is shown in

able 1 . In 2015, Ang et al. implemented an online motion imagery

MI to assist neurorehabilitation for stroke patients [20] . Here, 27

EG channels were used, and filter bank common spatial pattern

FBCSP) algorithm was used to construct a patient-specific model

rom a calibration session to recognize motion imagery. Its ac-

uracy was about 70%. In 2016, Handiru et al. proposed the ap-

roach of the iterative multi-objective optimization for channel se-

ection (IMOCS) to find a set of the most relevant channels [21] ,

nd applied it in the design of the motion-imagery BMI. Here, 16

r 20 channels would be selected by the IMOCS method from 64

EG channels, and its averaged accuracy was about 63%. In 2018,

antillo-Negrete et al. also designed an online motion imagery BMI

o control a robotic hand orthosis [22] . Here, a bank of temporal

lters and the common spatial pattern algorithm were used for

eature extraction and the particle swarm optimization was used

or feature selection. Eleven electrodes (F3, F4, Fz, C3, C4, Cz, T3,

4, P3, P4, and Pz in the international 10–20 EEG system) were

laced over the scalp of the participants. It online performance was

bout 70%. In this study, by using the proposed smart EEG cap, the

erformance of the motion imagery BMI was similar to the above

nline motion imagery-based BMIs. However, the above online mo-

ion imagery-based BMIs still have to transmit multi-channel brain

esponses to a computer to execute the function of selecting chan-

els and detecting motion imagery. Different from other BMIs, the

ront-end smart EEG cap could perform the function of select-

ng channels directly, and only the selected-channel EEG signals

ould be sent to the back-end computer to reduce the loading of

ransmission data and computation complexity. Moreover, the ad-

antages of measuring EEG without conductive gels and wireless

ransmission also greatly improved the practicability of BMI appli-

ations in daily life. In the future, both of the feature selection and

lassification procedure can be integrated into the smart cap. 

. Conclusions 

In this study, a smart EEG cap was proposed to select the rele-

ant EEG channels and enhance EEG features within a local spa-

ial distribution. Here, dry active electrodes with spring loaded

ere also implemented and applied in the smart EEG cap, to mea-

ure brain responses without conductive gels, in the hairy head

kin. Moreover, by using the design of the common average ref-

rence spatial filtering circuit, the front-end smart EEG cap could

irectly execute the function of spatial filtering, and its perfor-

ance of enhancing ERD feature was about 17.33%. Different from

ther EEG machines used in previous BMIs, the proposed smart

EG cap could perform the function of selecting channel in the

ront-end EEG cap to only transmit the selected-channel EEG sig-

als. Finally, the proposed smart EEG cap was also applied in
MIs. 

[21] Cantillo-Negrete et al. [22] Proposed system 

11 8 

EG electrode Conventional EEG electrode Dry active electrode 

70 73.19 

– 6.06 

No Yes 

uter Back-end computer Front-end smart EEG cap 

No Yes 

No Bluetooth module 
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the design of the motion-imagery BMI. The experimental results

showed that the proposed smart EEG cap exactly provided a good

performance of detecting motion imagery (the averaged accuracy

was 73.19 ± 5.20%, and the ITR was about 6.06 bits/min). The ad-

vantages of the proposed smart EEG cap on measuring EEG with-

out conductive gels and wireless transmission could effectively im-

prove the convenience of use, and reduce the limitation of activ-

ity in daily life. Therefore, the proposed smart EEG cap is a sys-

tem prototype of a novel wearable EEG device, and in the future,

it might be widely applied in other BMI applications. 
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